
Neuro-Fuzzy Modeling:

Architecture, Analyses and Applications

Copyright
c

 1992

by

Jyh-Shing Roger Jang

ii

Neuro-Fuzzy Modeling:

Architectures, Analyses and Applications

Jyh-Shing Roger Jang

Department of Electrical Engineering and Computer Science

University of California

Berkeley, CA 94720

July 1992

A dissertation

submitted in partial satisfaction of

the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science in

the Graduate Division of

the University of California, Berkeley.

iii

Abstract

Fuzzy inference systems have been successfully applied in various areas ranging

from automatic control to expert systems. This success is mostly due to the fact that fuzzy

if-then rules are well-suited for capturing the imprecise nature of human knowledge and

reasoning processes. On the other hand, neural networks tackle the same problems with

a di�erent strategy; they are equipped with a remarkable learning capability such that a

desired input-output mapping can be discovered through learning by examples. These two

modeling approaches di�er completely in the way the knowledge is acquired and encoded

internally; thus their advantages and disadvantages are complementary.

The aim of this dissertation is to construct a generalized framework that integrates

both neural networks and fuzzy inference systems. Models pertaining to this framework

possess both the learning capability of neural networks and the structured knowledge rep-

resentation employed in fuzzy inference systems. In particular, we propose two integrated

models: ANFIS (Adaptive-Network-based Fuzzy Inference System) and NFC (Neuro-Fuzzy

Classi�er). The former is appropriate for nonlinear modeling, time series prediction and

intelligent control; the latter is devised for pattern classi�cation.

ANFIS (Adaptive-Network-based Fuzzy Inference System) is a fuzzy inference sys-

tem with a hybrid learning strategy combining gradient descent and the Kalman �lter

algorithm. We prove that ANFIS is a universal approximator and its superior represen-

tational power is demonstrated through the applications to nonlinear function modeling

and time series prediction. Furthermore, we propose a self-learning control strategy, called

TBP (temporal back-propagation), which utilizes ANFIS as a controller. Simulation shows

iv

the e�ectiveness of the proposed control scheme and the robustness of the acquired fuzzy

controller in balancing an inverted pendulum.

NFC (Neuro-Fuzzy Classi�er) is a distribution-free classi�er which can encode prior

knowledge into its parameters and �ne-tune the parameters to get a better performance.

The experiments of NFC on the two-spiral problem and the Iris data classi�cation exhibit

its advantages over pure neural network approaches in terms of structure transparency and

model performance.

Besides the applications mentioned above, the proposed integrated models have

various other promising applications encompassing both the application domains of neural

networks and fuzzy inference systems. With the advance of VLSI technologies, we expect

that neuro-fuzzy chips will be realized in the near future and play an increasingly important

role in automation.

v

To Sui-Hwai, Ting-Shouh,

and our parents.

vi

Acknowledgments

I would like to thank my research advisor, Professor Lot� A. Zadeh, for being a

consistent source of support and encouragement. His guidance and help have made my

Ph.D. program a smooth and enjoyable one.

Several other professors have contributed graciously their time on my behalf, and

I would like to express my gratitude. I would like to thank Professor Ron Fearing and

Professor Masayoshi Tomizuka for their careful reading of this dissertation, and Professor

Stuart Dreyfus for serving on my qualifying committee. Many discussions with them have

generated enlightening ideas and have kept my work on track.

I gratefully acknowledge crucial contributions to this project from other members

in the fuzzy group. They are: Albert Chen, Yung-Yaw Chen, Soumitra Dutta, Pratap

Khedkar, Chuen-Chien Lee, Chuen-Tsai Sun, Hideyuki Takagi, and Lixin Wang. Special

thanks must go to Yung-Yaw Chen, who introduced me to this exciting research area.

Moreover, I am deeply appreciative of the constructive comments of Chuen-Tsai Sun and

Chuen-Chien Lee on my qualifying exam. I also want to thank Pratap Khedkar for devoting

his time in proofreading my papers.

I wish to express my appreciation to Dr. Hamid Berenji who let me join the

project in NASA, which sparked my interest in the fuzzy control �eld. I also would like

to express my gratitude to Dr. Chi Yung Fu, my supervisor at the Lawrence Livermore

National Laboratory, from whom I learned a lot in both neural network technology and

general research methodology.

vii

I am deeply indebted to my mother, Ru-Jiuann Shih, and my uncles, grandfather

and grandmother. Without their encouragement and �nancial support, I could have never

come to the States to pursue a higher degree.

Finally, I would like to dedicate this work to my wife, Sui-Hwang Rosa Hwang,

and my son, Ting-Shouh Tim Jang. Without Rosa's constant support and understanding

and Tim's cooperation, I would not have had the persistence to �nish this work.

viii

Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Motivation : 1

1.2 Contribution of Dissertation : 2

1.3 Organization : 3

2 Review and Motivation 6

2.1 Overview : 6

2.2 Fuzzy Logic Modeling : 7

2.2.1 Fuzzy Sets : 7

2.2.2 Fuzzy If-Then Rules : 13

2.2.3 Fuzzy Inference Systems : 15

2.2.4 Fuzzy Logic Modeling : 19

2.3 Neural Network Modeling : 23

2.3.1 Back Propagation Neural Networks (BPNN's) : : : : : : : : : : : : : 24

2.3.2 Radial Basis Function Networks (RBFN's) : : : : : : : : : : : : : : : 28

2.4 Motivation for Neuro-Fuzzy modeling : 30

3 Adaptive Networks: Architectures and Learning Algorithms 33

3.1 Introduction : 33

3.2 Architecture and Learning Rule : 34

3.3 Hybrid Learning Rule: Batch (O�-Line) Learning : : : : : : : : : : : : : : : 37

3.4 Hybrid Learning Rule: Pattern (On-Line) Learning : : : : : : : : : : : : : : 41

4 ANFIS: Adaptive-Networks-based Fuzzy Inference Systems 43

4.1 Introduction : 43

4.2 ANFIS Architecture : 44

4.3 Hybrid Learning Algorithm : 48

4.4 Functional Equivalence to RBFN's : 52

ix

4.5 ANFIS as a Universal Approximator : 54

4.5.1 Simpli�ed Fuzzy If-Then Rules and the Stone-Weierstrass Theorem : 54

4.5.2 Application of the Stone-Weierstrass Theorem : : : : : : : : : : : : 55

4.6 Application Examples : 59

4.6.1 Practical Considerations : 60

4.6.2 Example 1: Modeling a Two-Input Nonlinear Function : : : : : : : : 62

4.6.3 Example 2: Modeling a Three-Input Nonlinear Function : : : : : : : 65

4.6.4 Example 3: On-line Identi�cation in Control Systems : : : : : : : : 66

4.6.5 Example 4: Predicting Chaotic Dynamics : : : : : : : : : : : : : : : 69

4.7 Concluding Remarks : 80

4.7.1 Summary and Extensions of Current work : : : : : : : : : : : : : : : 80

4.7.2 Applications to Automatic Control and Signal Processing : : : : : : 83

5 Self-Learning Intelligent Control 85

5.1 Introduction : 85

5.2 Self-Learning Fuzzy Controllers through Temporal Back Propagation : : : : 86

5.2.1 Stage Adaptive Network : 87

5.2.2 Trajectory Adaptive Network : 90

5.3 Application to the Inverted Pendulum System : : : : : : : : : : : : : : : : : 92

5.3.1 Simulation Settings : 93

5.3.2 Simulation Results : 97

6 Neuro-Fuzzy Classi�ers 104

6.1 Introduction : 104

6.2 NFC Architecture : 106

6.3 Learning Rule and Error Measure : 111

6.4 Application Examples : 114

6.4.1 Two-Spiral Problem : 114

6.4.2 IRIS Classi�cation : 126

7 Conclusions and Future Directions 133

7.1 Concluding Remarks : 133

7.2 Future Directions : 136

A Appendix 139

Bibliography 142

x

List of Figures

2.1 Bell-shaped and trapezoidal membership functions : : : : : : : : : : : : : : 8

2.2 Typical membership functions of linguistic values \young" \middle-aged"

and \old" : 9

2.3 Cores, supports and crossover points of (a) \middle-aged" (b) \45-year-old"

(a fuzzy singleton). : 10

2.4 Output surface of the multiplication and min. operators on MF's. : : : : : 12

2.5 Parameterized T-norms and T-conorms : 14

2.6 Fuzzy inference system : 15

2.7 Commonly used fuzzy if-then rules and fuzzy reasoning mechanisms : : : : 17

2.8 Dominant rule's �ring strength of a 2-input 9-rule fuzzy inference system : 18

2.9 Takagi's NN-driven fuzzy reasoning system : : : : : : : : : : : : : : : : : : 21

2.10 Conventional and NN-based fuzzy partitions of input space : : : : : : : : : 22

2.11 Activation functions: (a) signum function; (b) sigmoid function; (c) hyper-

tangent function : 24

2.12 A BPNN node : 25

2.13 A 2-2-4-3 BPNN : 26

2.14 A radial basis function network (RBFN) : 28

3.1 An adaptive network : 34

3.2 An NN node and its equivalent adaptive network representation : : : : : : : 35

4.1 ANFIS with type-3 fuzzy reasoning : 44

4.2 ANFIS with type-1 fuzzy reasoning : 47

4.3 2-input type-3 ANFIS with 9 rules : 48

4.4 Piecewise linear approximation of membership functions on consequent part 50

4.5 ANFIS representation of fuzzy inference system S : : : : : : : : : : : : : : 57

4.6 ANFIS representation of fuzzy inference system S : : : : : : : : : : : : : : 57

4.7 ANFIS representation of a fuzzy inference system that computes az + bz : : 58

4.8 ANFIS representation of a fuzzy inference that computes zz : : : : : : : : : 59

4.9 A typical initial membership function setting : : : : : : : : : : : : : : : : : 60

4.10 Physical meanings of the parameters in the bell membership function �

A

(x) =

1

1+[(

x�c

a

)

2

]

b

. : 61

xi

4.11 Two heuristic rules for updating step size k : : : : : : : : : : : : : : : : : : 62

4.12 RMSE curves for the quick-propagation neural network and the ANFIS : : 63

4.13 Training data and reconstructed surfaces at di�erent stages (Example 1) : : 64

4.14 Initial and �nal membership functions of example 1 : : : : : : : : : : : : : : 65

4.15 The ANFIS architecture for example 2. : 66

4.16 Initial and �nal membership functions of example 2 : : : : : : : : : : : : : : 67

4.17 Error curves of example 2 : 67

4.18 ANFIS as an nonlinear identi�er in a control system : : : : : : : : : : : : : 70

4.19 Example 3: batch learning with 5 MF's : 71

4.20 Example 3: batch learning with 4 MF's : 71

4.21 Example 3: batch learning with 3 MF's : 72

4.22 Membership functions of example 4. : 74

4.23 Example 3 : 75

4.24 Training and checking RMSE curves for ANFIS modeling : : : : : : : : : : 76

4.25 Example 3 : 77

4.26 Training and checking errors of AR models with di�erent parameter numbers 77

4.27 Example 3 : 78

4.28 Generalization test of ANFIS for P = 84 : 81

5.1 Block diagram of a fuzzy controller and a plant. Also a stage adaptive net-

work at time stage k. : 87

5.2 State transition diagram. : 90

5.3 A trajectory adaptive network for control application. : : : : : : : : : : : : 92

5.4 The inverted pendulum system. : 93

5.5 The implementation of a stage adaptive network : : : : : : : : : : : : : : : 94

5.6 (a)(b) Initial membership functions; (c)(d) �nal membership functions. : : : 95

5.7 Initial control action surface : 97

5.8 Final control action surface : 98

5.9 (a)(b) Initial membership functions and (c)(d) �nal membership functions of

a 9-rule fuzzy controller. : 100

5.10 (a) Pole angle; (b) pole angular velocity; (c) state space; (d) input force.

