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Abstract—With the explosive growth of audio music everywhere
over the Internet, it is becoming more important to be able to
classify or retrieve audio music based on their key components,
such as vocal pitch for common popular music. This paper
proposes a novel and effective two-stage approach to singing
pitch extraction, which involves singing voice separation and
pitch tracking for monaural polyphonic audio music. The first
stage extracts singing voice from the songs by using deep neural
networks in a supervised setting. Then the second stage estimates
the pitch based on the extracted singing voice in a robust manner.
Experimental results based on MIR-1K showed that the proposed
approach outperforms a previous state-of-the-art approach in
raw-pitch accuracy. Moreover, the proposed approach has been
submitted to the singing voice separation and audio melody
extraction tasks of Music Information Retrieval Evaluation
eXchange (MIREX) in 2015. The results of the competition show
that the proposed approach is superior to other submitted
algorithms, which demonstrates the feasibility of the method for
further applications in music processing.

Keywords- Audio melody extraction, singing pitch extraction,
singing voice separation, multimedia, deep neural networks.

l. INTRODUCTION

In recent years, there are more and more music providers
which offer digital distribution of music through online music
stores and streaming services, such as Spotify, iTunes and
Google Play. The rapid growth of audio music calls for an
effective way to classify and retrieve audio contents via their
key components, such as pitch, beat, chord progression, and so
on. For common popular music with lead vocal, the most
important component is the vocal pitch, which serves as the
most memorable part of a song for most people. As a result, it
is essential to perform singing pitch extraction (SPE) from
monaural polyphonic audio music. SPE is critical to numerous
real world applications of music analysis and classification,
including singer identification, lyric recognition and
synchronization, cover song detection, singing scoring,

database construction for query by singing/humming, and so on.

However, SPE is a very challenging task due to the severe
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Figure 1. Block diagram of the proposed system.

interference from music accompaniments in a mixture music
containing vocal. (Note that SPE denotes pitch tracking over
the lead vocal in common popular music. It is a special case of
audio melody extraction which aims to extract pitch from audio
music with an instrument carrying the main melody. See J.
Salamon et al. [29] for a more detailed definition for audio
melody extraction.)

Several approaches to audio melody extractions have been
proposed in the literature after Goto’s 2004 seminal paper [1]
on using a parametric statistical model for audio melody
extraction. Recently, J. Salamon et al. [6] come up with a
comprehensive coverage of approaches to audio melody
extraction. In general, there are two categories of SPE
approaches. In the first category, pitch is selected directly from
a set of pitch candidates which are derived from a periodicity
detection function. For instance, Salamon et al. [2] propose a
salience-based melody extraction method where a periodicity
detection function (called salience function in their paper) is
constructed by extracted spectral peaks, and the identified pitch
is determined by a set of contour characteristics. In the second
category, the pitch extraction is performed on the singing voice
separated from the mixture music. The first SPE method in this
category is proposed by Regnier et al. [3]. Other related work
in this category can be found in [4, 5, 8, 10].



In this paper, we propose a novel and effective two-stage
approach which explores the use of deep neural networks
(DNN) for singing voice separation in a supervised setting.
After extracting the singing voice from mixture music, the
pitch is determined by using a robust pitch tracking method
based on dynamic programming. The block diagram of the
proposed system is shown in Figure 1.

The rest of the paper is organized as follows: Section 2
discusses the relation to previous work. Section 3 introduces
the proposed method, including deep neural networks for
singing voice separation and dynamic-programming-based
robust approach to pitch tracking. Section 4 presents the
experimental settings and the corresponding results using MIR-
1K dataset, together with the results of two tasks (singing voice
separation and audio melody extraction) in MIREX 2005.
Concluding remarks and potential future directions are covered
in Section 5.

