kMeansClustering

VQ (vector quantization) of K-means clustering using Forgy's batch-mode method

Contents

Syntax

Description

center = kMeansClustering(data, clusterNum, plotOpt) returns the centers after k-means clustering, where

[center, assignment, distortion, allCenter] = kMeansClustering(data, clusterNum, plotOpt) also returns assignment and distortion, where

Example

DS=dcData(2);
centerNum=6;
plotOpt=1;
[center, assignment, distortion] = kMeansClustering(DS.input, centerNum, plotOpt);
Iteration count = 1/200, distortion = 203.409106
Iteration count = 2/200, distortion = 106.740614
Iteration count = 3/200, distortion = 96.772077
Iteration count = 4/200, distortion = 94.147432
Iteration count = 5/200, distortion = 92.589887
Iteration count = 6/200, distortion = 91.721273
Iteration count = 7/200, distortion = 91.393290
Iteration count = 8/200, distortion = 91.365628
Iteration count = 9/200, distortion = 91.364346
Iteration count = 10/200, distortion = 91.364346

See Also

vecQuantize, vqDataPlot.


Top page   Next: interpViaGaussian.m   Prev:kMeansClusteringOnDist.m