(Solid, dashed and dotted curves correspond to � = 10, 40 and 100, respectively.101

5.11 (a) Pole angle; (b) pole angular velocity; (c) state space; (d) input force;

(Solid, dashed and dotted curves correspond to half pole lengths of 0.5, 0.25

and 0.125 m, respectively. : 102

5.12 (a) Pole angle; (b) pole angular velocity; (c) state space; (d) input force.

(Solid, dashed and dotted curves correspond to initial conditions (10, 20),

(15, 30) and (20, 40), respectively. : 103

6.1 NFC architecture : 106

6.2 Post-processor for NFC with (a) crisp outputs; (b) fuzzy outputs : : : : : : 110

6.3 Training data for the two-spiral problem : 115

6.4 Initial and �nal membership functions of NFC : : : : : : : : : : : : : : : : : 119

6.5 FG Error measure and misclassi�cation numbers w.r.t. epoch number : : : 120

6.6 FG Error measure and misclassi�cation numbers w.r.t. epoch number : : : 121

xii

6.7 Group 1, image representation of NFC's input-output behavior : : : : : : : 122

6.8 Group 2, image representation of NFC's input-output behavior : : : : : : : 123

6.9 Enhanced images of experiments in group 2 : : : : : : : : : : : : : : : : : : 125

6.10 Plots of classes w.r.t single input variable (feature). : : : : : : : : : : : : : : 127

6.11 Plots of classes w.r.t. two input variables. : : : : : : : : : : : : : : : : : : : 130

6.12 Initial and �nal membership functions of experiment 1 and 2 : : : : : : : : 131

6.13 Error curves and numbers of misclassi�ed cases for experiment 1 and 2 : : : 132

xiii

List of Tables

4.1 Two passes in the hybrid learning procedure for ANFIS : : : : : : : : : : : 49

4.2 Example 2, comparisons with earlier work : : : : : : : : : : : : : : : : : : : 68

4.3 Example 3: comparison with NN identi�er : : : : : : : : : : : : : : : : : : : 69

4.4 Generalization result comparisons for P = 6 : : : : : : : : : : : : : : : : : : 79

4.5 Generalization result comparisons for P = 84 and 85 : : : : : : : : : : : : : 80

7.1 Comparisons of NN, FIS and adaptive FIS : : : : : : : : : : : : : : : : : : : 135

A.1 Table of premise parameters in example 4 : : : : : : : : : : : : : : : : : : : 141

1

Chapter 1

Introduction

1.1 Motivation

Systemmodeling has been an important issue in both engineering and non-engineering

areas. Conventional approaches to system modeling rely heavily on mathematical tools

which emphasize the precision and exact description of each quantity involved. The use

of these mathematical tools (such as di�erential or di�erence equations, transfer functions,

etc.) is appropriate and well-justi�ed when the system is simple and/or well-de�ned. How-

ever, as the system under consideration (which could range from a mechanical system to

a huge economic system) grows larger and more complicated, mathematical tools become

less e�ective or even inappropriate. This is due to the fact that either the mathematical

expressions themselves are too complicated to be tractable, or the relationships between

variables in the system are unclear or known with uncertainty.

To overcome the problems confronted by conventional modeling methods, fuzzy

logic modeling and neural network modeling have been proposed as viable alternatives and

2

successfully employed in various areas where conventional approaches fail to provide sat-

isfactory solutions. These two innovative modeling approaches share some common char-

acteristics: they assume parallel operations; they are well-known for their fault tolerance

capabilities; and they are often called model-free modeling approaches. Despite these sim-

ilarities, they stem from very di�erent origins. Fuzzy logic modeling is primarily based on

fuzzy sets and fuzzy if-then rules proposed by Zadeh [109], which are closely related to

psychology and cognitive science. On the other hand, neural network modeling is based

on arti�cial neural networks which are motivated by biological neural systems. Because of

their very origins, the respective philosophies and methodologies underlying their problem-

solving approaches are quite di�erent and, in general, complementary. As a result, many

researchers are trying to integrated these two schemes to generate hybrid models that can

take advantage of the strong points of both. This is also the motivation for our research,

which aims at providing an integrate framework capable of subsuming both neural networks

and fuzzy inference systems.

1.2 Contribution of Dissertation

In this dissertation, we propose two hybrid architectures, ANFIS (Adaptive-Network-

based Fuzzy Inference System) and NFC (Neuro-Fuzzy Classi�er), that can encode a priori

knowledge (which can assume various forms of fuzzy if-then rules) into their structures and

utilize a fast hybrid learning rule to update their parameters based on a desired input-output

data set. To be more speci�c, we have accomplished the following:

3

� Introduced the neural-network-type learning rule (the so-called back propagation) into

di�erent types of fuzzy inference systems, which results in the ANFIS architecture.

� Derived a fast learning algorithm that combines the back-propagation learning rule

and the Kalman �lter algorithm, which can speed up the learning processes of AN-

FIS's, CFN's and various types of neural networks.

� Extended BP (back propagation) to TBP (temporal back propagation), which gives

fuzzy controllers self-learning capability.

� Proposed the NFC architecture which performs pattern classi�cation based on fuzzy

if-then rules with modi�able parameters.

Moreover, we have conducted extensive computer simulations to verify the pro-

posed architectures and learning algorithms. We successfully employ the ANFIS architec-

ture to model nonlinear functions and predict both chaotic and real-world time series. The

e�ectiveness of TBP is con�rmed by its ability to construct a self-learning fuzzy controller

for balancing an inverted pendulum. We also demonstrate how the NFC architecture is

suitable for solving two benchmark problems in classi�cation.

1.3 Organization

Chapter 2 presents the notations, structures, operations and previous work on

fuzzy systems and neural networks. After indicating the strong and weak points of both

modeling approaches, we explain how an integrated framework will bene�t from the strong

points of both, which led to the pursuit of this research.

4

Chapter 3 formally de�nes the concept of the adaptive network and the formulas

of its back-propagation-type learning rule. To speed up the learning process, we propose a

learning rule combining the gradient descent and the Kalman �lter algorithm. Besides the

usual batch learning, we also develop a pattern learning paradigm that updates parameters

after each data presentation.

In chapter 4, we transform di�erent types of fuzzy inference systems into their

equivalent adaptive network architectures, generically called ANFIS (Adaptive-Network-

based Fuzzy Inference System), thus introducing the learning capability into fuzzy infer-

ence systems. After noting the similarity between the con�gurations of ANFIS and radial

basis function networks, we indicate their functional equivalence after some minor sim-

pli�cations. And by the Stone-Weierstrass theorem, the ANFIS architecture, just like the

back-propagation neural network, is shown to be a universal approximator that can approx-

imate any nonlinear functions arbitrarily well on a compact set. The ANFIS architecture

is then employed to model two highly nonlinear functions and predict both synthesis and

real-world time series.

The concept of back propagation is further generalized to temporal back propa-

gation (TBP) in Chapter 5, where TBP is used to generate a fuzzy controller from scratch

for balancing an inverted pendulum. Various simulation settings are employed to show the

e�ectiveness of this approach and the robustness of the resulting fuzzy controller.

An intelligent pattern classi�er, called NFC (Neuro-Fuzzy Classi�er), is proposed

in chapter 6 to provide another paradigm of an integrated framework. It is actually an

adaptive nonlinear discriminant function with fuzzy if-then rules embedded inside. The

5

discriminant power of NFC is veri�ed through successful applications to two benchmark

classi�cation problems: the two-spiral problem and the Iris data classi�cation.

Finally, in chapter 7, conclusions of this research and recommended directions for

further investigation are discussed.

6

Chapter 2

Review and Motivation

2.1 Overview

This chapter describes the basic concepts, operations and structures of fuzzy sys-

tems and neural networks, and reviews previous work in the literature. The pros and cons of

these two schemes are listed and compared, an e�ort which inevitably led to the motivation

for this research.

More speci�cally, in section 2.2 we will introduce:

� Concepts, notations and operations on fuzzy sets.

� Fuzzy inference systems which employ fuzzy if-then rules and fuzzy reasoning.

� Previous work about fuzzy logic modeling.

Section 2.3 brie
y explains the learning rules and structures of the two most com-

monly used neural networks in the literature, namely:

� Back-propagation neural networks (BPNN's)

7

� Radial function basis networks (RFBN's).

After reviewing the previous approaches to fuzzy logic modeling and neural net-

work modeling, we indicate in section 2.4 that the advantages and disadvantages of both

modeling schemes turn out to be complementary, which leads to our motivation for de-

veloping an integrated neuro-fuzzy modeling approach that can, we hope, inherit all the

advantages and bypass all the disadvantages.

2.2 Fuzzy Logic Modeling

2.2.1 Fuzzy Sets

This section summarizes basic concepts and notations of fuzzy set theory and fuzzy

logic which will be needed in this work. A detailed treatment of the subject may be found

in Zadeh's pioneering work in 1965 [109] and other subsequent publications [15, 110, 35, 36,

112, 113, 111, 41].

Let X be a space of objects and x be a generic element of X . A classical set A is

de�ned as a collection of elements or objects x 2 X , such that each x can either belong to

or not belong to the set A, A � X . By de�ning a characteristic function (or membership

function) on each element x in X , a classical set A can be represented by a set of ordered

pairs (x, 0) or (x, 1), where 1 indicates membership and 0 non-membership.

Unlike the conventional set mentioned above, a fuzzy set [109] expresses the \de-

gree" to which an element belongs to a set. Hence the characteristic function of a fuzzy set

is allowed to have value between 0 and 1, denoting the degree of membership of an element

in a given set. If X is a collection of objects denoted generically by x, then a fuzzy set A

8

0

0.5

1

-20 -15 -10 -5 0 5 10 15 20

(a) Bell-shaped membership function

0

0.5

1

-20 -15 -10 -5 0 5 10 15 20

(b) Trapezoidal membership function

Figure 2.1: Bell-shaped and trapezoidal membership functions .

in X is de�ned as a set of ordered pairs:

A = f(x; �

A

(x)) j x 2 Xg (2.1)

�

A

(x) is called the membership function (MF) of x in A, which maps X to the membership

space M , M = [0, 1]. When M contains only two points 0 and 1, A is nonfuzzy (crisp) and

�

A

is identical to the characteristic function of a crisp set. For a convex fuzzy set (to be

de�ned below), commonly used membership functions include trapezoidal (piecewise-linear)

type and bell-shaped (smooth) type, as shown in Figure 2.1.

Suppose that X = \Age" then A can assume various linguistic terms such as

\young" \middle-aged" and \old" which are characterized by membership functions �

old

(x),

�

middle�aged

(x) and �

old

(x), respectively. This leads to the concept of linguistic vari-

ables [110] (\Age" in this case) whose values (linguistic values) are words or sentences

9

0

oldmiddle-agedyoung

7560453015

membership value

Age

1.0

Figure 2.2: Typical membership functions of linguistic values \young" \middle-aged" and

\old".

in a natural or synthetic language (\young" \middle-aged" and \old" in this case). Typical

membership functions for these linguistic values are displayed in Figure 2.2.

The core of a fuzzy set A is the set of all points x in X such that �

A

(x) = 1; the

support of A is the set of all points x in X such that �

A

(x) > 0. In particular, the element

x in X at which �

A

(x) = 0:5 is called the crossover point . Moreover, A is normal if its core

is non-empty; A is convex if for any x

1

; x

2

2 X and any � 2 [0; 1],

�

A

(�x

1

+ (1� �)x

2

) � minf�

A

(x

1

); �

A

(x

2

)g: (2.2)

A fuzzy set whose support is a single point in X with �

A

(x) = 1 is referred to as a fuzzy

singleton. Figure 2.3 (a) and (b) illustrate the cores, supports and crossover points on the

bell-shaped membership function of \middle-aged" and on the fuzzy singleton characterizing

\45-year-old."

