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A method for estimating the parameters of hidden Markov models of
speech is described. Parameter values are chosen to maximize the mutual
information between an acoustic observation sequence and the
corresponding word sequence. Recognition results are presented
comparing this method with maximum likelihood estimation.

I. Introduction

Traditionally, a speech recognition system consists of an acoustic
processor and a linguistic decoder. The acoustic processor receives as input
a speech waveform which is the acoustic realization of a sequence w of
words spoken by the user, and it produces as output a sequence y of salient
features. These features may be symbols from a discrete alphabet, such
as phonetic labels, or may be vectors of continuous parameters, such as
Fourier coefficients. The task of the linguistic decoder is to decode from
y. It translates the feature sequence y produced by the acoustic processor

into an estimate of the speaker's original word string .

To minimize the probability of error, must be chosen so that

By Bayes' rule

P(W= II Y=y) = maxP(W= wI Y=y).

P(W= w)P(Y=yW= w)
P(W= wI Y=y) =

P(Y = y)

Here P( W =w) is the prior probability that the word sequence w will be
spoken, and P( Y = y I W= w) is the probability that y will be produced by
the acoustic processor given that the speaker uttered the word sequence
w. P( Y = y) is not a function of w, and therefore need not concern us
during recognition.

To calculate P( V =y I W = w) the linguistic decoder requires a
probabilistic model of the speaker's phonological and acoustic-phonetic
variations, and of the performance of the acoustic processor. In Section
II we describe one such class of models, hidden Markov models. In Section
III we review an algorithm for computing maximum likelihood estimates of
their parameters. In Section IV we present an alternative method of
parameter estimation, MMI, which seeks to maximize the mutual
information between y and . In Section V we mention a number of ways
that the simple models in the previous sections may be extended. In Section
VI we discuss the application of hidden Markov models to speech
recognition. Finally, in Section VII we compare the performance of MMI
estimates with maximum likelihood estimates.

It. Hidden Markov Models

1, = 1, = 1.
j y

P(y[) P( Y =y[) = s... c1 fia11b1,1.l 1T*1 t1
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A sequence of random variables X = X1 X2 ... is an n-state Markov
chain provided each of the random variables X ranges over the integers 1
to n, and further,

P(X = = x1) = P(X1 =x1Ik1 = (3)

A sequence of random variables V = Y1 Y2 ... is a probabilistic function
of a Markov chain X, or, equivalently, X is a hidden Markov model for Y,
if for each 1 � t < T,

F(Y1 =y1I =y1,XT= xT) = P(Y1 =yj = , = (4)

The sequence of values y = yy ... is the output sequence of the hidden
Markov model. We define the transition probability, a1, the output
probability, b11, and the initial State probability, c by

a1=P(X=jIX1_i=i), (5)

bw,=P(Yt=yIX1=i, X1 =j), (6)

c = P(X1 = i). (7)

We can consider these probabilities as the components of a vector, 0, which
we refer to as the parameter vector of the hidden Markov model. Because

'1 the components of 0 are probabilities, they must all be non—negative. They
must also satisfy the constraints

(8)

(2)

Sometimes, we may require 0 to satisfy constraints in addition to (8).
We may, for example, require that certain of the transition probabilities
be zero. One particularly important constraint is tying. Two states, i and

are tied if there exists a permutation of the states, 'rr:k -. 17(k), such that
alk = aJ(k), for all k. Similarly, two transitions, i - j, and k — 1, are tied
if there exists a permutation of the outputs, IT, such that b = bkl,,(), for
ally. Tying induces an equivalence relation on states and on transitions in
an obvious way.

The probabllity of a particular output sequence, y1 y., isa function
of the parameter vector 0. In fact, we can write explicitly

(9)

The computation of P0(y() can be efficiently organized as follows. Let

= P(Y =y,X1 = i) (10)

Then a(0) = c, and, fort> 0, a, obeys the recursion

2.3.1
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Clearly, P,(y{) =

Let M = (m1, m2 rn) be a family of hidden Markov models. The
parameter vector of Mis defined to be 8 = (0k, 02 0,) where 0-is the
parameter vector of in,. The concept of tying is extended to include states
from different members of the family. Thus, we say the state i in rn is tied
to the state fin m' if there exists a mapping 9T from the states of in into the
states of m' such that a1, = aJ(k) for all k. We extend the concept of tied
transitions in the same manner. In addition, we say that the initial state
probability of state i in model in is tied to the initial probability of state fin
model in' if c = cl'. Because of tying or other constraints on (0, it may be
that a change to the parameter vector of one of the members of a family,
say m, will necessitate a change to the parameter vector of some other
member of the family, say in'. When this is the case, we say that in entails
in'. A member, in, is representative of a family if it entails each member of
the family. A family which has a representative member is said to be
close-knit.

