## Data Clustering and Pattern Recognition (資料分群與樣式辨認)

### Chapter 1: Introduction

1-2：Example Programs (如何取得程式碼)
1-3：Web Resources (網路資源)

### Chapter 2: Commonly Used Datasets (常用資料集)

[Slides]
2-1：Intro. to Datasets
2-2：Iris Dataset
2-3：Wine Dataset
2-4：Abalone Dataset

### Chapter 3: Data Clustering (資料群聚)

3-1：Introduction (簡介)
3-2：Hierarchical Clustering (階層式分群法)
3-3：K-means Clustering
3-4：模糊C-means分群法
3-5：向量量化
Chapter 3: Exercises

### Chapter 4: MLE for PDF Modeling

This chapter introduces the basics of dynamic programming, including its principle and applications.
[Video][Slides]
4-1：Intro. to MLE
4-2：MLE for discrete event
4-3：PDF Modeling for 1D Gaussian
4-4：PDF Modeling for ND Gaussian
Chapter 4: Exercises

### Chapter 5: Pattern Recognition (樣式辨認)

5-1：Intro. to PR
5-2：K-nearest-neighbor Classifiers
5-3：Learning Vector Quantization (學習式向量量化)
5-4：Linear Classifiers (線性分類器)
5-5：Naive Bayes Classifiers (單純貝氏分類器)
5-7：貝式分類器
Chapter 5: Exercises

### Chapter 6: Performance Evaluation of Classifiers (分類器效能評估)

6-1：Intro. to Recognition Rate Estimate of Classifiers (簡介)
6-2：Methods for Recognition Rate Estimate (辨識率預估)
Chapter 6: Exercises

### Chapter 7: GMM

7-1：GMM Introduction
7-2：GMM Application: PDF Modeling
7-3：GMM Application: Classification
Chapter 7: Exercises

### Chapter 8: Dynamic Programming (動態規劃)

This chapter introduces the basics of dynamic programming, including its principle and applications.
[Video][Slides]
8-1：Introduction to Dynamic Programming (動態規劃)
8-2：Longest Common Subsequence
8-3：Edit Distance
8-4：Dynamic Time Warping
8-5：DTW for Speaker Identification
8-6：DTW for Speaker Identification: Further Enhancement
Chapter 8: Exercises

### Chapter 9: Hidden Markov Models (HMM)

9-1：Introduction (簡介)
9-2：Discrete HMM
9-3：Continuous HMM
Chapter 9: Exercises

### Chapter 10: Feature Selection (特徵選取)

10-1：Introduction (簡介)
10-2：Feature Selection Methods (特徵選取方法)
Chapter 10: Exercises

### Chapter 11: Feature Extraction (特徵粹取)

11-1：Introduction (簡介)
11-2：PCA (主要分量分析)
11-3：LDA (線性識別分析)
11-4：PCA for Face Recognition
11-5：LDA for Face Recognition
Chapter 11: Exercises

12-1：簡介
12-2：資料編修
12-3：資料濃縮

### Chapter 13: Application Case Study (應用案例說明)

13-1：Leaf Recognition
13-2：Human Identification