Corresponding to the ordinary logic operations, i.e., AND, OR and COMPLE-

MENT, fuzzy sets have similar operations which are called conjunction, disjunction and

10

support

crossover points

1.0

0.5

Age

membership value

middle-aged

core

45

core, support, and crossover point

1.0

0.5

Age

membership value

45-year-old

(a) (b)

Figure 2.3: Crossover points and support of (a) \middle-aged" (b) \45-year-old" (a fuzzy

singleton) .

complement , respectively. Let

a = �

A

(x);

b = �

B

(x):

(2.3)

Then the membership functions of A\B and A[B are speci�ed by a conjunction operator

T (�; �) and a disjunction operator S(�; �), respectively:

�

A \ B

(x) = T (a; b);

�

A [B

(x) = S(a; b);

(2.4)

where T (�; �) satis�es the conditions of a T-norm [15, 112]:

T (0; 0) = 0 (boundary)

T (a; 1) = T (1; a) = a (boundary)

T (a; b) � T (c; d) if a � c and b � d (monotonicity)

T (a; b) = T (b; a) (commutativity)

T (a; T (b; c)) = T (T (a; b); c) (associativity)

(2.5)

11

and S(�; �) satis�es the conditions of a T-conorm [15, 112]:

S(1; 1) = 1 (boundary)

S(a; 0) = S(0; a) = a (boundary)

S(a; b)� S(c; d) if a � c and b � d (monotonicity)

S(a; b) = S(b; a) (commutativity)

S(a; S(b; c)) = S(S(a; b); c) (associativity)

(2.6)

The membership functions of

�

A (the negation of A) is usually speci�ed by a nega-

tion operation N(�):

�

�

A

(x) = 1� �

A

(x) = N(a): (2.7)

As a matter of fact, T-norms T (�; �) and T-conorms S(�; �) are duals which support

the generalization of DeMorgan's law:

S(a; b) = N(T (N(a);N(b)));

T (a; b) = N(S(N(a);N(b))):

(2.8)

Several parameterized T-norms and dual T-conorms have been proposed in the

literature, such as Yager [106], Dubois and Prade [16], Schweizer and Sklar [75], and

Sugeno [82]. For instance, Schweizer and Sklar's T-norm operator can be expressed as

T

sc

(a; b; p) = [MAXf0; (a

�p

+ b

�p

� 1)g]

�

1

p

S

sc

(a; b; p) = 1� [MAXf0; ((1� a)

�p

+ (1� b)

�p

� 1)g]

�

1

p

(2.9)

It is observed that

lim

p!0

T

sc

(a; b; p) = ab;

lim

p!1

T

sc

(a; b; p) = minfa; bg;

(2.10)

which correspond to two of the most frequently used T-norms in combining the membership

values on the premise part of a fuzzy if-then rule. Actually the di�erence between these

12

Figure 2.4: Output surfaces of the multiplication operator (�rst column) and the min. oper-

ator (second column) on bell-shaped membership functions (�rst row) and trapezoidal mem-

bership functions (second row).

two operators (multiplication and min.) is not too prominent, as is revealed in Figure 2.4

where the multiplication and min. operator are applied to both bell-shaped and trapezoidal

membership functions on x and y. As a result, as long as we have a good method to �ne-tune

the membership functions, the choice of these two operators is not critical.

To give an general idea of how the parameter p a�ects the T-norm and T-conorm

operator, Figure 2.5 (a) shows typical membership functions of fuzzy set A and B; (b) and

(c) are T

sc

(a; b; p) and S

sc

(a; b; p), respectively, with p = 1 (solid line), 1 (dashed line), 0

(dotted line), -1 (dash-dotted line). Note that the bell-shaped membership functions of A

and B in Figure 2.5 (a) are de�ned as below

�

A

(x) =

1

1 + [

x+5

7:5

]

4

; (2.11)

13

�

B

(x) =

1

1 + [

x�5

5

]

2

: (2.12)

2.2.2 Fuzzy If-Then Rules

Fuzzy if-then rules or fuzzy conditional statements are expressions of the form IF

A THEN B, where A and B are labels of fuzzy sets. Due to their concise form, fuzzy

if-then rules are often employed to capture the imprecise modes of reasoning that play an

essential role in the human ability to make decisions in an environment of uncertainty and

imprecision. An example that describes a simple fact is

If pressure is high, then volume is small.

where pressure and volume are linguistic variables [110], high and small are linguistic values

or labels that are characterized by membership functions.

Another form of fuzzy if-then rule, proposed by Takagi and Sugeno [90], has fuzzy

sets involved only in the premise part. By using Takagi and Sugeno's fuzzy if-then rule, we

can describe the resistant force on a moving object as follows:

If velocity is high, then force = k � (velocity)

2

.

where, again, high in the premise part is a linguistic label characterized by an appropriate

membership function. However, the consequent part is described by a nonfuzzy equation of

the input variable, velocity.

Both types of fuzzy if-then rules have been used extensively in both modeling and

control. Through the use of linguistic labels and membership functions, a fuzzy if-then rule

can easily capture the spirit of a \rule of thumb" used by humans. From another angle,

14

0

0.5

1

-15 -10 -5 0 5 10 15

o o o
o

o
o

o
o

o
o

o
o

o
o

o o
o

o
o

o
o

o
o

o
o

o
o

o o
x x

x
x

x
x

x
x

x
x

x
x

x x x x x x x
x

x
x

x
x

x
x

x
x

x
x x x x x x x x x x x x

(a) Membership functions of two fuzzy sets A and B

0

0.5

1

-15 -10 -5 0 5 10 15

(b) T-norm of membership functions of A and B

(c) T-conorm of membership functions of A and B

0

0.5

1

-15 -10 -5 0 5 10 15

Figure 2.5: Schweizer and Sklar's parameterized T-norms and T-conorms: (a) membership

functions for fuzzy set A and B; (b) T

sc

(a; b; p) and (c) S

sc

(a; b; p) with p =1 (solid line),

1 (dashed line), 0 (dotted line), -1 (dash-dotted line).

15

input output
database rule base

knowledge base

decision-making unit

defuzzification

interface

fuzzification

interface

(fuzzy) (fuzzy)

(crisp) (crisp)

Figure 2.6: Fuzzy inference system.

due to the quali�ers on the premise parts, each fuzzy if-then rule can be viewed as a local

description of the system under consideration. Fuzzy if-then rules form a core part of the

fuzzy inference system, a fuzzy-rule-based system widely used as a fuzzy controller, to be

discussed in the next section.

2.2.3 Fuzzy Inference Systems

Fuzzy inference systems are also known as fuzzy-rule-based systems , fuzzy models ,

fuzzy associative memories (FAM), or fuzzy controllers when used as controllers. Basically

a fuzzy inference system is composed of �ve functional blocks (Figure 2.6):

� a rule base containing a number of fuzzy if-then rules;

� a database which de�nes the membership functions of the fuzzy sets used in the

fuzzy rules;

� a decision-making unit which performs the inference operations on the rules;

� a fuzzi�cation interface which transforms the crisp inputs into degrees of match

with linguistic values;

16

� a defuzzi�cation interface which transform the fuzzy results of the inference into

a crisp output.

Usually, the rule base and the database are jointly referred to as the knowledge base.

The steps of fuzzy reasoning (inference operations upon fuzzy if-then rules) per-

formed by fuzzy inference systems are:

1. Compare the input variables with the membership functions on the premise part to

obtain the membership values (or compatibility measures) of each linguistic label.

(This step is often called fuzzi�cation).

2. Combine (through a speci�c T-norm operator, usually multiplication or min.) the

membership values on the premise part to get �ring strength (weight) of each rule.

3. Generate the quali�ed consequent (either fuzzy or crisp) of each rule depending on

the �ring strength.

4. Aggregate the quali�ed consequents to produce a crisp output. (This step is called

defuzzi�cation.)

Several types of fuzzy reasoning [46, 47] have been proposed in past years. Depend-

ing on the types of fuzzy reasoning and fuzzy if-then rules employed, most fuzzy inference

systems can be classi�ed into three types (Figure 2.7):

Type 1: The overall output is the weighted average of each rule's crisp output induced by

the rule's �ring strength (the product or minimum of the degrees of match with the

premise part) and output membership functions. The output membership functions

used in this scheme must be monotonically non-decreasing [93].

17

C2

C1

C2

C1

(or min)

consequent partpremise part

type 3type 2type 1

average
weighted

average
weighted

w1*z1+w2*z2

w1+w2
=z

w1

z2=px+qy+r

z1=ax+by+c

z (centroid of area)

max

w2

Z

Z

w1

w2

X

X

Y

Y

z1

z2

A1 B1

A2 B2

multiplication

w1*z1+w2*z2

w1+w2
=z

Z

Z

x y

Figure 2.7: Commonly used fuzzy if-then rules and fuzzy reasoning mechanisms.

Type 2: The overall fuzzy output is derived by applying \max" operation to the quali�ed

fuzzy outputs (each of which is equal to the minimum of �ring strength and the output

membership function of each rule). Various schemes have been proposed to choose

the �nal crisp output based on the overall fuzzy output; some of them are center of

area, bisector of area, mean of maxima, maximum criterion, etc [46, 47].

Type 3: Takagi and Sugeno's fuzzy if-then rules are used [90]. The output of each rule is

a linear combination of input variables plus a constant term, and the �nal output is

the weighted average of each rule's output.

Figure 2.7 utilizes a two-rule two-input fuzzy inference system to show di�erent

types of fuzzy rules and fuzzy reasoning mentioned above. Be aware that most of the

di�erences lie in the speci�cation of the consequent part (monotonically non-decreasing or

18

0

0.5

1

-20 -15 -10 -5 0 5 10 15 20

(a)

(b)

(c)

Figure 2.8: (a) Membership functions on x and y; (b) surface of dominant rule's �ring

strength; (b) surface of dominant rule's normalized �ring strength.

bell-shaped membership functions, or crisp function) and thus the defuzzi�cation schemes

(weighted average, centroid of area, etc) are also di�erent.

We can de�ne the dominant rule as the rule with the maximum �ring strength,

and the normalized �ring strength as the ratio of a rule's �ring strength with respect to

the summation of all rules' �ring strengths. Hence for type 1 and type 3 fuzzy inference

systems, each rule's percentage of contribution to the overall output is speci�ed exactly by

19

this rule's normalized �ring strength. (This argument holds roughly for type 2 systems.) To

demonstrate the statement that each rule is a local description of the underlying system, we

depict several quantities of a 2-input 9-rule in Figure 2.8 where (a) shows the membership

functions on two inputs x and y; (b) is the surface of the dominant rule's �ring strength;

and (c) is the surface of the dominant rule's normalized �ring strength. It is obvious from

(c) that the dominant rule's �ring strength is large (close to one) only when the given input

points are well inside of each fuzzy partition's interior, thus showing the locality of each

rule.

Theoretically there is no evidence on which type of fuzzy inference system is better

than the others; the choice of one type mainly depends on the user's preference and also on

the application. For instance, when a fuzzy inference system is used as a fuzzy controller in

real-time control, the computation speed is of major concern and this makes type 2 fuzzy

inference systems a bad candidate since the calculation of the center of area (or bisector

of area, mean of maxima, etc.) is time-consuming unless special hardware implementation

(fuzzy chip [78, 38, 107, 108, 92]) is available. In fact, it will be proved in section 4.5 that

these three types of fuzzy inference systems are universal approximators in the sense that

they can approximate any nonlinear function arbitrarily well on a compact set, given that

the number of rules is not restricted.

