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Abstract—With the explosive growth of audio music everywhere 

over the Internet, it is becoming more important to be able to 

classify or retrieve audio music based on their key components, 

such as vocal pitch for common popular music. This paper 

proposes a novel and effective two-stage approach to singing 

pitch extraction, which involves singing voice separation and 

pitch tracking for monaural polyphonic audio music. The first 

stage extracts singing voice from the songs by using deep neural 

networks in a supervised setting. Then the second stage estimates 

the pitch based on the extracted singing voice in a robust manner. 

Experimental results based on MIR-1K showed that the proposed 

approach outperforms a previous state-of-the-art approach in 

raw-pitch accuracy. Moreover, the proposed approach has been 

submitted to the singing voice separation and audio melody 

extraction tasks of Music Information Retrieval Evaluation 

eXchange (MIREX) in 2015. The results of the competition show 

that the proposed approach is superior to other submitted 

algorithms, which demonstrates the feasibility of the method for 

further applications in music processing. 

Keywords- Audio melody extraction, singing pitch extraction, 

singing voice separation, multimedia, deep neural networks. 

I.  INTRODUCTION  

In recent years, there are more and more music providers 
which offer digital distribution of music through online music 
stores and streaming services, such as Spotify, iTunes and 
Google Play. The rapid growth of audio music calls for an 
effective way to classify and retrieve audio contents via their 
key components, such as pitch, beat, chord progression, and so 
on. For common popular music with lead vocal, the most 
important component is the vocal pitch, which serves as the 
most memorable part of a song for most people. As a result, it 
is essential to perform singing pitch extraction (SPE) from 
monaural polyphonic audio music. SPE is critical to numerous 
real world applications of music analysis and classification, 
including singer identification, lyric recognition and 
synchronization, cover song detection, singing scoring, 
database construction for query by singing/humming, and so on. 
However, SPE is a very challenging task due to the severe 

interference from music accompaniments in a mixture music 
containing vocal. (Note that SPE denotes pitch tracking over 
the lead vocal in common popular music. It is a special case of 
audio melody extraction which aims to extract pitch from audio 
music with an instrument carrying the main melody. See J. 
Salamon et al. [29] for a more detailed definition for audio 
melody extraction.) 

Several approaches to audio melody extractions have been 
proposed in the literature after Goto’s 2004 seminal paper [1] 
on using a parametric statistical model for audio melody 
extraction. Recently, J. Salamon et al. [6] come up with a 
comprehensive coverage of approaches to audio melody 
extraction. In general, there are two categories of SPE 
approaches. In the first category, pitch is selected directly from 
a set of pitch candidates which are derived from a periodicity 
detection function. For instance, Salamon et al. [2] propose a 
salience-based melody extraction method where a periodicity 
detection function (called salience function in their paper) is 
constructed by extracted spectral peaks, and the identified pitch 
is determined by a set of contour characteristics. In the second 
category, the pitch extraction is performed on the singing voice 
separated from the mixture music. The first SPE method in this 
category is proposed by Regnier et al. [3]. Other related work 
in this category can be found in [4, 5, 8, 10]. 
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Figure 1. Block diagram of the proposed system. 



In this paper, we propose a novel and effective two-stage 
approach which explores the use of deep neural networks 
(DNN) for singing voice separation in a supervised setting. 
After extracting the singing voice from mixture music, the 
pitch is determined by using a robust pitch tracking method 
based on dynamic programming. The block diagram of the 
proposed system is shown in Figure 1. 

The rest of the paper is organized as follows: Section 2 
discusses the relation to previous work. Section 3 introduces 
the proposed method, including deep neural networks for 
singing voice separation and dynamic-programming-based 
robust approach to pitch tracking. Section 4 presents the 
experimental settings and the corresponding results using MIR-
1K dataset, together with the results of two tasks (singing voice 
separation and audio melody extraction) in MIREX 2005. 
Concluding remarks and potential future directions are covered 
in Section 5. 

