gmmcEval
Evaluation of a GMM classifier with a given vector of priors
Contents
Syntax
- computedClassIndex = gmmcEval(DS, gmmcPrm)
Description
computedClassIndex = gmmcEval(DS, gmmcPrm) returns the index of computed class of GMMC for each data instance.
- DS: dataset
- gmmcPrm: Parameters for GMM classifier
- gmmcPrm.class(i): Parameters for class i, which is modeled as a GMM
- gmmcPrm.class(i).gmmPrm(j).mu: a mean vector of dim x 1 for Gaussian component j
- gmmcPrm.class(i).gmmPrm(j).sigma: a covariance matrix for Gaussian component j
- gmmcPrm.class(i).gmmPrm(j).w: a weighting factor for Gaussian component j
- gmmcPrm.prior: Vector of priors, or simply the vector holding no. of entries in each class (To obtain the class sizes, you can use "dsClassSize".
- gmmcPrm.class(i): Parameters for class i, which is modeled as a GMM
Example
[DS, TS]=prData('nonlinearSeparable'); gmmcOpt=gmmcTrain('defaultOpt'); gmmcOpt.arch.gaussianNum=3; gmmcPrm=gmmcTrain(DS, gmmcOpt); computedOutput=gmmcEval(DS, gmmcPrm); recogRate1=sum(DS.output==computedOutput)/length(DS.output); fprintf('Inside-test recog. rate = %g%%\n', recogRate1*100); computedOutput=gmmcEval(TS, gmmcPrm); recogRate2=sum(TS.output==computedOutput)/length(TS.output); fprintf('Outside-test recog. rate = %g%%\n', recogRate2*100); TS.hitIndex=find(TS.output==computedOutput); figure; gmmcPlot(DS, gmmcPrm, '2dPdf'); figure; gmmcPlot(DS, gmmcPrm, 'decBoundary');
Inside-test recog. rate = 97.2% Outside-test recog. rate = 98.4%