2.2.4 Fuzzy Logic Modeling

Fuzzy logic modeling (or fuzzy modeling) concerns the identi�cation of the structure

(number of rules, partition pattern, etc.) and parameters of fuzzy inference systems that

can best describe a given input-output data set.

20

Takagi and Sugeno [90] were among the �rst researchers who recognized the impor-

tance of fuzzy logic modeling and developed a rule extraction algorithm by heuristic search

and nonlinear optimization techniques [91]. In their scheme, all membership functions on

the premise part have trapezoidal shapes and the consequent part is expressed as a linear

combination of input variables plus a constant term. To �nd the optimal premise structure,

they made a heuristic search by choosing the structure with the smallest unbiasedness cri-

terion. Then the premise parameters were obtained by a complex nonlinear programming

technique, and the consequent parameters were obtained by the stable-state Kalman �lter.

They also proposed a successive identi�cation algorithm [83] to adjust the premise parame-

ters, which involves a couple of heuristic terms and constraints. Though Sugeno's approach

has been proven better than GMDH (Group Method of Data Handling) models [40], it is

complex and not uni�ed in its computation.

Since neural networks (NN's) are well known for their nonlinearity and adaptabil-

ity, plenty of on-going research is focusing on building NN-based fuzzy inference systems.

Horiawa et al. [23] employed a concise yet ingenious approach to synthesize a simpli�ed

fuzzy inference system from a back-propagation neural network with minor modi�cations

on the learning rule and some of the node functions. However, due to their overemphasis

on sticking to neural network paradigms, the resulting fuzzy inference system is a simpli�ed

version in the sense that only the weighted sum (instead of the weighted average) can be

used in the fuzzy reasoning operation.

On the other hand, Takagi and Hayashi [88, 89] proposed an NN-driven fuzzy

reasoning system which can generate an irregular partition of the input space through

21

NN
r

2
NN

1
NN

weight
NN

X
1

X
2

m
X

Y

w
1 2

w w
r

Figure 2.9: Takagi's NN-driven fuzzy reasoning system.

neural networks. Figure 2.9 is a schematic diagram of their network structure. Suppose

there are r fuzzy rules in the fuzzy inference system, then NN

weight

is used to decide the

�ring strength (w

i

, 1 � i � r) of each rule and NN

i

(0 � i � r) is in charge of deriving

the consequent equation F

i

for the i-th rule. The system adopts a variant of type-3 fuzzy

reasoning such that each rule can be expressed as

If ~x 2 A

i

; then y = F

i

(~x) (2.13)

where ~x is a vector of input variables, A

i

denotes one of the fuzzy subspaces derived by

NN

weight

, and F

i

(�) is the consequent equation implemented by NN

i

. The overall output

y is calculated as the weighted sum of consequent equations, i.e.,

y =

r

X

i=1

w

i

� F

i

(~x) (2.14)

It is observed that NN

weight

can generate an irregular partition (Figure 2.10(b)), as com-

pared to the conventional fuzzy partition (Figure 2.10(a)).

Basically, this approach can be divided into three steps:

1. Apply a clustering algorithm to the training data, and train NN

weight

to perform

classi�cation on input variables according to the result of the clustering algorithm.

22

(b)(a)

A 34A

2AA 1A 1 2A

A 34A

Figure 2.10: Conventional and NN-based fuzzy partitions of input space .

2. Train each NN

i

based on both the input part of the training data and the estimated

outputs obtained from checking data.

3. Use a back elimination method to simplify the consequent part and cut o� irrelevant

input variables.

Though Takagi and Hayashi's fuzzy partition is more
exible than the conventional

one, the introduction of NN's as blocks in a fuzzy inference system causes problems such as

how to estimate the desired output of each NN

i

and how to embody human expertise into

NN

weight

and NN

i

. Furthermore, their use of a weighted sum to calculate �nal output also

results in a simpli�ed version of fuzzy inference systems.

In order to keep the original spirit of fuzzy inference systems, we [28, 27, 30, 29]

introduce the learning rule, instead of the structure, of back-propagation neural networks

into fuzzy inference systems. We do so by �rst transforming the fuzzy inference system

into an equivalent adaptive network, and then the learning proceeds by a combination of

a back-propagation-type gradient descent and a sequential least squares estimate. More

details are to be covered in the following chapters.

In fact, we are not the only researchers who have been working along these lines.

Lin and Lee [51] proposed a very similar network structure with application to control and

23

scheduling problems. Wang and Mendel �rst came up with a table-lookup scheme [95]

for generating fuzzy if-then rules from numerical data; then they also proposed a similar

structure [96] with Gaussian functions as membership functions and the gradient descent

as the learning rule.

2.3 Neural Network Modeling

Arti�cial neural networks, or simply neural networks (NN's), have been studied

for a long time since Rosenblatt [71] �rst introduced single layer perceptrons. Because of

the limitations of single-layer systems pointed out by Minsky and Papert [55] and their

pessimistic views on multi-layer systems, the interest in NN's had been dwindling. Recent

resurgence in the �eld of NN's had been encouraged by new learning algorithms [101, 65,

73, 18], analog VLSI techniques, and parallel processing [52].

Quite a few NN models have been proposed and investigated in recent years. These

NN models can be classi�ed into categories according to various criteria such as supervised

or unsupervised learning rules, binary or continuous node values, feed-forward of recurrent

network architectures, adjustable or hard-wired (�xed) parameters, uniform or hybrid node

functions, biologically or psychologically motivated structures and operations, etc. However,

in this thesis, we shall con�ne our scope to modeling problems with desired input-output

data sets, so the relevant networks should have adjustable parameters which are updated

by a supervised learning rule. In the following we introduce two network structures of this

type that have been used frequently in the literature. Since the primary goal of all these

three networks is to achieve a desired input-output mapping, they are often called mapping

24

1

output

input input

output

1

-1

1

output

input

(a) (b) (c)

Figure 2.11: Activation functions: (a) signum function; (b) sigmoid function; (c) hyper-

tangent function.

networks .

2.3.1 Back Propagation Neural Networks (BPNN's)

A back propagation neural network (BPNN) is composed of a number of intercon-

nected computing units called neurons or nodes , each of which performs a simple nonlinear

multi-input single-output function (activation function or transfer function) in a parallel

manner. The activation functions are usually of a sigmoidal or hyper-tangent type which

approximates the signum function (also know as step function or hard-limiter) and yet

provides di�erentiability with respect to input signals. Figure 2.11 shows di�erent types of

activation function with de�nitions as follows:

signum function: sgn(x) =

8

>

>

>

<

>

>

>

:

1 if x � 0

0 if x < 0

sigmoid function: sig(x) =

1

1+exp(�x)

hyper-tangent function: tanh(x) =

exp(x)�exp(�x)

exp(x)+exp(�x)

(2.15)

25

x

x

x

w

w

w
1

2

3

14

24

34

net4

node 4

x4

1

Figure 2.12: A BPNN node.

When the signum function (hard-limiter) is used as the activation function for a

layered network, the network is often called perceptron [71, 63] and, as a matter of fact, it

is one of the most important structures that lay the grounds for current understanding and

thus applications of neural networks. However, due to the non-di�erentiability of the hard-

limiter, the learning strategy of perceptrons is not obvious unless the other two activation

functions are employed instead. Therefore throughout this dissertation, we will con�ne our

discussion on neural networks with soft-limiters, that is, either sigmoid or hypertangent

function.

The net input of a node is de�ned as the weighted sum of the incoming signals

plus a threshold. For instance, the net input and output of node j in Figure 2.12 (where j

= 4) are

net

j

=

X

i

w

ij

x

i

+ �

j

; (2.16)

x

j

= sig(net

j

) =

1

1+exp(�net

j

)

; (for sigmoid type); or

= tanh(net

j

) =

exp(�net

j

)�exp(�net

j

)

exp(�net

j

)+exp(�net

j

)

; (for hyper-tangent type);

(2.17)

where x

i

is the output of node i located in the previous layer, w

ij

is the weight that associates

with the link connecting node i and j, and �

j

is the threshold of node j. Since the weights

26

output layer

hidden layer 2

hidden layer 1

2

1

x

x

3

2

1

y

y

y

outputinput
vectorvector

Figure 2.13: A 2-2-4-3 BPNN .

w

ij

's are actually internal parameters associated with each node j; changing the weights

of a node will alter the behavior of the node and in turn alter the behavior of the whole

BPNN. Figure 2.13 shows a 3 layer BPNN with 4 inputs, 2 hidden layers (each with 2 and

3 nodes) and 4 outputs. For simplicity, this BPNN will be referred to as a 2-2-4-3 structure

according to its node number in each layer.

The learning algorithm or adaptation rule refers to the way the weights are changed

in order to achieve a desired mapping between input and output. The backward error

propagation [73] (also known as back propagation (BP) or generalized delta rule (GDR))

is an iterative gradient descent algorithm designed to minimize the mean squared error

between the actual outputs of a BPNN and the desired outputs. Namely, this algorithm

converges to a set of weights that minimizes the following error measure:

E = jjd(~x)�NN(~x)jj

2

; (2.18)

where ~x is the input vector, d(~x) is the desired output vector, and NN(~x) is the calculated

output vector obtained as the output of the last layer in a BPNN. To update the parameters,

we have to de�ne an equivalent error �

m

for node m as follows (assuming the sigmoidal

27

function is used):

�

m

=

8

>

>

>

<

>

>

>

:

�2(d

m

(~x)�NN

m

(~x))sig

0

(net

m

) if node m is in output layer,

sig

0

(net

m

)

P

j

�

j

w

mj

otherwise,

(2.19)

where w

mj

is the weight of the connection from node m to node j; d

m

(~x) and NN

m

(~x) are

the m-th components of d(~x) and NN(~x), respectively. Then the update amount of weight

w

mi

is

4w

im

= ���

m

x

i

(2.20)

where � is a learning rate which a�ects the convergence speed and stability of the weights

during the learning process.

The representational power or approximation power of the BPNN has been ex-

plored by some researchers. When used as a binary-valued NN where a hard limiter (step

function) is used as the activation function, a three-layer BPNN can form arbitrary com-

plex decision regions to separate di�erent classes, as pointed out by Lippmann [52]. On the

other hand, when a BPNN is employed to model a mapping with continuous outputs, Cy-

benko [14] showed that a continuous BPNN with one hidden layer and any �xed continuous

sigmoidal nonlinear functions can approximate any continuous function arbitrarily well on

a compact set.

BPNN's are by far the most often used NN structure for various applications

in di�erent areas such as speech recognition, pattern recognition, signal processing, data

compression, automatic control, etc.

28

f

receptive field units

x

x

f
1

f
2

3
f

f
4

5
f

1

2

Figure 2.14: A radial basis function network (RBFN) .

2.3.2 Radial Basis Function Networks (RBFN's)

The locally-tuned and overlapping receptive �eld is a well-known structure that has

been studied in regions of cerebral cortex, the visual cortex, etc. Based on the biological

receptive �elds, Moody and Darken [57, 58] proposed a network structure, radial basis

function network (RBFN), that employs local receptive �elds to perform function mappings.