II. RELATED WORK 

Several approaches have been proposed to detect pitch after 
extracting singing voice. Hsu et al. [4] used a hidden Markov 
model (HMM) to detect singing voice with energy at semitones 
of interests and Mel-frequency cepstral coefficients as input 
features. In another paper, Hsu et al. [5] applied the method 
proposed in [3] for characterizing vibrato and tremolo in order 
to detect the presence of singing voice. Trend estimation of 
pitch was proposed in [7] to improve voice separation by 
detecting the pitch ranges of singing voice at each time frame 
and eliminating wrong pitch candidates by vibrato and tremolo 
features. Yeh et al. [8] proposed a hybrid approach consisting 
of [4] and [7] to achieve further improvement over SPE, which 
involves forward and backward trend estimation and training-
based HMM to determine the pitch. Hsu et al. also proposed 
the Tandem algorithm [10] to better estimate the singing pitch 
and separate the singing voice iteratively. Their system can 
estimate rough pitches which were used to separate the singing 
voice by considering harmonicity and temporal continuity, and 
the separated singing voice can be used for better pitch tracking. 
The separated singing voice and estimated pitches were used to 
improve each other iteratively until convergence. 

Along another direction, singing voice separation has been 
performed successfully by deep neural networks (DNNs). Deep 
learning methods have been applied to a variety of applications, 
including noise reduction [11, 12] which aims at creating a 
clean version of an utterance from a noisy one. Besides, DNN 
was also applied to speech recognition [13] via restricted 
Boltzmann machine and instrument extraction from music [28]. 
In the scenario of singing voice separation, given a mixture 
music regarded as a noisy signal, a DNN is trained to output 
the clean signal of vocal only. Similar work has been proposed 
in [14, 27] by using deep recurrent neural networks. 

III. PROPOSED METHODS 

A. Deep Neural Networks 

For singing voice separation, we explore the use of deep 
neural networks to learn the optimum parameters under a given 
architecture to reconstruct the target spectra of singing voice. 

The architecture of DNNs are characterized by one or more 
hidden layers consisting of hidden nodes, with each hidden 
node representing a nonlinear activation function. Formally, we 
can define the scheme of DNN as follows. Suppose there is a 
DNN with L intermediate layers, the function performed by the 
l-th layer can be defined as follows: 

hl = f ( Wl  hl-1 + bl  ),                              (1) 

and the overall output y of the DNN can be defined as:  

 

y = f ( WL… f ( W2 f ( W1  h0+ b1  ) + b2 )…+ bL ),         (2) 

where hl is the hidden state of the l-th layer. Wl and bl are the 
weight matrix and bias vector respectively for layer l, 1 ≤ l ≤ L. 
For the first layer, h0

 = x, where x is the input to the DNN, 
consisting of magnitude spectra of the mixture music which is 
performed by using short time Fourier transform (STFT). The 
function f () is a nonlinear sigmoidal function which is applied 
to the output of matrix multiplication and element-wise 
addition. The weight matrix and bias vector were estimated by 
back-propagation [17] and stochastic gradient descent [18]. We 
have also tried several speedup techniques for gradient decent, 
including Momentum [19], adaptive subgradient [20], root 
mean squared gradient (RMSProp) [21], Adadelta [22], 
Nesterov’s accelerated gradient [23] and so forth. We found 
that RMSProp performed the best in our experiments. 

B. Model Architecure 

As shown in Figure 2, given an input vector of mixture 

spectra x, we can obtain the predicted spectra 1
~y (spectra of 

the vocal) and 2
~y (spectra of the background music) through 

the DNN. Given the original sources 1y  and 2y (after 

normalization by dividing square of 1y and 2y respectively), 

the objective function J can be defined as follows: 
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Figure 2. The architecture of deep neural network. 
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Since the output is constrained to be within 0 and 1, we can 

define a soft time-frequency mask m [14] as follows: 
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where f =1, 2, … F, stands for different frequency bins. Then 

the estimated spectra 1
~s  and 2

~s , corresponding to vocal and 

music, respectively, can be defined accordingly:  
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where  fz  is the magnitude spectra of the input frame. 

The time-domain signals of estimated magnitude spectra 
are reconstructed by using inverse short time Fourier 
transform (ISTFT), which uses the phase information obtained 
from the original input signals. 

C. Pitch Tracking 

Once the vocal is extracted from the mixture, we need to 
perform pitch tracking to extract the vocal pitch. Here we 
propose a new adaptive method based on a previously proposed 
approach of unbroken pitch determination using dynamic 
programing (UPDUDP) [15] which is a robust pitch tracking 
method based on dynamic programming. Figure 3 shows a 
typical example of UPDUDP which considers both periodicity 
and smoothness to derive the final optimum path. To be more 
specific, given a frame of audio stream, we first compute the 

periodicity detection function (PDF) of each frame based on 
average magnitude difference function (AMDF) [16], with a 
frame size of 40 ms (640 samples) and a hop size of 10 ms 
(160 samples). The “shifted part” of our AMDF is actually only 
the first half of the frame, as shown in the following equation: 
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1




jjuframeuframejamdf
u

,       (6) 

where ][uframe  is the u -th sample value of a given frame, 

and )( jamdf  is the j -th value of the AMDF vector. If we 

adopt a frame-based-only pitch tracking, we can simply pick 

the minimum AMDF of a frame within the index range of [16, 

320] (corresponding to a frequency range of 50~1000Hz, or 

31.35~83.21 semitones) to determine the frame’s pitch. 