IlL Maximum Likelihood Estimation

Given an output sequence yl from a hidden Markov model in, we wish
to estimate the parameter vector (0 of the close—knit family M of which in
is a representative member. In maximum likelihood estimation, we attempt
to choose (0 so as to make P®(y) as large as possible while satisfying any
constraints on 0. If we ignore constraints other than those of equation (8),
then we must find a maximum of the associated function

F(0, A, i, u)

= P8(y[) + A1(1 — ajj) + — b) + v(1 — c)
as a function of 0 and the Lagrange multipliers A,, v. Thus, we must find

a,, c such that

or, from equation (12),

-0 -0 =0—

Ob,,,
—

ÔPB—A1=0, —=0, —v=0.
9a0 9C1

If we carry out the indicated differentiations, we find, after some
manipulation,

aU= A11P(Y[=yT,X = i,X÷1 =1),

b,1y=1P(YT=yT,X=i,X+i=j,Y=y), (15b)

—1 T T
C=v P(Y1 =y1,X1=z).

It is instructive to treat the derivation of equation (iSa) in some detail.
We have

oak! =
ôi/ôjJ

(11) If we substitute this in the first of equations (14) and multiply through by
a1A', and use the fact that

P(YT =yf,X i, X I) = s... (18)
i I1

we obtain equation (iSa).

While equations (15) do not constitute a solution to the maximization
problem because the unknowns appear on both sides of the equal signs, they
do suggest a recursive method for obtaining a solution. Given values for
a,1, t, and c, we can use them to evaluate the right-hand sides of equations
(15) and then use the left-hand sides as new values for a11, b, and c These
recursive formulas were derived and shown to converge to a solution of
equations (13) by Baum [311. It is clear from the form of equations (15)
that none of the parameters is ever negative.

The following equations together with equations (10) and (11) allow
rapid computation of the probabilities appearing in equations (15). Let

$(t) =PO1 =1IX1 = i). (19)

The mutual information between the event M = in and the event }7 =
is a function of 0 given by

T P(Y[=y,M=m)
(iSa) I®(rn,y1)=log T T

P(Y1 =y1)P(M = in)
(25)

15
The idea of maximum mutual information estimation is to choose 0 so as

c) to make 10(in, yr) as large as possible.

We can proceed as we did in the last section. In addition to the
constraints of equation (8), we allow tyings from one model to another.
Because in is representative, each of the parameters of any model in' can

(16) be identified through tying with one of the parameters of m. Rather than
introduce Lagrange multipliers to handle these tying constraints, we will
simply rewrite Pe(yr rn') in terms of parameters of in directly.
Corresponding to equation (12), we have
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o1(t) = a1(t —
1)a11b10,.

Then /1(1) = 1 and, for 0 � I < T, fl obeys the recursion

/3,(t) = ajjbj, I3(t + 1). (20)

In terms of a, and f3, we can write

P(Y=yf,X, = i,X1+i =1) = a(t —
1)a0b1I3j(t), (21)

(12) P(Y=y[,X, = i,X,1 =j, Y, =y) = a(t —
1)a,b,131(t),, (22)

P(Y=y',X1 = i) = $(O)c. (23)

IV. Maximum Mutual Information Estimation

(13) Let M be a random variable ranging over the members of M, and let
P(,n) = P(M= in). Consider the joint distribution P(M = in, )'7 = yfl.
We have,

P(M = in,YT=y[) = F(Y=yfl M = in)P(rn)
(14) (24)

= P0(yfl rn)P(in).

= log P(yI in) — log P®(y[I rn')P(in').
m

aki
= T0ik'3j1'

and so, from equation (9),

T ± •• 1l 1lJl Ha,,,,+1b,,,+,y,
OP€,(yi ) •=1 1T*1 r=1

ila0 a0

F(0, A, ,

(17) = I0(in,y) + A1(1 — a,1) + ji(1 — b1) + v(1 — (26)
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components of the gradient of F with respect to e. The components of the
gradient with respect to X, and v are, of course, 1 — a1, 1 —

(27) and 1 — I

V. Extensions
In order to streamline the discussion in sections III and IV, we have
described the algorithms in a simple setting. In practice, it is useful to
extend these algorithms in a number of ways. Because the modifications to
equations (15) and (28) are straightforward, we simpiy list the extensions
briefly.

We may require that certain of the parameters have specified values.
In particular, we may require that certain of the transition probabilities be
zero, thereby prohibiting the associated transition. Similarly, by fixing
certain initial state probabilities at zero, we can ensure that all state
sequences with non—zero probability begin in some set of initial states. We

28 can likewise ensure that state sequences with non—zero probability
a1 terminate in some set of final states.

The number of transitions required to adequately model a process can
often be reduced by using null transitions, which allow the model to change
state without producing any output.

Finally, we have discussed models in which the outputs are chosen from
a finite alphabet. It is often desirable to consider outputs which are
continuous values or vectors of continuous values. In such cases, in place
of the output probability, we would have an output probability density

= , (28b) characterized by a vector of parameters, c.

VI. Speech Recognition

Automatic speech recognition can be performed by using a hidden
Markov model for each word in the recognizer's vocabulary. For simplicity,
we shall assume that each such model has one initial state and one final
state. A sequence of N models may be concatenated into a combined model
by making the initial state of the first model the initial state of the combined

(28c) model, by making the final state of the Nth model the final state of the
combined model, and by creating null transitions from the final state of the
ith model to the initial state of the (i ÷ 1)st model for 1 < i < N. In this
way, we can create a hidden Markov model m from any word sequence w.
Note that there will be tied parameters in m if any word appears more than
once in w.