Il.  RELATED WORK

Several approaches have been proposed to detect pitch after
extracting singing voice. Hsu et al. [4] used a hidden Markov
model (HMM) to detect singing voice with energy at semitones
of interests and Mel-frequency cepstral coefficients as input
features. In another paper, Hsu et al. [5] applied the method
proposed in [3] for characterizing vibrato and tremolo in order
to detect the presence of singing voice. Trend estimation of
pitch was proposed in [7] to improve voice separation by
detecting the pitch ranges of singing voice at each time frame
and eliminating wrong pitch candidates by vibrato and tremolo
features. Yeh et al. [8] proposed a hybrid approach consisting
of [4] and [7] to achieve further improvement over SPE, which
involves forward and backward trend estimation and training-
based HMM to determine the pitch. Hsu et al. also proposed
the Tandem algorithm [10] to better estimate the singing pitch
and separate the singing voice iteratively. Their system can
estimate rough pitches which were used to separate the singing
voice by considering harmonicity and temporal continuity, and

the separated singing voice can be used for better pitch tracking.

The separated singing voice and estimated pitches were used to
improve each other iteratively until convergence.

Along another direction, singing voice separation has been
performed successfully by deep neural networks (DNNs). Deep
learning methods have been applied to a variety of applications,
including noise reduction [11, 12] which aims at creating a
clean version of an utterance from a noisy one. Besides, DNN
was also applied to speech recognition [13] via restricted
Boltzmann machine and instrument extraction from music [28].
In the scenario of singing voice separation, given a mixture
music regarded as a noisy signal, a DNN is trained to output
the clean signal of vocal only. Similar work has been proposed
in [14, 27] by using deep recurrent neural networks.

I1l. PROPOSED METHODS

A. Deep Neural Networks

For singing voice separation, we explore the use of deep
neural networks to learn the optimum parameters under a given
architecture to reconstruct the target spectra of singing voice.
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Figure 2. The architecture of deep neural network.

The architecture of DNNs are characterized by one or more
hidden layers consisting of hidden nodes, with each hidden
node representing a nonlinear activation function. Formally, we
can define the scheme of DNN as follows. Suppose there is a
DNN with L intermediate layers, the function performed by the
I-th layer can be defined as follows:

h'=f(W h++b'), 6

and the overall output y of the DNN can be defined as:

y=f (W f(W2f (W h% bt ) +b?)...+bb), )

where h' is the hidden state of the I-th layer. W' and b' are the
weight matrix and bias vector respectively for layer I, 1 <I<L.
For the first layer, h® = x, where x is the input to the DNN,
consisting of magnitude spectra of the mixture music which is
performed by using short time Fourier transform (STFT). The
function f () is a nonlinear sigmoidal function which is applied
to the output of matrix multiplication and element-wise
addition. The weight matrix and bias vector were estimated by
back-propagation [17] and stochastic gradient descent [18]. We
have also tried several speedup techniques for gradient decent,
including Momentum [19], adaptive subgradient [20], root
mean squared gradient (RMSProp) [21], Adadelta [22],
Nesterov’s accelerated gradient [23] and so forth. We found
that RMSProp performed the best in our experiments.

B. Model Architecure

As shown in Figure 2, given an input vector of mixture
spectra x, we can obtain the predicted spectra Y, (spectra of
the vocal) and Y, (spectra of the background music) through
the DNN. Given the original sources Yy, and Yy, (after
normalization by dividing square of Yy, and Y, respectively),
the objective function J can be defined as follows:
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Figure 3. A typical example of UPDUDP over the auto-correlation map, where the optimum path (which considers both periodicity and smoothness of
pitch) is obtained via dynamic programming. The black line is the optimum path over the auto-correlation map, which picks peaks most of the time. (For
AMDF map, the optimum will picks valleys most of the time.)
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Since the output is constrained to be within 0 and 1, we can
define a soft time-frequency mask m [14] as follows:

m() =[5, (£ )/(F.(F) +[5(F)), @

where f =1, 2, ... F, stands for different frequency bins. Then
the estimated spectra S; and S, , corresponding to vocal and
music, respectively, can be defined accordingly:

5(f)=m(f)e(f)
5,(1)= (-m(t (1) ©

where z(f) is the magnitude spectra of the input frame.

The time-domain signals of estimated magnitude spectra
are reconstructed by using inverse short time Fourier
transform (ISTFT), which uses the phase information obtained
from the original input signals.