Figure 2.14 shows the schematic diagram of a RBFN with �ve receptive �eld units; the

output of i-th receptive �eld unit (or hidden unit) is

w

i

= R

i

(~x) = R

i

(k~x� ~c

i

k=�

i

); i = 1; 2; :::;H (2.21)

where ~x is an N-dimensional input vector, ~c

i

is a vector with the same dimension as ~x, H

is the number of receptive �eld units, and R

i

(�) is the i-th receptive �eld response with a

single maximum at the origin. Typically, R

i

(�) is chosen as a Gaussian function

R

i

(~x) = exp[�

k~x� ~c

i

k

2

�

2

i

]: (2.22)

29

or as a logistic function

R

i

(~x) =

1

1 + exp[k~x� ~c

i

k

2

=�

2

i

]

(2.23)

Thus the radial basis function w

i

computed by the i-th hidden units is maximum when the

input vector ~x is near the center ~c

i

of that unit.

The output of a radial basis function network can be computed in two ways. For

the simpler one, as shown in Figure 2.14, the output is the weighted sum of the function

value associated with each receptive �eld:

f(~x) =

H

X

i=1

f

i

w

i

=

H

X

i=1

f

i

R

i

(~x); (2.24)

where f

i

is the function value, or strength, of i-th receptive �eld. With the addition of lateral

connections (not shown in Figure 2.14) between the receptive �eld units, the network can

produce the normalized response function as the weighted average of the strengths [57]:

f(~x) =

P

H

i=1

f

i

w

i

P

H

i=1

w

i

=

P

H

i=1

f

i

R

i

(~x)

P

H

i=1

R

i

(~x)

: (2.25)

To minimize the squared errors between desired output and model output, several

learning algorithms have been proposed to identify the parameters (~c

i

, �

i

and f

i

) of a

RBFN. Moody et al. [57] use self-organizing techniques to �nd the centers (~c

i

) and widths

(�

i

) of the receptive �elds, and then employ the supervised Adaline or LMS learning rule to

identify f

i

. On the other hand, Chen et al. [9] apply the orthogonal least squares learning

algorithm to determine those parameters.

30

2.4 Motivation for Neuro-Fuzzy modeling

A fuzzy inference system can utilize human expertise by storing its essential com-

ponents in rule base and database, and perform fuzzy reasoning to infer the overall output

value. The derivation of fuzzy if-then rules and corresponding membership functions de-

pends heavily on the a priori knowledge about the system under consideration. However,

there are still two basic but important problems concerning the preparation and manipula-

tion of knowledge:

1. No systematic way exists to transform experiences or knowledge of human experts to

the knowledge base of a fuzzy inference system.

2. There is still a need of adaptability or learning algorithms to tune the membership

functions so as to minimize the discrepancy between model (calculated) output and

desired output.

These two problems greatly restricted the application domains of fuzzy inference systems,

either as a controller or as an expert system.

On the other hand, neural network modeling does not rely on human expertise.

Instead, it employs a learning procedure and a given training data set to evolve a set of

parameters (i.e., weights) such that the required functional behavior is achieved. Due to the

homogeneous structure of NN, it is hard to extract structured knowledge from either the

weights or the con�guration of the NN in question. It should be emphasized that the weights

in an NN with hard-limiter as its activation function do have physical meanings [52]: the

weights of a given node represent the coe�cients of the hyperplane (or discriminant function)

31

that partitions the input space into two regions with di�erent output values. However, this

interpretation of weights gets weaker and weaker under the following progressive conditions:

1. The NN's activation function is either sigmoid or hyperbolic tangent functions.

2. The outputs of each node are not binary. Namely, the node outputs are not one of the

saturation values of the activation functions, which is f0; 1g for sigmoid and f�1; 1g

for hyper-tangent activation function.

3. The given desired outputs are also continuous instead of binary.

Unfortunately, condition 1 and 2 hold almost all the time even when the given

desired input-output pairs are binary. Furthermore, when NN's are used for modeling

continuous systems, all the conditions mentioned above are always true. Therefore it is

hard, if not impossible, to gain insight into the training data (or the original system) by

examining the NN's weights or con�guration after learning. The situation is much worse

when we are using a large multi-layer NN with short-cut connections between non-adjacent

layers to solve a real-world modeling problem; most of the time we are left with an NN

with a bunch of connection weights that are just hard to have any easy and meaningful

interpretations.

Viewing from another angle, one may wonder if it is possible to build the a priori

knowledge about the training data (or the original system) into the weights or con�guration

of an NN such the e�orts on the subsequent learning can be reduced. The answer is yes

only when the knowledge is in the form of the hyperplane structure, which is rarely the

case unless we can visualize the training data e�ectively. Generally speaking, the a priori

32

knowledge is usually obtained from human experts and it is most appropriate to express

the knowledge as a set of fuzzy if-then rules. Under this conditions, the a priori knowledge

would not be easily encoded into NNs' parameters and/or structures.

To sum up, NNs' drawbacks can be itemized as follows:

1. No e�ective methods have been proposed to determine the initial weight values and

network's con�gurations (e.g., number of hidden layers and hidden nodes).

2. Even though human expertise about the system under consideration is available, it is

not always usable to NN's unless the human knowledge is of the hyperplane format.

3. Most of the time, there are no easy ways to get functional insight into an trained NN

with continuous outputs, even if it can perfectly reproduce the desired outputs.

To a large extent, the drawbacks pertaining to these two approaches seem comple-

mentary. Therefore it seems natural to consider building an integrated system combining

the concepts of fuzzy logic modeling and and neural network modeling. In other words, the

integrated approach, or neuro-fuzzy modeling , should incorporate the three most important

features:

1. Meaningful and concise representation of structured knowledge.

2. E�cient learning capability to identify parameters.

3. Clear mapping between parameters and structured knowledge.

Quite a few methods for integrating fuzzy logic and neural networks are potentially

feasible. However, we will use the above three criteria as the guidelines for �nding a desired

neuro-fuzzy modeling approach.

33

Chapter 3

Adaptive Networks: Architectures

and Learning Algorithms

3.1 Introduction

This chapter introduces the architecture and learning procedure of the adaptive

network which is in fact a superset of all kinds of feedforward neural networks with super-

vised learning capability. An adaptive network, as its name implies, is a network structure

consisting of nodes and directional links through which the nodes are connected. Moreover,

part or all of the nodes are adaptive, which means each output of these nodes depends on the

parameter(s) pertaining to this node, and the learning rule speci�es how these parameters

should be changed to minimize a prescribed error measure.

The basic learning rule of adaptive networks is based on the gradient descent and

the chain rule, which was proposed by by Werbos [101] in the 1970's. However, due to

34

vector vector

x1

x2

y1

y2

input output

Figure 3.1: An adaptive network .

the state of arti�cial neural network research at that time, Werbos' early work failed to

receive the attention it deserved. In the following presentation, the derivation is based on

the author's work [28, 27] which generalizes the formulas in [73].

Since the basic learning rule is based the gradient method which is notorious for

its slowness and tendency to become trapped in local minima, here we propose a hybrid

learning rule which can speed up the learning process substantially Both the batch learning

and the pattern learning of the proposed hybrid learning rule is discussed below.

3.2 Architecture and Learning Rule

An adaptive network (Figure 3.1) is a multi-layer feedforward network in which

each node performs a particular function (node function) on incoming signals as well as a

set of parameters pertaining to this node. The nature of the node functions may vary from

node to node, and the choice of each node function depends on the overall input-output

function which the adaptive network is required to carry out. Note that the links in an

adaptive network only indicate the
ow direction of signals between nodes; no weights are

associated with the links.

To re
ect di�erent adaptive capabilities, we use both circle and square nodes in

35

T

node function (sigmoidal): f(i1*w1+i2*w2+i3*w3-T)

parameter set: {w1,w2,w3,T}
i3

i2

i1w1

w3

w2

i3

i2

i1

Figure 3.2: An NN node and its equivalent adaptive network representation.

an adaptive network. A square node (adaptive node) has parameters while a circle node

(�xed node) has none. For instance, an ordinary NN node can be converted to our notation

as shown in Figure 3.2. The parameter set of an adaptive network is the union of the

parameter sets of each adaptive node. In order to achieve a desired input-output mapping,

these parameters are updated according to given training data and a gradient-based learning

procedure described below.

Suppose that a given adaptive network has L layers and the k-th layer has #(k)

nodes. We can denote the node in the i-th position of the k-th layer by (k; i), and its node

function (or node output) by O

k

i

. Since a node output depends on its incoming signals and

its parameter set, we have

O

k

i

= O

k

i

(O

k�1

1

; : : :O

k�1

#(k�1)

; a; b; c; : : :); (3.1)

where a, b, c, etc. are the parameters pertaining to this node. (Note that we use O

k

i

as

both the node output and node function.)

Assuming the given training data set has P entries, we can de�ne the error measure

(or energy function) for the p-th (1 � p � P) entry of training data entry as the sum of

36

squared errors:

E

p

=

#(L)

X

m=1

(T

m;p

�O

L

m;p

)

2

; (3.2)

where T

m;p

is the m-th component of p-th target output vector, and O

L

m;p

is the m-th

component of actual output vector produced by the presentation of the p-th input vector.

Hence the overall error measure is E =

P

P

p=1

E

p

.

In order to develop a learning procedure that implements gradient descent in E

over the parameter space, �rst we have to calculate the error rate

@E

p

@O

for p-th training data

and for each node output O. The error rate for the output node at (L; i) can be calculated

readily from equation (3.2):

@E

p

@O

L

i;p

= �2(T

i;p

�O

L

i;p

): (3.3)

For the internal node at (k; i), the error rate can be derived by the chain rule:

@E

p

@O

k

i;p

=

#(k+1)

X

m=1

@E

p

@O

k+1

m;p

@O

k+1

m;p

@O

k

i;p

; (3.4)

where 1 � k � L�1. That is, the error rate of an internal node can be expressed as a linear

combination of the error rates of the nodes in the next layer. Therefore for all 1 � k � L

and 1 � i � #(k), we can �nd

@E

p

@O

k

i;p

by equation (3.3) and (3.4).

Now if � is a parameter of the given adaptive network, we have

@E

p

@�

=

X

O

�

2S

@E

p

@O

�

@O

�

@�

; (3.5)

where S is the set of nodes whose outputs depend on �. Then the derivative of the overall

error measure E with respect to � is

@E

@�

=

P

X

p=1

@E

p

@�

: (3.6)

37

Accordingly, the update formula for the generic parameter � is

4� = ��

@E

@�

; (3.7)

in which � is a learning rate which can be further expressed as

� =

k

q

P

�

(

@E

@�

)

2

; (3.8)

where k is the step size, the length of each gradient transition in the parameter space.

Usually, we can change the value of k to vary the speed of convergence. The heuristic rules

for changing k are discussed in section 4.6 where we report simulation results.

Actually, there are two learning paradigms for adaptive networks. With the batch

learning (or o�-line learning), the update formula for parameter � is based on equation (3.6)

and the update action takes place only after the whole training data set has been presented,

i.e., only after each epoch or sweep. On the other hand, if we want the parameters to be

updated immediately after each input-output pair has been presented, then the update

formula is based on equation (3.5) and it is referred to as the pattern learning (or on-line

learning).

3.3 Hybrid Learning Rule: Batch (O�-Line) Learning

Though we can apply the gradient method to identify the parameters in an adap-

tive network, the method is generally slow and likely to become trapped in local minima.

Here we propose a hybrid learning rule [27] which combines the gradient method and the

least squares estimate (LSE) to identify parameters.

