3-2 Hierarchical Clustering (?庡堡寮忓?缇ゆ?)

[english][all]

(叫猔種いゅセゼ繦璣ゅセ˙穝)

Slides

顶糷Αだ竤猭hierarchical clustering硓筁贺顶糷琜篶よΑ盢戈糷糷は滦秈︽だ吊┪籈玻ネ程攫挡篶盽ǎよΑΤㄢ贺

セ竊盢皐癸籈Αパτ顶糷だ竤猭ㄓ秈︽弧

籈Α顶糷だ竤猭agglomerative hierarchical clusteringパ攫挡篶┏场秨﹍糷糷籈秨﹍и盢–掸戈跌竤籈cluster安砞и瞷局Τn掸戈玥盢硂n掸戈跌n竤籈ョ–竤籈掸戈

  1. 盢–掸戈跌竤籈 Ci, i=1 1 to n.
  2. т┮Τ竤籈丁禯瞒程钡ㄢ竤籈 CiCj
  3. ㄖ Ci Cj Θ穝竤籈
  4. 安ヘ玡竤籈计ヘи箇戳竤籈计ヘ玥は滦狡˙艼竤籈计ヘ盢и┮璶―计ヘ
絛ㄒ甶ボ籈Α顶糷だ竤猭┮玻ネ攫瓜dendrogram

Example 1: hierClusteringPlot01.mdata=rand(2, 50); % 50 data instances of dim 2 distMat=distPairwise(data); % Distance matrix of 50 by 50 hcOutput=hierClustering(distMat); hierClusteringPlot(hcOutput); % Plot the dendrogram

˙艼い孔禯瞒程钡ㄢ竤籈 CiCj㎡ㄆ龟﹚竡ㄢ竤籈ぇ丁禯瞒Τ贺ぃよΑ–贺よΑ┮眔挡狦常ぃび硂ㄇ盽ノ竤籈禯瞒﹚竡弧

иㄏノぃ竤籈禯瞒ㄓ玻ネ顶糷Α竤籈攫┮眔挡狦

Example 2: hierClusteringPlot02.mdata=rand(2, 50); % 50 data instances of dim 2 distMat=distPairwise(data); % Distance matrix of 50 by 50 method='single'; hcOutput=hierClustering(distMat, method); subplot(1,2,1); hierClusteringPlot(hcOutput); title(['method=', method]); method='complete'; hcOutput=hierClustering(distMat, method); subplot(1,2,2); hierClusteringPlot(hcOutput); title(['method=', method]);

パ瓃竤籈攫и祇谋疭┦

璝璶芠竤籈筁祘い笆篈甶ボ叫ǎ絛ㄒ絛ㄒ single linkage 竤籈禯瞒

Example 3: hierClusteringAnim01.mdata=dcData(6); data=data.input; dataNum=size(data,2); distMat=distPairwise(data, data); distMat(1:dataNum+1:dataNum^2)=inf; % Diagonal elements should always be inf. method='single'; % 'single' or 'complete' level=hierClustering(distMat, method); hierClusteringAnim(data, distMat, level);

ㄆ龟и靡狦戈栋琌蝴キ翴┮Θ栋τи蹦ノ single linkage玥┮眔硈挡瓜琌硂ㄇ翴 minimum spanning tree

俱砰ㄓ弧顶糷Αだ竤猭纔翴

琌顶糷Αだ竤猭Τ翴ウ硄盽続ノぶ秖戈螟矪瞶秖戈
Data Clustering and Pattern Recognition (戈だ竤籔妓Α侩粄)