C. Pitch Tracking

Once the vocal is extracted from the mixture, we need to
perform pitch tracking to extract the vocal pitch. Here we
propose a new adaptive method based on a previously proposed
approach of unbroken pitch determination using dynamic
programing (UPDUDP) [15] which is a robust pitch tracking
method based on dynamic programming. Figure 3 shows a
typical example of UPDUDP which considers both periodicity
and smoothness to derive the final optimum path. To be more
specific, given a frame of audio stream, we first compute the

periodicity detection function (PDF) of each frame based on
average magnitude difference function (AMDF) [16], with a
frame size of 40 ms (640 samples) and a hop size of 10 ms
(160 samples). The “shifted part” of our AMDF is actually only
the first half of the frame, as shown in the following equation:

320

amdf (j) =Y |frame[u] - frame[u + j], j=0~320,  (6)
u=1

where frame[u] is the u -th sample value of a given frame,
and amdf (j) is the j-th value of the AMDF vector. If we
adopt a frame-based-only pitch tracking, we can simply pick
the minimum AMDF of a frame within the index range of [16,
320] (corresponding to a frequency range of 50~1000Hz, or
31.35~83.21 semitones) to determine the frame’s pitch.
However, it is well-known that the undesirable effect of half
or double frequencies is likely to happen, leading to an octave
below or above the real pitch. As a result, we need to have a
more robust mechanism to identify a smooth pitch contour.
Note that we can put all the AMDF vectors of a given
utterance into a 320xn matrix, where n is the number of
frames. Our mission is to find a path through the AMDF
matrix such that a balance between the value of AMDF (as
small as possible) and the smoothness of the pitch contour is
achieved. More specifically, for a given path p=[p,,---p,,---p,]
over an AMDF matrix where 16 < p; <320, we can define a
cost function as follows:

n n-1
cost(p, 0, m)zzamdfi(pi)+0><2|pi - pi+1|m ()
i1 i1



where amdf; is the AMDF vector of frame i, 0 is the
transition penalty term and m is the exponent for the
difference in a path of two neighboring frames. As explained
in [15], the above objective function can be minimized by a
dynamical programming approach. More specifically, let the
optimum-valued function D(i, j) be defined as the minimum
cost starting from frame 1 to i, with p, = j. Then we can
come up with the recurrent equation for D(i, j) , as follows:

.. - - . .12
D(i, j) = amdf, (j)+ker[‘m3nzo]{D(l _1k+oxk—j*f, (@)
where ie[1,n] j<[16,320] i >1. The initial conditions are
D(L j) = amdf, (j), j [16,320]. )

And the optimum cost is equal to J_Er[lygo] D(n, j)

In the above recurrent equation for dynamical programming
(or in the original objective function), it is obvious that the
value of @ controls the smoothness of the identified pitch
curve. That is, a bigger @ will lead to a smoother pitch curve.
However, if @ is too big, the resultant pitch curve will have
low contrast and deviate from the true pitch. Our empirical
studies indicate that under different recording conditions
(different  volume, different ambient noise, different
microphone settings, etc.), it is hard to pinpoint a universally
optimum value of @ that can achieve the best performance.
As a result, this paper proposes an adaptive way to determine
6 in UPDUDP (which is referred to as “adaptive UPDUDP”)
based on the continuity of pitch curve. The basic idea is based
on the concept that the pitch curve of a person’s voice should
be continuous. In other words, we want to identify the
(approximately) minimum value of @ that can make the pitch
curve continuous. The continuity requirement of a given pitch
curve s:[sl,---si,---sn] (in terms of semitones) can be
expressed as follows:

d(@) = iT_%sti —Spal<7. (10)
That is, the function d (&) , which stands for the max difference
of pitch between neighboring frames, is require to be less than
a given threshold 7 . Empirically, we set the value of 7 to 7
semitone for a hop size of 10 ms (or equivalently, a frame rate
of 100 per second).
It is possible to increase the value of & linearly until the pitch
curve satisfies the continuity requirement shown in the
previous equation. However, it is too time consuming. Here
we propose a method that can identify the approximately

minimum value of ¢ , denoted as 6 , that can ensure the

continuity requirement. The method can be described as

follows.