38

For simplicity, assume that the adaptive network under consideration has only one

output

output = F (

~

I; S); (3.9)

where

~

I is the set of input variables and S is the set of parameters. If there exists a function

H such that the composite function H �F is linear in some of the elements of S, then these

elements can be identi�ed by the least squares method. More formally, if the parameter set

S can be decomposed into two sets

S = S

1

� S

2

; (3.10)

(where � represents direct sum) such that H �F is linear in the elements of S

2

, then upon

applying H to equation (3.9), we have

H(output) = H � F (

~

I; S); (3.11)

which is linear in the elements of S

2

. Now given values of elements of S

1

, we can plug P

training data into equation (3.11) and obtain a matrix equation:

AX = B (3.12)

where X is an unknown vector whose elements are parameters in S

2

. Let jS

2

j = M , then

the dimensions of A, X and B are P �M , M � 1 and P � 1, respectively. Since P (number

of training data pairs) is usually greater than M (number of linear parameters), this is an

overdetermined problem and generally there is no exact solution to equation (3.12). Instead,

a least squares estimate (LSE) ofX ,X

�

, is sought to minimize the squared error kAX�Bk

2

.

This is a standard problem that forms the grounds for linear regression, adaptive �ltering

39

and signal processing. The most well-known formula for X

�

uses the pseudo-inverse of X :

X

�

= (A

T

A)

�1

A

T

B; (3.13)

where A

T

is the transpose of A, and (A

T

A)

�1

A

T

is the pseudo-inverse of A if A

T

A is non-

singular. While equation (3.13) is concise in notation, it is expensive in computation when

dealing with the matrix inverse and, moreover, it becomes ill-de�ned if A

T

A is singular. As

a result, we employ sequential formulas to compute the LSE of X . This sequential method

of LSE is more e�cient (especially when M is small) and can be easily modi�ed to an

on-line version (see below) for systems with changing characteristics. Speci�cally, let the

ith row vector of matrix A de�ned in equation (3.12) be a

T

i

and the ith element of B be

b

T

i

, then X can be calculated iteratively using the sequential formulas widely adopted in

the literature [2, 21, 53, 81]:

X

i+1

= X

i

+ S

i+1

a

i+1

(b

T

i+1

� a

T

i+1

X

i

)

S

i+1

= S

i

�

S

i

a

i+1

a

T

i+1

S

i

1+a

T

i+1

S

i

a

i+1

; i = 0; 1; � � � ; P � 1

9

>

>

>

=

>

>

>

;

; (3.14)

where S

i

is often called the covariance matrix and the least squares estimate X

�

is equal

to X

P

. The initial conditions to bootstrap equation (3.14) are X

0

= 0 and S

0

=
I , where

 is a positive large number and I is the identity matrix of dimension M � M . When

dealing with multi-output adaptive networks (output in equation (3.9) is a column vector),

equation (3.14) still applies except that b

T

i

is the i-th rows of matrix B.

This sequential least squares estimate of X can be interpreted as a Kalman �l-

ter [33] for the process

X(k+ 1) = X(k); (3.15)

Y (k) = A(k)X(k) + noise; (3.16)

40

where X(k) = X

k

, Y (k) = b

k

and A(k) = a

k

. For this reason, equation (3.14) is sometimes

loosely referred to as the Kalman �lter algorithm. (Note that all our simulations described

in later chapters are deterministic; there is no noise added in the simulation settings.)

Now we can combine the gradient method and the least squares estimate to update

the parameters in an adaptive network. Each epoch of this hybrid learning procedure is

composed of a forward pass and a backward pass. In the forward pass, we supply input data

and functional signals go forward to calculate each node output until the matrices A and B

in equation (3.12) are obtained, and the parameters in S

2

are identi�ed by the sequential

least squares formulas in equation (3.14). After identifying parameters in S

2

, the functional

signals keep going forward till the error measure is calculated. In the backward pass, the

error rates (the derivative of the error measure w.r.t. each node output, see equation(3.3)

and (3.4)) propagate from the output end toward the input end, and the parameters in S

1

are updated by the gradient method in equation (3.7).

For given �xed values of parameters in S

1

, the parameters in S

2

thus found are

guaranteed to be the global optimum point in the S

2

parameter space due to the choice of

the squared error measure. Not only can this hybrid learning rule decrease the dimension of

the search space in the gradient method, but, in general, it will also cut down substantially

the convergence time.

Take for example an one-hidden-layer back-propagation neural network with sig-

moid activation functions. If this neural network has p output units, then the output in

equation (3.9) is a column vector. Let H(�) be the inverse sigmoid function

41

H(x) = ln(

x

1� x

); (3.17)

then equation (3.11) becomes a linear (vector) function such that each element ofH(output)

is a linear combination of the parameters (weights and thresholds) pertaining to layer 2. In

other words,

S

1

= weights and thresholds of hidden layer,

S

2

= weights and thresholds of output layer.

Therefore we can apply the back-propagation learning rule to tune the parameters in the

hidden layer, and the parameters in the output layer can be identi�ed by the least squares

method. However, it should be keep in mind that by using the least squares method on the

data transformed by H(�), the obtained parameters are optimal in terms of the transformed

squared error measure instead of the original one. Usually this will not cause practical

problem as long as H(�) is monotonically increasing.

3.4 Hybrid Learning Rule: Pattern (On-Line) Learning

If the parameters are updated after each data presentation, we have the pattern

learning or on-line learning paradigm. This learning paradigm is vital to the on-line param-

eter identi�cation for systems with changing characteristics. To modify the batch learning

rule to its on-line version, it is obvious that the gradient descent should be based on E

p

(see

equation (3.5)) instead of E. Strictly speaking, this is not a truly gradient search procedure

to minimize E, yet it will approximate to one if the learning rate is small.

For the sequential least squares formulas to account for the time-varying charac-

42

teristics of the incoming data, we need to decay the e�ects of old data pairs as new data

pairs become available. Again, this problem is well studied in the adaptive control and

system identi�cation literature and a number of solutions are available [21]. One simple

method is to formulate the squared error measure as a weighted version that gives higher

weighting factors to more recent data pairs. This amounts to the addition of a forgetting

factor � to the original sequential formula:

X

i+1

= X

i

+ S

i+1

a

i+1

(b

T

i+1

� a

T

i+1

X

i

)

S

i+1

=

1

�

[S

i

�

S

i

a

i+1

a

T

i+1

S

i

�+a

T

i+1

S

i

a

i+1

]

9

>

>

>

=

>

>

>

;

; (3.18)

where the value of � is between 0 and 1. The smaller lambda is, the faster the e�ects of

old data decay. But a small lambda sometimes causes numerical unstability and should be

avoided.

43

Chapter 4

ANFIS: Adaptive-Networks-based

Fuzzy Inference Systems

4.1 Introduction

The architecture and learning rules of adaptive networks have been described in

the previous chapter. Functionally, there are almost no constraints on the node functions

of an adaptive network except piecewise di�erentiability. Structurally, the only limitation

of network con�guration is that it should be of feedforward type. Due to these minimal

restrictions, the adaptive network's applications are immediate and immense in various

areas.

In this chapter, we propose a class of adaptive networks which are functionally

equivalent to fuzzy inference systems. The proposed architecture is referred to as ANFIS ,

standing for Adaptive-Network-based Fuzzy Inference System. We describe how to decom-

44

y

y

2

1

2

1

2

1

2

1

layer 5

layer 4

layer 3layer 2

layer 1

yx

yxB

B

A

A

f2w2

1w 1f

w2

1w

w2

1wx

f

X

X

Y

Y

A B

A B

x

1w

w2

1f

f2

= p x +q y +r

= p x +q y +r =

w2w1

2w 2ff1w1 +

2w 2ff1w1
f = +

+

(a)

(b)

2

1

2

1

2

1

Figure 4.1: (a) Type-3 fuzzy reasoning; (b) equivalent ANFIS (type-3 ANFIS).

pose the parameter set such that the hybrid learning rule of adaptive networks can be

applied to the ANFIS architecture for both type-1 and type-3 reasoning. Moreover, we

demonstrate that radial basis function networks (RBFN's) are functionally equivalent to a

simpli�ed version of fuzzy inference systems. Finally, the e�ectiveness of the hybrid learn-

ing rule is tested through four simulation examples: examples 1 and 2 are the modeling of

nonlinear functions; examples 3 shows how to identify nonlinear components on-linely in a

control system; example 4 predicts the Mackey-Glass chaotic time series. Extensive com-

parisons with connectionist approaches and conventional statistical methods are conducted

and discussed.

4.2 ANFIS Architecture

45

For simplicity, we assume the fuzzy inference system under consideration has two

inputs x and y and one output z. Suppose that the rule base contains two fuzzy if-then

rules of Takagi and Sugeno's type [90]:

Rule 1: If x is A

1

and y is B

1

, then f

1

= p

1

x+ q

1

y + r

1

;

Rule 2: If x is A

2

and y is B

2

, then f

2

= p

2

x+ q

2

y + r

2

:

then the type-3 fuzzy reasoning is illustrated in Figure 4.1(a), and the corresponding equiv-

alent ANFIS architecture (type-3 ANFIS) is shown in Figure 4.1(b). The node functions in

the same layer are of the same function family as described below:

Layer 1 Every node i in this layer is a square node with a node function

O

1

i

= �

A

i

(x); (4.1)

where x is the input to node i, and A

i

is the linguistic label (small , large, etc.)

associated with this node function. In other words, O

1

i

is the membership function of

A

i

and it speci�es the degree to which the given x satis�es the quanti�er A

i

. Usually

we choose �

A

i

(x) to be bell-shaped with maximum equal to 1 and minimum equal to

0, such as

�

A

i

(x) =

1

1 + [(

x�c

i

a

i

)

2

]

b

i

; (4.2)

or

�

A

i

(x) = expf�[(

x� c

i

a

i

)

2

]

b

i

g; (4.3)

where fa

i

, b

i

, c

i

g is the parameter set. As the values of these parameters change, the

bell-shaped functions vary accordingly, thus exhibiting various forms of membership

46

functions on linguistic label A

i

. In fact, any continuous and piecewise di�erentiable

functions, such as commonly used trapezoidal or triangular-shaped membership func-

tions, are also quali�ed candidates for node functions in this layer. Parameters in this

layer are referred to as premise parameters .

Layer 2 Every node in this layer is a circle node labeled � which multiplies the incoming

signals and sends the product out. For instance,

w

i

= �

A

i

(x)� �

B

i

(y); i = 1; 2: (4.4)

Each node output represents the �ring strength of a rule. (In fact, other T-norm

operators that perform generalized AND can be used as the node function in this

layer.)

Layer 3 Every node in this layer is a circle node labeled N. The i-th node calculates the

ratio of the i-th rule's �ring strength to the sum of all rules' �ring strengths:

w

i

=

w

i

w

1

+ w

2

; i = 1; 2: (4.5)

For convenience, outputs of this layer will be called called normalized �ring strengths .

Layer 4 Every node i in this layer is a square node with a node function

O

4

i

= w

i

f

i

= w

i

(p

i

x+ q

i

y + r

i

); (4.6)

where w

i

is the output of layer 3, and fp

i

, q

i

, r

i

g is the parameter set. Parameters in

this layer will be referred to as consequent parameters .

47

C2

C1

+
+=f

1w 1f f2w2

+1w 1f f2w2

1w 2w

=

2f

f1
BA

BA

f

w1

2w

f1w1

2w 2f

A

A

B

B

1

2

1

2

1

2

1

2

(b)

(a)

y

x w1

2w

X

X

Y

Y
x y

Z

Z

1w

2w

Figure 4.2: (1) Type-1 fuzzy reasoning; (b) equivalent ANFIS (type-1 ANFIS).