However, it is well-known that the undesirable effect of half 

or double frequencies is likely to happen, leading to an octave 

below or above the real pitch. As a result, we need to have a 

more robust mechanism to identify a smooth pitch contour. 

Note that we can put all the AMDF vectors of a given 

utterance into a n320  matrix, where n  is the number of 

frames. Our mission is to find a path through the AMDF 

matrix such that a balance between the value of AMDF (as 

small as possible) and the smoothness of the pitch contour is 

achieved. More specifically, for a given path  ni ppp  ,,1p  

over an AMDF matrix where 32016  ip , we can define a 

cost function as follows: 
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Figure 3. A typical example of UPDUDP over the auto-correlation map, where the optimum path (which considers both periodicity and smoothness of 

pitch) is obtained via dynamic programming. The black line is the optimum path over the auto-correlation map, which picks peaks most of the time. (For 

AMDF map, the optimum will picks valleys most of the time.) 



where iamdf  is the AMDF vector of frame i ,   is the 

transition penalty term and m is the exponent for the 

difference in a path of two neighboring frames. As explained 

in [15], the above objective function can be minimized by a 

dynamical programming approach. More specifically, let the 

optimum-valued function ),( jiD  be defined as the minimum 

cost starting from frame 1  to i , with jpi  . Then we can 

come up with the recurrent equation for ),( jiD , as follows: 

 

 
 2

320,16
),1(min)(),( jkkiDjamdfjiD

k
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
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where     1 ,320,16 ,,1  ijni . The initial conditions are 

 320,16),(),1( 1  jjamdfjD .                   (9) 

And the optimum cost is equal to
 

),(min
320,16

jnD
j

 

In the above recurrent equation for dynamical programming 

(or in the original objective function), it is obvious that the 

value of   controls the smoothness of the identified pitch 

curve. That is, a bigger   will lead to a smoother pitch curve. 

However, if   is too big, the resultant pitch curve will have 

low contrast and deviate from the true pitch. Our empirical 

studies indicate that under different recording conditions 

(different volume, different ambient noise, different 

microphone settings, etc.), it is hard to pinpoint a universally 

optimum value of    that can achieve the best performance. 

As a result, this paper proposes an adaptive way to determine 

  in UPDUDP (which is referred to as “adaptive UPDUDP”) 

based on the continuity of pitch curve.  The basic idea is based 

on the concept that the pitch curve of a person’s voice should 

be continuous. In other words, we want to identify the 

(approximately) minimum value of   that can make the pitch 

curve continuous. The continuity requirement of a given pitch 

curve  ni ssss  ,,1  (in terms of semitones) can be 

expressed as follows: 

  


1
1~1

max)( ii
ni

ssd .                   (10) 

That is, the function )(d , which stands for the max difference 

of pitch between neighboring frames, is require to be less than 

a given threshold  . Empirically, we set the value of   to 7 

semitone for a hop size of 10 ms (or equivalently, a frame rate 

of 100 per second). 

It is possible to increase the value of  linearly until the pitch 

curve satisfies the continuity requirement shown in the 

previous equation. However, it is too time consuming. Here 

we propose a method that can identify the approximately 

minimum value of  , denoted as ̂ , that can ensure the 

continuity requirement. The method can be described as 

follows. 

1. Initial step: If )0(d , then 0ˆ   and we are done. 

2. Bracket: Our goal is to rapidly identify an interval 

 ulI  ,ˆ   satisfying the bracket condition, that is,  

   ld  and    ud . This is achieved by the 

following steps: 

a. Set     1,0, 100  I . If the bracket condition is 

fulfilled, then we are done with 0
ˆ II  . Otherwise 

set 1i  go to the next step. 

b. Set  1,  iiiI   with ii  21  . 

c. If the bracket condition for iI  is fulfilled, then we are 

done with iII ˆ . Otherwise increment i  and go 

back to step b. 

3. Refine: Once we have the bracket interval Î , then we 

can employ binary-search-like algorithm to refine the 

interval efficiently. The iteration can be stopped when 

the range of the interval is less than, say 10. The final ̂  

is then selected as the upper bound of the refined 

interval. 
 

