qcTrain

Training the quadratic classifier (QC)

Contents

Syntax

Description

cPrm=qcTrain(DS) returns the parameters of the quadratic classifier based on the given dataset DS. The parameters for class i is stored in cPrm.class(i).

cPrm=qcTrain(DS, opt) uses the train parameters opt for training the QC. opt only contains a field prior to represent the prior probability of each class. If opt is empty, the the default prior probability is based on the data counts of each class.

cPrm=qcTrain(DS, opt, showPlot) plots the decision boundary of the QC (if the feature dimensionity is 2).

[cPrm, logLike, recogRate, hitIndex]=qcTrain(DS, ...) also returns the log likelihood, recognition rate, and the hit indice of data instances in DS.

Example

DS=prData('iris');
DS.input=DS.input(3:4, :);
trainSet.input=DS.input(:, 1:2:end); trainSet.output=DS.output(:, 1:2:end);
 testSet.input=DS.input(:, 2:2:end);  testSet.output=DS.output(:, 2:2:end);
[cPrm, logLike1, recogRate1]=qcTrain(trainSet);
[computedClass, logLike2, recogRate2, hitIndex]=qcEval(testSet, cPrm, 1);
fprintf('Inside recog rate = %g%%\n', recogRate1*100);
fprintf('Outside recog rate = %g%%\n', recogRate2*100);
Inside recog rate = 97.3333%
Outside recog rate = 97.3333%

See Also

qcEval.


Top page   Next: qcPlot.m   Prev:simCos.m