Layer 5 The single node in this layer is a circle node labeled � that computes the overall

output as the summation of all incoming signals, i.e.,

O

5

1

= overall output =

X

i

w

i

f

i

=

P

i

w

i

f

i

P

i

w

i

(4.7)

Thus we have constructed an adaptive network which is functionally equivalent to

a type-3 fuzzy inference system. For type-1 fuzzy inference systems, the extension is quite

straightforward and the type-1 ANFIS is shown in Figure 4.2 where the output of each rule

is induced jointly by the output membership funcion and the �ring strength. For type-2

fuzzy inference systems, if we replace the centroid defuzzi�cation operator with a discrete

version which calculates the approximate centroid of area, then type-3 ANFIS can still be

constructed accordingly. However, it will be more complicated than its type-3 and type-1

versions and thus not worth the e�orts to do so.

48

3

2

2

1

1

3

3

2

1

321

(b)(a)

963

852

741

9

8

7

6

5

4

3

2

1

1
1

Y

X

Y

X

B

B

B

AAA

premise parameters
consequent parameters

x

y

f

A

A

A

B

B

B

x

y

Figure 4.3: (a) 2-input type-3 ANFIS with 9 rules; (b) corresponding fuzzy subspaces .

Figure 4.3 shows a 2-input, type-3 ANFIS with 9 rules. Three membership func-

tions are associated with each input, so the input space is partitioned into 9 fuzzy subspaces,

each of which is governed by a fuzzy if-then rules. The premise part of a rule de�nes a fuzzy

subspace, while the consequent part speci�es the output within this fuzzy subspace.

Next we will demonstrate how to apply the hybrid learning algorithms developed

in the previous chapter to identify the parameters in the ANFIS architectures mentioned

above.

4.3 Hybrid Learning Algorithm

From the proposed type-3 ANFIS architecture (Figure 4.1), it is observed that

given the values of premise parameters, the overall output can be expressed as a linear

combinations of the consequent parameters. More precisely, the output f in Figure 4.1 can

49

be rewritten as

f =

w

1

w

1

+w

2

f

1

+

w

2

w

1

+w

2

f

2

= w

1

f

1

+ w

2

f

2

= (w

1

x)p

1

+ (w

1

y)q

1

+ (w

1

)r

1

+ (w

2

x)p

2

+ (w

2

y)q

2

+ (w

2

)r

2

;

(4.8)

which is linear in the consequent parameters (p

1

, q

1

, r

1

, p

2

, q

2

and r

2

). As a result, we have

S = set of total parameters,

S

1

= set of premise parameters,

S

2

= set of consequent parameters,

in equation (3.10); H(�) and F (�; �) are the identity function and the function of the fuzzy

inference system, respectively. Therefore the hybrid learning algorithm developed in the

previous chapter can be applied directly. More speci�cally, in the forward pass of the

hybrid learning algorithm, functional signals go forward till layer 4 and the consequent

parameters are identi�ed by the least squares estimate. In the backward pass, the error

rates propagate backward and the premise parameters are updated by the gradient descent.

Table 4.1 summarizes the activities in each pass.

- forward pass backward pass

premise parameters �xed gradient descent

consequent parameters least squares estimate �xed

signals node outputs error rates

Table 4.1: Two passes in the hybrid learning procedure for ANFIS .

As mentioned earlier, the consequent parameters thus identi�ed are optimal (in

the consequent parameter space) under the condition that the premise parameters are �xed.

50

p qoutput output

1 1

Figure 4.4: Piecewise linear approximation of membership functions on the consequent part

of type-1 ANFIS .

Accordingly the hybrid approach is much faster than the strict gradient descent and it is

worthwhile to look for the possibility of decomposing the parameter set in the manner

of equation (3.10). For type-1 ANFIS, this can be achieved if the membership function

on the consequent part of each rule is replaced by a piecewise linear approximation with

two consequent parameters (Figure 4.4). In this case, again, the consequent parameters

constitute set S

2

and the hybrid learning rule can be employed directly.

However, it should be noted that the computation complexity of the least squares

estimate is higher than that of the gradient descent. In fact, there are four methods to

update the parameters, as listed below according to their computation complexities:

1. Gradient descent only : all parameters are updated by the gradient descent.

2. Gradient descent and one pass of LSE : the LSE is applied only once at the very

beginning to get the initial values of the consequent parameters and then the gradient

descent takes over to update all parameters.

3. Gradient descent and LSE : this is the proposed hybrid learning rule.

4. Sequential (approximate) LSE only : the ANFIS is linearized w.r.t. the premise

parameters and the extended Kalman �lter algorithm is employed to update all pa-

rameters. This has been proposed in the neural network literature [79, 77, 76].

51

The choice of above methods should be based on the trade-o� between computation com-

plexity and resulting performance. Our simulations presented in the next section are per-

formed by the third method. Note that the consequent parameters can also be updated

by the Widrow-Ho� LMS algorithm [103], as reported in [80]. The Widrow-Ho� algorithm

requires less computation and favors parallel hardware implementation, but it converges

relatively slowly when compared to the least square estimate.

As pointed out by one of the reviewers of the author's paper [30], the learning

mechanisms should not be applied to the determination of membership functions since they

convey linguistic and subjective description of ill-de�ned concepts. We think this is a case-

by-case situation and the decision should be left to the users. In principle, if the size of

available input-output data set is large enough, then the �ne-tuning of the membership

functions are applicable (or even necessary) since the human-determined membership func-

tions are subject to the di�erences from person to person and from time to time; therefore

they are rarely optimal in terms of reproducing desired outputs. However, if the data set

is too small, then it probably does not contain enough information of the system under

consideration. In this situation, the the human-determined membership functions represent

important knowledge obtained through human experts' experiences and it might not be re-

ected in the data set; therefore the membership functions should be kept �xed throughout

the learning process.

Interestingly enough, if the membership functions are �xed and only the conse-

quent part is adjusted, the ANFIS can be viewed as a functional-link network [39, 64]

where the "enhanced representation" of the input variables are achieved by the member-

52

ship functions. This "enhanced representation" which takes advantage of human knowledge

are apparently more insight-revealing than the functional expansion and the tensor (out-

erproduct) models [64]. By �ne-tuning the membership functions, we actually make this

"enhanced representation" also adaptive.

Because the update formulas of the premise and consequent parameters are de-

coupled in the hybrid learning rule (see Table 4.1), further speedup of learning is possible

by using other versions of the gradient method on the premise parameters, such as conju-

gate gradient descent, second-order back-propagation [66], quick-propagation [17], nonlinear

optimization [98] and many others.

4.4 Functional Equivalence to RBFN's

From equation (2.24), (2.25) and equation (4.7), it is obvious that the functional

equivalence between an RBFN and a fuzzy inference system can be established if

1. The number of receptive �eld units is equal to the number of fuzzy if-then rules.

2. The output of each fuzzy if-then rule is composed of a constant. (Namely, p

1

, q

1

, p

2

and q

2

are zeros in Figure 4.1 (a).)

3. The membership functions within each rule are chosen as Gaussian functions with the

same variance.

4. The T-norm operator used to compute each rule's �ring strength is multiplication.

5. Both the RBFN and the fuzzy inference system under consideration use the same

method (i.e., either weighted average or weighted sum) to derive their overall outputs.

53

Under these conditions, the membership functions of linguistic labels A

1

and B

1

in Figure 4.1 (a) can be expressed as

�

A

1

(x

1

) = exp[�

(x

1

� c

A

1

)

2

�

2

1

]; �

B

1

(x

2

) = exp[�

(x

2

� c

B

1

)

2

�

2

1

]: (4.9)

Hence the �ring strength (or weight) of rule 1 (the output of the �rst node in layer 2) is

w

1

(x

1

; x

2

) = �

A

1

(x

1

)�

B

1

(x

2

) = exp[�

k~x� ~c

1

k

2

�

2

1

] = R

i

(~x); (4.10)

where ~c

1

= (c

A

1

; c

B

1

), the center of the corresponding receptive �eld. The same argument

applies to w

2

. Therefore under the above constraints, the output of Figure 4.1(a) or (b) is

exactly the same as a RBFN (with two receptive �eld units) where the receptive �eld units

and output units are functionally equivalent to the cascades of layer 1, 2 and layer 3, 4, 5,

respectively, in Figure 4.1. Without the above constraints, RBFN's are only a special case

of fuzzy inference systems.

This functional equivalence provides us with a shortcut for better understanding of

ANFIS and RBFN and advances in either literatures apply to both directly. For instance,

the hybrid learning rule of ANFIS can be apply to RBFN directly and, vice versa, the

approaches used to identify RBFN parameters, such as clustering preprocess [57, 58], or-

thogonal least squares learning [9], generalization properties [6], sequential adaptation [32],

among others [31, 59], are all applicable techniques for ANFIS.

54

4.5 ANFIS as a Universal Approximator

4.5.1 Simpli�ed Fuzzy If-Then Rules and the Stone-Weierstrass Theorem

Though the reasoning mechanisms (Figure 2.7) introduced in Chapter 2 are com-

monly used in the literature, each of them has inherent drawbacks. For type-1 reason-

ing (Figure 2.7 or 4.2), the membership functions on the consequence part are restricted

to monotonically non-decreasing functions which are not compatible with linguistic terms

such as "medium" whose membership function should be bell-shaped. For type-2 reasoning

(Figure 2.7), the defuzzi�cation process is time-consuming and systematic �ne-tuning of the

parameters are not easy. For type-3 reasoning (Figure 2.7 or 4.1), it is just hard to assign

any appropriate linguistic terms to the consequence part which is a nonfuzzy function of

the input variables. To cope with these disadvantages, simpli�ed fuzzy if-then rules of the

following form are introduced:

If x is big and y is small, then z is d.

where d is a crisp value. Due to the fact that the output z is described by a crisp value

(or equivalently, a singular membership function), this class of simpli�ed fuzzy if-then rules

can employ all three types of reasoning mechanisms. More speci�cally, the consequent part

of this simpli�ed fuzzy if-then rule is represented by a step function (centered at z = d) in

type 1, a singular membership function (at z = d) in type 2, and a constant output function

in type 3, respectively. The three reasoning mechanisms are uni�ed under this simpli�ed

fuzzy if-then rules.

55

Most of all, with this simpli�ed fuzzy if-then rule, it is possible to prove that under

certain circumstance, the resulting fuzzy inference system has unlimited approximation

power to match any nonlinear functions arbitrarily well on a compact set. We will proceed

this in a descriptive way by applying the Stone-Weierstrass theorem [34, 72] stated below.

Theorem 4.5.1 Let domain D be a compact space of N dimensions, and let F be a set of

continuous real-valued functions on D, satisfying the following criteria:

1. Identity function: The constant f(x) = 1 is in F .

2. Separability: For any two points x

1

6= x

2

in D, there is an f in F such that

f(x

1

) 6= f(x

2

).

3. Algebraic closure: If f and g are any two functions in F , then fg and af + bg are

in F for any two real numbers a and b.

Then F is dense in C(D), the set of continuous real-valued functions on D. In other

words, for any � > 0, and any function g in C(D), there is a function f in F such that

jg(x)� f(x)j < � for all x 2 D.

4.5.2 Application of the Stone-Weierstrass Theorem

In application of fuzzy inference systems, the domain in which we operate is almost

always compact. It is a standard result in real analysis that every closed and bounded

set in R

N

is compact. Now we shall apply the Stone-Weierstrass theorem to show the

representational power of fuzzy inference systems with simpli�ed fuzzy if-then rules.

Identity Function

56

The �rst hypothesis of the Stone-Weierstrass theorem requires that our fuzzy in-

ference system be able to compute the identity function f(x) = 1. An obvious way to

compute the function is to set the consequence part of each rule equal to 1. In fact, a fuzzy

inference system with only one rule su�ces to satisfy this requirement.

Separability

The second hypothesis of the Stone-Weierstrass theorem requires that our fuzzy

inference system be able to compute functions that have di�erent values for di�erent points.