1. Initial step: If d(0) <7, then&=0 and we are done.

2. Bracket: Our goal is to rapidly identify an interval
fz[é’,,&u] satisfying the bracket condition, that is,
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Figure 4. (a) A song clip without background music from MIR-1K. (b) Time-
frequency energy plot of the utterance. The brighter area indicates strong
energy. (c) The result of pitch tracking by using UPDUDP. The green labels
represent the target pitch, and the blue labels represent the computed pitch.
The red labels represent the erroneous pitch. (d) The result of pitch tracking
by using adaptive UPDUDP.

d(6)>7z and d(g,)<z .

following steps:

a. Set |, =[t90,¢91]=[0,1]. If the bracket condition is
fulfilled, then we are done with I = I, . Otherwise
set i =1 go to the next step.

b. Set I, =[0,0,,] with 6,, =26,

c. If the bracket condition for 1; is fulfilled, then we are

This is achieved by the

done with [ =1,. Otherwise increment i and go
back to step b.

3. Refine: Once we have the bracket interval I , then we
can employ binary-search-like algorithm to refine the
interval efficiently. The iteration can be stopped when

the range of the interval is less than, say 10. The final 0
is then selected as the upper bound of the refined
interval.

The above procedure for selecting @ to ensure the continuity
of the pitch curve is efficient in computation, and effective is
enhancing the pitch accuracy, as described in the experiment
section. Figure 4 shows a typical result of using UPDUDP and
its adaptive version for pitch tracking. As shown in the figure,
the proposed adaptive UPDUDP can effectively reduce the
octave errors (double-pitch or half-pitch errors) due to its
capability in forcing the pitch to be smooth.



IV. EXPERIMENTS

A. Experimental Settings

The proposed method is first evaluated by using the MIR-
1K dataset [10] which consists of 1,000 song clips with a
sample rate of 16 KHz and durations from 4 to 13 seconds.
These clips are recorded from 110 Chinese popular karaoke
songs performed by both male and female amateurs. Manual
annotations of the pitch contours, lyrics, indices of voiced and
unvoiced frames, and the indices of the vocal and non-vocal
frames are provided. Each clip is a stereo recording, with one
channel for singing voice and the other for background music.

In our three experiments, we use magnitude spectra of each
frame (with a frame size of 1024 and a hop size of 512) as
input features to DNN, which yields an input dimension of 513.
Sigmoid function is employed as activation function in DNN
and RMSProp is used to speed up gradient decent. A dropout
[25] rate of 0.5 is employed for all hidden layers in the DNN.
Moreover, the training data of these three experiments was
divided into 186 batches, with each song in the training set
divided into each batch as evenly as possible. To prevent the
trained model from overfitting, the validation batch was chosen
from training batch randomly and used along the training
process. The training process was stopped when the linear cost
was lower than a threshold (0.24) or when the maximum
number of epochs (1000) is reached. To accelerate training, our
implementation of DNN takes advantage of parallel computing
via GPU.

In experiment 1, we tested different DNN architectures by
changing numbers of hidden layers or numbers of nodes in
each hidden layers, as describe in TABLE I. Here we used
UPDUDP for pitch tracking on the extracted singing voice. By
following the evaluation framework in [14], we used 175 song
clips sung by one male and one female as training data, leading
to approximately 141,000 frames for training, each with 513
dimensions as input features to DNN. It is a quite large number
of training data for deep learning. The remaining 825 song
clips of 17 singers are used for testing. The evaluation indices
of singing voice separation are Source to Interference Ratio
(SIR), Source to Artifacts Ratio (SAR) and Source to
Distortion Ratio (SDR) by using BSS Eval toolbox [24]. We
computed the normalized SDR by SDR(V,v) —SDR(x,V) ,

where Vis reconstructed voice signal, vis original clean voice
signal, and x is mixture signal. Moreover, we aggregate overall
performance by taking a weighted average of NSDRs, SIRs
and SARs to have GNSDR, GSIR and GSAR respectively.

In experiment 2, we compared three different pitch-tracking
methods with the best performed DNN architecture (3 hidden
layers of 1024 nodes each) obtained in experiment 1. The
training set is the same as experiment 1 and the accuracy was
calculated by testing remaining 825 song clips with 0.5
semitone tolerance to obtain 3 performance indices for pitch
tracking, including overall, raw-pitch and raw-chroma
accuracies.

In experiment 3, we compared the proposed approach to
Yeh’s method [8] which is submitted to MIREX contest and
achieved the best performance in raw-pitch and raw-chroma
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Figure 5. Pitch tracking accuracy (via UPDUDP) vs. vocal extraction
performance. (The numbers around dots of lines represent different DNN
architectures, as described in TABLE 1.)