The above procedure for selecting   to ensure the continuity 

of the pitch curve is efficient in computation, and effective is 
enhancing the pitch accuracy, as described in the experiment 
section. Figure 4 shows a typical result of using UPDUDP and 
its adaptive version for pitch tracking. As shown in the figure, 
the proposed adaptive UPDUDP can effectively reduce the 
octave errors (double-pitch or half-pitch errors) due to its 
capability in forcing the pitch to be smooth. 

 
 

Figure 4. (a) A song clip without background music from MIR-1K. (b) Time-

frequency energy plot of the utterance. The brighter area indicates strong 
energy. (c) The result of pitch tracking by using UPDUDP. The green labels 

represent the target pitch, and the blue labels represent the computed pitch. 
The red labels represent the erroneous pitch. (d) The result of pitch tracking 

by using adaptive UPDUDP. 



IV. EXPERIMENTS 

A. Experimental Settings 

The proposed method is first evaluated by using the MIR-
1K dataset [10] which consists of 1,000 song clips with a 
sample rate of 16 KHz and durations from 4 to 13 seconds. 
These clips are recorded from 110 Chinese popular karaoke 
songs performed by both male and female amateurs. Manual 
annotations of the pitch contours, lyrics, indices of voiced and 
unvoiced frames, and the indices of the vocal and non-vocal 
frames are provided. Each clip is a stereo recording, with one 
channel for singing voice and the other for background music.  

In our three experiments, we use magnitude spectra of each 
frame (with a frame size of 1024 and a hop size of 512) as 
input features to DNN, which yields an input dimension of 513. 
Sigmoid function is employed as activation function in DNN 
and RMSProp is used to speed up gradient decent. A dropout 
[25] rate of 0.5 is employed for all hidden layers in the DNN. 
Moreover, the training data of these three experiments was 
divided into 186 batches, with each song in the training set 
divided into each batch as evenly as possible. To prevent the 
trained model from overfitting, the validation batch was chosen 
from training batch randomly and used along the training 
process. The training process was stopped when the linear cost 
was lower than a threshold (0.24) or when the maximum 
number of epochs (1000) is reached. To accelerate training, our 
implementation of DNN takes advantage of parallel computing 
via GPU.  

In experiment 1, we tested different DNN architectures by 
changing numbers of hidden layers or numbers of nodes in 
each hidden layers, as describe in TABLE I. Here we used 
UPDUDP for pitch tracking on the extracted singing voice. By 
following the evaluation framework in [14], we used 175 song 
clips sung by one male and one female as training data, leading 
to approximately 141,000 frames for training, each with 513 
dimensions as input features to DNN. It is a quite large number 
of training data for deep learning. The remaining 825 song 
clips of 17 singers are used for testing. The evaluation indices 
of singing voice separation are Source to Interference Ratio 
(SIR), Source to Artifacts Ratio (SAR) and Source to 
Distortion Ratio (SDR) by using BSS Eval toolbox [24]. We 

computed the normalized SDR by ),(SDR),ˆ(SDR vxvv  , 

where v̂ is reconstructed voice signal, v is original clean voice 

signal, and x is mixture signal. Moreover, we aggregate overall 

performance by taking a weighted average of NSDRs, SIRs 
and SARs to have GNSDR, GSIR and GSAR respectively. 

In experiment 2, we compared three different pitch-tracking 
methods with the best performed DNN architecture (3 hidden 
layers of 1024 nodes each) obtained in experiment 1. The 
training set is the same as experiment 1 and the accuracy was 
calculated by testing remaining 825 song clips with 0.5 
semitone tolerance to obtain 3 performance indices for pitch 
tracking, including overall, raw-pitch and raw-chroma 
accuracies. 

In experiment 3, we compared the proposed approach to 
Yeh’s method [8] which is submitted to MIREX contest and 
achieved the best performance in raw-pitch and raw-chroma 

accuracies on MIREX-09 dataset of audio melody extraction 
task from 2012 to 2014. The DNN architecture is the same as 
in experiment 2. The experimental settings are the same as in 
[8], which 5-fold singer-specific cross validation with 0.5 
semitone tolerance to obtain average raw-pitch and raw-chroma 
accuracies.  