The parameter values for the individual word models are estimated from
a sequence of words w, the training script, and a corresponding sequence
of acoustic observations y, the training data. We can use either
maximum-likelihood estimation or MMI estimation to estimate the
parameter vector 6 for the model created for w.

When using MMI estimation, each possible word sequence s' gives rise
to a model m, and the training script w gives rise to m. The objective
function in MMI estimation becomes I®(w, y). By maximizing 11.1(w, y),
we are maximizing the probability of the correct word sequence given the
training data, or equivalently, maximizing the information provided by y
about w. Maximum likelihood estimation, on the other hand, is a method
of choosing parameter values to maximize the probability of the acoustic

(29) observation sequence y given the model m for the word sequence . Unlike
MMI estimation, it is not explicitly designed to maximize the ability of the
resultant statistical models to discriminate between the correct word
sequence and any other word sequence.

The computation in MMI estimation can be reduced by making a few
simplifying assumptions.

The first of these assumptions is that
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Equation (13) is unchanged, and in place of equation (14), we have,

oi®
—XO, (1"O, ———v=O.

If we carry Out the indicated differentiations, we find, after some
manipulation,

P(Y[_—yT, X = i,X1 —JIM m)

r
a11P(y1 in)

P(Y =y,A1(m', T) IM = m')P(m')
m' ,=l ——

aPe(y[I m')P(m')

= i,X1 =j, Y =yIM= in)

bth,P®(YTI m)

P(Y y, B(m', T) I M = m')P(m')
pn

—

bPg(vTI m')F(m')

P(Y=y,X1 = iIM=m)
c1Pe(y[I m)

=yT C1(m') I M = m')P(m')

A1Pg(yI m)

—

cPe(yTIm')P(m')

Here, A1(m', s) is the event that, for some k and I, X, = kand X = /and
a' is identified with a through tying; B(m', T) is the event that, for some
k, 1, and z, X, k, X1 = 1, and V. = z and bj7 is identified with b,, through
tying; and C,(m') is the event that for some j, X = j and c is identified
with c through tying. These equations lead directly to equations similar to
equations (15). For example, if we multiply equation (28a) by a,1A1 and
rearrange terms, we find

P(Y=y[,X=i,X÷1 =JIM=m)
a=

AtPe(yTI m')p(m')

Although equation (29) suggests a recursion for finding the maximum of
l, it differs in two important respects from the recursion suggested by
equations (15). First, we have no proof that the recursion converges.
Second, there is no guarantee that the right—hand side of equation (29) is
positive.

The recursion suggested by equation (29) warrants further investigation
but for the current paper, we have simply used gradient descent to
maximize F(8, X, js, v). The left-hand sides of equations (27) are the

P(Y =y, A(m', T) M = m')p(m')
— jti r=i

P(W=w') = flP(Wj=wj).

2.3.3

(30)

Authorized licensed use limited to: National Tsing Hua University. Downloaded on June 18, 2009 at 05:00 from IEEE Xplore.  Restrictions apply.



Each P( W = w,) can easily be estimated from word frequency counts.

It is also convenient to assume that the training data y can be segmented
into N subsequences .v1 y,, one p for each word w, in w15, and to
assume that

P(Y=yI W=w)=flP(Yj=y1I W=w),

if the length of w is N, and that P(Y, = p I W1 = w) = 0, otherwise.

In practice, for each acoustic segment p there is a set A, of only a few
words which contribute significantly to P( W w) P( Y = y, I W= w),
and it reduces computation to assume that

P(W= w)P(Y=y1 W= w)

= P(Ww)P(Yy1I W=w).

We then recomputed the output probabifities using the method of
maximizing the mutual information between the acoustic observations in the
training data and the training script. The A, 's appearing in (32) were
determined by including in each A, all words w such that
P(Y =yI W= w) � 103P(Y, =y11 W= w,). With these parameter
estimates, the log probability of the correct script computed on the training

(31) data, was -1.16, and there were 64 recognition errors made on the test
data.

The above figures show that in this example estimating parameters by
maximizing mutual information resulted in the training script having a
probability 10189 times greater than when parameters were estimated by
maximum likelihood estimation. More importantly, training by maximizing
mutual information resulted in 18 percent fewer recognition errors.
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Each set A1 can be precomputed from a list of words confusable with w,. IX. References

VII. Results

We tested MMI estimation in a speaker—dependent isolated word
recognition task which is described in more detail in [1 1 The vocabulary
size was 2000 words. The training data consisted of 99 natural sentences
containing a total of 1453 words. The test data consisted of 100 natural
sentences containing a total of 1297 words. The test data was recognized
using the one-gram language model of equation (30).

First, we estimated the hidden Markov model parameters with
maximum likelihood estimation. The log probability of the correct script
given the acoustic observations in the training data, computed with the
resultant parameters was —190.11. There were 78 recognition errors made
on the test data with these parameters.
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