TABLE I. THE TYPES OF DNN ARCHITECTURE

Indices of Numb_ers of Numbers of
arcf?tNe’c\![ure m?ggzanlssgp hidden layers

1 64 3

2 128 1

3 128 2

4 256 2

5 1024 1

6 2048 1

7 512 2

8 768 1

9 512 1

10 256 3

1 768 2

12 512 3

13 768 3

14 1024 3

accuracies on MIREX-09 dataset of audio melody extraction
task from 2012 to 2014. The DNN architecture is the same as
in experiment 2. The experimental settings are the same as in
[8], which 5-fold singer-specific cross validation with 0.5
semitone tolerance to obtain average raw-pitch and raw-chroma
accuracies.

B. Experimental Results

Since the proposed method is composed of two stages of
vocal extraction and pitch tracking, our first experiment is used
to explore the effect of each stage’s accuracy toward the overall
accuracy. To this end, different DNN architectures are
constructed to have vocal extraction of different GNSDR
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TABLE Il. COMPARISON BETWEEN PROPOSED METHODS AND YEH’S
HYBRID APPROACH

Raw-pitch Raw-chroma
accuracy accuracy
Yeh’s o 0
Approach [8] 82.60% 82.78%
DNN+UPDUDP 82.73% 85.45%
DNN-+Adaptive 0 0
UPDUDP 85.35% 83.73%

indices. As shown in Figure 5, the higher GNSDR is, the better
overall SPE accuracy we can obtain. Similar situations also
apply to GSIR and GSAR. On the other hand, in our second
experiment, with the same DNN architecture, we have tried
different  pitch-tracking  methods, including  simple
autocorrelation function (ACF), UPDUDP and adaptive-
UPDUDRP respectively. As shown in Figure 6, the proposed
adaptive-UPDUDP achieves the best result. This experiments
indicates that any improvement in either vocal extraction or
pitch tracking will enhance the overall SPE accuracy. And by
dividing SPE into two stages, it is much easier for use to
identify which part goes wrong if the SPE result is not
desirable.

In the third experiment, we compared two versions of the
proposed methods with Yeh’s hybrid method [8]. As indicated
in Table Il, both the proposed versions outperform Yeh’s
approach in both raw-pitch and raw-chroma accuracies. (We do
not use overall accuracy as a performance index in this
experiment since Yeh’s approach does not perform vocal
detection.) In particular, DNN+UPDUDP has gained a large
margin of 2.67% (or 15.51% in error rate reduction) in raw-
chroma accuracy. When we switched to adaptive UPDUDP,
the gain is 2.75% (or 15.8% in error reduction) in raw-pitch
accuracy, which is a significant improvement considering the
difficulty of SPE. It should be noted that raw-pitch accuracy is

a more important performance index than raw-chroma accuracy.

Therefore, we can clearly see the advantage offered by adaptive
UPDUDP in SPE by increasing the raw-pitch accuracy
significantly.
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Figure 7. The architecture of FJ2 in the singing voice separation task.
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lines being the error profiles for training and validation data, respectively. The
blue circle indicates where the lowest validation error occurs. (b) The error
profile of FJ2 during training.

C. MIREX Contest

In order to further demonstrate the performance of the
proposed methods, we also participated in the MIREX [30]
contest in 2015. The proposed methods can be decomposed
into two stages of source separation using deep learning and
pitch tracking using adaptive-UPDUDP, so we took part in
both the tasks of singing voice separation and audio melody
extraction. Note that for unbiased evaluation, all submissions to
these two tasks are tested on hidden datasets that are not
available to the public.
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Figure 9. MIREX-2015 results of singing voice separation.
(FJ1 and FJ2 are our submissions.)
Demo site of FJ1: http://mirlab.org/demo/singingVoiceSeparation/