B. Experimental Results 

Since the proposed method is composed of two stages of 
vocal extraction and pitch tracking, our first experiment is used 
to explore the effect of each stage’s accuracy toward the overall 
accuracy. To this end, different DNN architectures are 
constructed to have vocal extraction of different GNSDR 

 
Figure 5. Pitch tracking accuracy (via UPDUDP) vs. vocal extraction 

performance. (The numbers around dots of lines represent different DNN 
architectures, as described in TABLE I.) 

 

 
TABLE I. THE TYPES OF DNN ARCHITECTURE 

Indices of 

DNN 

architecture 

Numbers of 

nodes in each 

hidden layer 

Numbers of 

hidden layers 

1 64 3 

2 128 1 

3 128 2 

4 256 2 

5 1024 1 

6 2048 1 

7 512 2 

8 768 1 

9 512 1 

10 256 3 

11 768 2 

12 512 3 

13 768 3 

14 1024 3 

 
 



indices. As shown in Figure 5, the higher GNSDR is, the better 
overall SPE accuracy we can obtain. Similar situations also 
apply to GSIR and GSAR. On the other hand, in our second 
experiment, with the same DNN architecture, we have tried 
different pitch-tracking methods, including simple 
autocorrelation function (ACF), UPDUDP and adaptive-
UPDUDP respectively. As shown in Figure 6, the proposed 
adaptive-UPDUDP achieves the best result. This experiments 
indicates that any improvement in either vocal extraction or 
pitch tracking will enhance the overall SPE accuracy. And by 
dividing SPE into two stages, it is much easier for use to 
identify which part goes wrong if the SPE result is not 
desirable. 

In the third experiment, we compared two versions of the 
proposed methods with Yeh’s hybrid method [8]. As indicated 
in Table II, both the proposed versions outperform Yeh’s 
approach in both raw-pitch and raw-chroma accuracies. (We do 
not use overall accuracy as a performance index in this 
experiment since Yeh’s approach does not perform vocal 
detection.) In particular, DNN+UPDUDP has gained a large 
margin of 2.67% (or 15.51% in error rate reduction) in raw-
chroma accuracy. When we switched to adaptive UPDUDP, 
the gain is 2.75% (or 15.8% in error reduction) in raw-pitch 
accuracy, which is a significant improvement considering the 
difficulty of SPE. It should be noted that raw-pitch accuracy is 
a more important performance index than raw-chroma accuracy. 
Therefore, we can clearly see the advantage offered by adaptive 
UPDUDP in SPE by increasing the raw-pitch accuracy 
significantly.  

C. MIREX Contest 

In order to further demonstrate the performance of the 
proposed methods, we also participated in the MIREX [30] 
contest in 2015. The proposed methods can be decomposed 
into two stages of source separation using deep learning and 
pitch tracking using adaptive-UPDUDP, so we took part in 
both the tasks of singing voice separation and audio melody 
extraction. Note that for unbiased evaluation, all submissions to 
these two tasks are tested on hidden datasets that are not 
available to the public.  

 

 
Figure 6. Accuracies of different pitch-tracking methods on the DNN-

extracted singing voices. 
 

TABLE II. COMPARISON BETWEEN PROPOSED METHODS AND YEH’S 

HYBRID APPROACH 

 
Raw-pitch 

accuracy 

Raw-chroma 

accuracy 

Yeh’s 

Approach [8] 
82.60% 82.78% 

DNN+UPDUDP 82.73% 85.45% 

DNN+Adaptive 

UPDUDP 
85.35% 83.73% 
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Figure 7. The architecture of FJ2 in the singing voice separation task. 
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Figure 8. (a) The error profile of FJ1 during training, with the blue and red 
lines being the error profiles for training and validation data, respectively. The 

blue circle indicates where the lowest validation error occurs. (b) The error 

profile of FJ2 during training. 



In singing voice separation task, we have two submissions 
FJ1 and FJ2. FJ1 is based on a DNN of 3 hidden layers of 1024 
nodes (see Figure 2), while FJ2 is based on a DNN of 1 hidden 
layer of 2048 nodes, as shown in Figure 7. Both DNNs adopt 
the sigmoid function, and the objective function is based on 
Equation 3. The training set for both DNNs is half of the public 
set of iKala dataset [26], while the other half is used as the 
validation set. The training set consists of approximately 
318,000 frames, each with 513 features of magnitude spectra. 
The evaluation was performed by MIREX team to test the 
models on the hidden set of iKala dataset. To prevent 
overfitting during the process of training, the validation batch is 
randomly selected from the validation set, and the model was 
stored whenever the lowest validation error occurred so far 
during the training process. As shown in Figure 8, to achieve 
approximately the same error level, the number of epochs of 
FJ1 is much larger than that of FJ2. This is simply due to the 
fact that JF1 has a more complex architecture than FJ2. The 
result of singing voice separation task of MIREX-2015 is 
shown in Figure 9, where both our submissions FJ1 and FJ2 
outperform all the other submissions in both performance 
indices of voice GNSDR and music GNSDR. In particular, FJ1 
performs better than FJ2, indicating that a deeper model 
architecture with more hidden layers (and inevitably with 
longer training time) do have advantages over shallow ones, at 
least for the current task of singing voice separation. Since FJ1 
has better performance than FJ2, its DNN architecture was 
adopted for the following task of audio melody extraction. 
Demo site of singing voice separation based on FJ1 can be 
found at http://mirlab.org/demo/singingVoiceSeparation. 

For audio melody extraction task, we have two submissions 
FYJ1 and FYJ4 that are directly related to the proposed 
methods in this paper. These two submissions differ only in the 
pitch tracking methods for the extracted singing voices, while 
the DNN architecture for singing voice separation in stage 1 is 
the same (as the one of our submission FJ1 to singing voice 
separation of MIREX-2015, see Figure 2). The training set is 
the same as experiment 1, with 175 songs sung by one male 
and one female to have 141,000 frames, each with 513 
dimensions of magnitude spectra. After singing voice 

separation, we extracted pitch by using UPDUDP and its 
adaptive version for FYJ1 and FYJ4, respectively. All the 
training settings are mostly the same as those used in training 
DNN for singing voice separation, as mentioned previously. 
Figure 10 demonstrates the accuracies of all submissions to 
audio melody extraction task in MIREX 2015, with (a) and (b) 
being the accuracies based on raw pitch and overall accuracy, 
respectively. As shown in Figure 10 (b) of the overall accuracy 
(the most important performance index of audio melody 
extraction), our submissions outperform all the others for three 
of the datasets, namely, MIREX 09 at 0db, MIREX 09 at -5db 
and MIREX 09 at +5db, which indicate the effectiveness of the 
proposed DNN for singing voice separation and adaptive 
UPDUDP for robust pitch tracking. For datasets of ADC04 and 
MIREX05, our submissions are not clear winners since, as 
explained by the MIREX webpage, the datasets contain music 
without lead vocals, which are not the target of the proposed 
methods. In other words, the proposed methods aim to deal 
with mixture music with lead vocal, such as those tracks in 
MIREX 09. For INDIANA08 dataset, it is not clear to us if the 
dataset contains music without lead vocal or not, but our 
submissions still have above-average performance. (In fact 
there is another dataset ORCH used in audio melody extraction 
task of MIREX 2015. But we do not list it here since the 
dataset consists of orchestra music without lead vocals at all.)  

 

 
 

Figure 9. MIREX-2015 results of singing voice separation.  

(FJ1 and FJ2 are our submissions.) 

Demo site of FJ1: http://mirlab.org/demo/singingVoiceSeparation/ 

(a) 

 
 

(b) 

 
 

Figure 10. MIREX-2015 results (partial) of audio melody extraction: (a) 

Raw-pitch accuracy. (b) Overall accuracy. (FYJ1 and FYJ4 are our 

submissions) 

http://mirlab.org/demo/singingVoiceSeparation
http://mirlab.org/demo/singingVoiceSeparation/


CONCLUSIONS AND FUTURE WORK 

In this paper, we have combined DNN for singing voice 
separation and adaptive UPDUDP for pitch tracking to achieve 
the final goal of SPE for monaural polyphonic music. The 
experimental results demonstrate a significant overall error 
reduction rate of 15.8% in raw-pitch accuracy when compared 
with the previous state-of-the-art approach. More, the results of 
2015 MIREX shows the proposed methods outperform other 
submissions in both the tasks of singing voice separation and 
audio melody extraction, indicating the effectiveness of the 
proposed methods.  

Since the proposed approach is based on singing voice 
separation and pitch tracking, improvement in either aspect will 
enhance the accuracy of SPE. Our immediate future work will 
be focused on improving singing voice separation, which 
seems to be a better paid-off task than pitch tracking. To this 
end, we shall try other types of DNN for singing voice 
separation, such as recurrent neural networks or convolutional 
neural networks or combinations of different DNN 
architectures. Moreover, we shall try to use the proposed 
methods for several challenging tasks in music retrieval, 
including cover song identification and query by 
singing/humming based on audio database. 
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