In singing voice separation task, we have two submissions
FJ1 and FJ2. FJ1 is based on a DNN of 3 hidden layers of 1024
nodes (see Figure 2), while FJ2 is based on a DNN of 1 hidden
layer of 2048 nodes, as shown in Figure 7. Both DNNs adopt
the sigmoid function, and the objective function is based on
Equation 3. The training set for both DNNs is half of the public
set of iKala dataset [26], while the other half is used as the
validation set. The training set consists of approximately
318,000 frames, each with 513 features of magnitude spectra.
The evaluation was performed by MIREX team to test the
models on the hidden set of iKala dataset. To prevent
overfitting during the process of training, the validation batch is
randomly selected from the validation set, and the model was
stored whenever the lowest validation error occurred so far
during the training process. As shown in Figure 8, to achieve
approximately the same error level, the number of epochs of
FJ1 is much larger than that of FJ2. This is simply due to the
fact that JF1 has a more complex architecture than FJ2. The
result of singing voice separation task of MIREX-2015 is
shown in Figure 9, where both our submissions FJ1 and FJ2
outperform all the other submissions in both performance
indices of voice GNSDR and music GNSDR. In particular, FJ1
performs better than FJ2, indicating that a deeper model
architecture with more hidden layers (and inevitably with
longer training time) do have advantages over shallow ones, at
least for the current task of singing voice separation. Since FJ1
has better performance than FJ2, its DNN architecture was
adopted for the following task of audio melody extraction.
Demo site of singing voice separation based on FJ1 can be
found at http://mirlab.org/demo/singingVoiceSeparation.

For audio melody extraction task, we have two submissions
FYJ1 and FYJ4 that are directly related to the proposed
methods in this paper. These two submissions differ only in the
pitch tracking methods for the extracted singing voices, while
the DNN architecture for singing voice separation in stage 1 is
the same (as the one of our submission FJ1 to singing voice
separation of MIREX-2015, see Figure 2). The training set is
the same as experiment 1, with 175 songs sung by one male
and one female to have 141,000 frames, each with 513
dimensions of magnitude spectra. After singing voice
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Figure 10. MIREX-2015 results (partial) of audio melody extraction: (a)
Raw-pitch accuracy. (b) Overall accuracy. (FYJ1 and FYJ4 are our
submissions)

separation, we extracted pitch by using UPDUDP and its
adaptive version for FYJ1 and FYJ4, respectively. All the
training settings are mostly the same as those used in training
DNN for singing voice separation, as mentioned previously.
Figure 10 demonstrates the accuracies of all submissions to
audio melody extraction task in MIREX 2015, with (a) and (b)
being the accuracies based on raw pitch and overall accuracy,
respectively. As shown in Figure 10 (b) of the overall accuracy
(the most important performance index of audio melody
extraction), our submissions outperform all the others for three
of the datasets, namely, MIREX 09 at 0db, MIREX 09 at -5db
and MIREX 09 at +5db, which indicate the effectiveness of the
proposed DNN for singing voice separation and adaptive
UPDUDRP for robust pitch tracking. For datasets of ADC04 and
MIREXO05, our submissions are not clear winners since, as
explained by the MIREX webpage, the datasets contain music
without lead vocals, which are not the target of the proposed
methods. In other words, the proposed methods aim to deal
with mixture music with lead vocal, such as those tracks in
MIREX 09. For INDIANAOS dataset, it is not clear to us if the
dataset contains music without lead vocal or not, but our
submissions still have above-average performance. (In fact
there is another dataset ORCH used in audio melody extraction
task of MIREX 2015. But we do not list it here since the
dataset consists of orchestra music without lead vocals at all.)
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CONCLUSIONS AND FUTURE WORK

In this paper, we have combined DNN for singing voice
separation and adaptive UPDUDP for pitch tracking to achieve
the final goal of SPE for monaural polyphonic music. The
experimental results demonstrate a significant overall error
reduction rate of 15.8% in raw-pitch accuracy when compared
with the previous state-of-the-art approach. More, the results of
2015 MIREX shows the proposed methods outperform other
submissions in both the tasks of singing voice separation and
audio melody extraction, indicating the effectiveness of the
proposed methods.

Since the proposed approach is based on singing voice
separation and pitch tracking, improvement in either aspect will
enhance the accuracy of SPE. Our immediate future work will
be focused on improving singing voice separation, which
seems to be a better paid-off task than pitch tracking. To this
end, we shall try other types of DNN for singing voice
separation, such as recurrent neural networks or convolutional
neural networks or combinations of different DNN
architectures. Moreover, we shall try to use the proposed
methods for several challenging tasks in music retrieval,
including cover song identification and query by
singing/humming based on audio database.
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