Without this requirement, the trivial set of functions f : f(x) = c; c 2 R would satisfy the

Stone-Weierstrass theorem. Separability is satis�ed whenever a fuzzy inference system can

compute strictly monotonic functions of each input variable. This can easily be achieved

by adjusting the membership functions of the premise part.

Algebraic Closure-Additive

The third hypothesis of the Stone-Weierstrass theorem requires that our fuzzy inference

system be able to approximate sums and products of functions. Suppose we have two fuzzy

inference systems S and S, each of which has two rules. The ANFIS representations of S

and S are shown in Figure 4.5 and Figure 4.6, respectively. The output of each system can

be expressed as

S : z =

w

1

f

1

+ w

2

f

2

w

1

+ w

2

(4.11)

S : z =

w

1

f

1

+ w

2

f

2

w

1

+ w

2

(4.12)

57

mf2
y

y
1mf

mf2
x

x
1mf

f2w2
n

n
1w 1f

w2
n

n
1w

w2

1w

2f

1f
x

y

z

Figure 4.5: ANFIS representation of fuzzy inference system S.

z

y

x f1

f2

w1

2w

w1
n

n
2w

f1w1
n

n
2w 2f

mf1
x

x
2mf

mf1
y

y
2mf

Figure 4.6: ANFIS representation of fuzzy inference system S.

Then the sum of z and z is equal to

az + bz = a

w

1

f

1

+ w

2

f

2

w

1

+ w

2

+ b

w

1

f

1

+ w

2

f

2

w

1

+ w

2

=

w

1

w

1

(af

1

+ bf

1

) + w

1

w

2

(af

1

+ bf

2

) + w

2

w

1

(af

2

+ bf

1

) + w

2

w

2

(af

2

+ bf

2

)

w

1

w

1

+ w

1

w

2

+ w

2

w

1

+ w

2

w

2

Therefore we can construct a fuzzy inference system that computes az + bz as shown in

Figure 4.7.

Algebraic Closure-Multiplicative

Modeling the product of zz of two fuzzy inference systems is the last capability

we must demonstrate before we can conclude that the Stone-Weierstrass theorem can be

applied to the proposed reasoning mechanism. The product zz can be expressed as

zz =

w

1

w

1

f

1

f

1

+ w

1

w

2

f

1

f

2

+ w

2

w

1

f

2

f

1

+ w

2

w

2

f

2

f

2

w

1

w

1

+ w

1

w

2

+ w

2

w

1

+ w

2

w

2

(4.13)

58

z zba +

bf22fa +

+af2 1fb

bf21fa +

bf11fa +

*

*

*

*

*

*

*

*

mf2
y

y
1mf

mf2
y

y
1mf

mf2
x

x
1mf

mf2
x

x
1mf

mf2
y

y
2mf

mf1
y

y
1mf

mf2
x

x
2mf

mf1
x

x
1mf

x

y

Figure 4.7: ANFIS representation of a fuzzy inference system that computes az + bz.

Therefore we can construct a fuzzy inference system that computes zz as shown in Fig-

ure 4.8.

Apparently the ANFIS architectures that compute az + bz and zz are of the

same class of S and S if and only if the class of membership functions is invariant under

multiplication. This is loosely true if the class of membership functions is the set of all

bell-shaped functions, since the multiplication of two bell-shaped function is almost always

still bell-shaped. Another more tightly de�ned class of membership functions satisfying this

criteria, as pointed out by Wang [94, 97], is the scaled Gaussian membership function:

�

A

i

(x) = a

i

exp[�(

x� c

i

a

i

)

2

]; (4.14)

Therefore by choosing an appropriate class of membership functions, we can con-

clude that the ANFIS with simpli�ed fuzzy if-then rules satisfy the four criteria of the

Stone-Weierstrass theorem. Consequently, for any given � > 0, and any real-valued func-

tion g, there is a fuzzy inference system S such that jg(~x) � S(~x)j < � for all ~x in the

59

*

*

*

*

f2 2f

f12f

f1 2f

y

x

mf1
x

x
1mf

mf2
x

x
2mf

mf1
y

y
1mf

mf2
y

y
2mf

mf1
x

x
2mf

mf1
x

x
2mf

mf1
y

y
2mf

mf1
y

y
2mf

*

*

*

*

*

*

*

*

f1 1f

zz

Figure 4.8: ANFIS representation of a fuzzy inference system that computes zz .

underlying compact set. Moreover, since the simpli�ed ANFIS is a proper subset of all

three types of ANFIS in Figure 2.7, we can draw the conclusion that all the three types of

ANFIS have unlimited approximation power to match any given data set. However, caution

has to be taken in accepting this claim since there is no mention about how to construct the

ANFIS according to the given data set. That is why learning plays a role in this context.

4.6 Application Examples

This section presents the simulation results of the proposed type-3 ANFIS with

both batch (o�-line) and pattern (on-line) learning. In the �rst two examples, ANFIS is

used to model highly nonlinear functions and the results are compared with neural network

approach and earlier work. In the third example, ANFIS is used as an identi�er to identify a

nonlinear component on-linely in a discrete control system. Lastly, we use ANFIS to predict

a chaotic time series and compare the results with various statistical and connectionist

approaches.

60

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

input variables

Typical Initial MF’s

Figure 4.9: A typical initial membership function setting in our simulation. (The operating

range is assumed to be [0; 12].)

4.6.1 Practical Considerations

In a conventional fuzzy inference system, the number of rules is decided by an

expert who is familiar with the system to be modeled. In our simulation, however, no

expert is available and the number of membership functions (MF's) assigned to each input

variable is chosen empirically, i.e., by examining the desired input-output data and/or by

trial and error. This situation is much the same as that of neural networks; there are no

simple ways to determine in advance the minimal number of hidden nodes necessary to

achieve a desired performance level.

After the number of MF's associated with each inputs are �xed, the initial values

of premise parameters are set in such a way that the MF's are equally spaced along the

operating range of each input variable. Moreover, they satisfy �-completeness [46, 47] with

� = 0:5, which means that given a value x of one of the inputs in the operating range, we

can always �nd a linguistic label A such that �

A

(x) � �. In this manner, the fuzzy inference

system can provide smooth transition and su�cient overlapping from one linguistic label to

another. Though we did not attempt to keep the epsilon-completeness during the learning

61

1.0

0.5

0
cc-a c+a

2a

slope=-b/2a

x

MF

Figure 4.10: Physical meanings of the parameters in the bell membership function �

A

(x) =

1

1+[(

x�c

a

)

2

]

b

. .

in our simulation, it can be easily achieved by using the constrained gradient method [105].

Figure 4.9 shows a typical initial MF setting when the number of MF is 4 and the operating

range is [0; 12]. Note that throughout the simulation examples presented below, all the

membership functions used are the bell function de�ned in equation (6.4):

�

A

(x) =

1

1 + [(

x�c

a

)

2

]

b

; (4.15)

which contains three �tting parameters a, b and c. Each of these parameters has a physical

meaning: c determines the center of the corresponding membership function; a is the half

width; and b (together with a) controls the slopes at the crossover points (where MF value

is 0.5). Figure 4.10 shows these concepts.

We mentioned that the step size k in equation (3.8) may in
uence the speed of

convergence. It is observed that if k is small, the gradient method will closely approximate

the gradient path, but convergence will be slow since the gradient must be calculated many

times. On the other hand, if k is large, convergence will initially be very fast, but the

algorithm will oscillate about the optimum. Based on these observations, we update k

62

A

epochs

B

error
measure

rule 1: increase step size after 4 downs (point A)

rule 2: decrease step size after 2 combinations

of 1 up and 1 down (point B)

Figure 4.11: Two heuristic rules for updating step size k.

according to the following two heuristic rules (see Figure 4.11):

1. If the error measure undergoes 4 consecutive reductions, increase k by 10%.

2. If the error measure undergoes 2 consecutive combinations of 1 increase and 1 reduc-

tion, decrease k by 10%.

Though the numbers 10%, 4 and 2 are chosen more or less arbitrarily, the results shown

in our simulation appear to be satisfactory. Furthermore, due to this dynamical update

strategy, the initial value of k is usually not critical as long as it is not too big.

4.6.2 Example 1: Modeling a Two-Input Nonlinear Function

In this example, we consider using ANFIS to model a nonlinear sinc equation

z = sinc(x; y) =

sin(x)

x

�

sin(y)

y

: (4.16)

From the grid points of the range [�10; 10]� [�10; 10] within the input space of the above

equation, 121 training data pairs were obtained �rst. The ANFIS used here contains 16

rules, with four membership functions being assigned to each input variable and the total

63

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

epochs

ro
o

t
m

ea
n

 s
q

u
ar

ed
 e

rr
o

r

quick-prop neural network

ANFIS

Figure 4.12: RMSE curves for the quick-propagation neural networks and the ANFIS .

number of �tting parameters is 72 which are composed of 24 premise parameters and 48

consequent parameters. (We also tried ANFIS with 4 rules and 9 rules, but obviously they

are too simple to describe the highly nonlinear sinc function.)

Figure 4.12 shows the RMSE (root mean squared error) curves for both the 2-18-

1 neural network and the ANFIS. Each curve is the average of ten runs: for the neural

network, this ten runs were started from 10 di�erent set of initial random weights; for

the ANFIS, 10 di�erent initial step size (= 0:01; 0:02; : : : ; 0:10) were used. The neural

network, containing 73 �tting parameters (connection weights and thresholds), was trained

with quick propagation [17] which is considered one of the best learning algorithms for

connectionist models. Figure 4.12 demonstrate how ANFIS can e�ectively model a highly

nonlinear surface as compared to neural networks. However, this comparison cannot taken

to be universal since we did not attempt an exhaustive search to �nd the optimal settings

for the quick-propagation learning rule of the neural networks.

64

Figure 4.13: Training data (upper left) and reconstructed surfaces at 0.5 (upper right), 99.5

(lower left) and 249.5 (lower right) epochs. (Example 1).

The training data and other reconstructed surfaces at di�erent epoch numbers are

shown in Figure 4.13. (Since the error measure is always computed after the forward pass

is over, the epoch numbers shown in Figure 4.13 always end with \.5".) Note that the

reconstructed surface after 0.5 epoch is due to the identi�cation of consequent parameters

only and it already looks similar to the training data surface.

Figure 4.14 lists the initial and �nal membership functions. It is interesting to

observe that the sharp changes of the training data surface around the origin is accounted

for by the moving of the membership functions toward the origin. Theoretically, the �nal

MF's on both x and y should be symmetric with respect to the origin. However, they are

not symmetric due to the computer truncation errors and the approximate initial conditions

for bootstrapping the calculation of the sequential least squares estimate 3.14.

65

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

x

(a) initial MF’s on x

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

y

(b) initial MF’s on y

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

x

(c) final MF’s on x

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

y

(d) final MF’s on y

Figure 4.14: Initial and �nal membership functions of example 1 .

4.6.3 Example 2: Modeling a Three-Input Nonlinear Function

The training data in this example are obtained from

output = (1 + x

0:5

+ y

�1

+ z

�1:5

)

2

; (4.17)

which was also used by Takagi et al. [89], Sugeno et al. [83] and Kondo [40] to verify their

approaches. The ANFIS (see Figure 4.15) used here contains 8 rules, with 2 membership

functions being assigned to each input variable. 216 training data and 125 checking data

were sampled uniformly from the input ranges [1; 6]� [1; 6]� [1; 6] and [1:5; 5:5]� [1:5; 5:5]�

[1:5; 5:5], respectively. The training data was used for the training of ANFIS, while the

checking data was used for verifying the identi�ed ANFIS only. To allow comparison, we

use the same performance index adopted in [83, 40]:

APE = average percentage error =

1

P

P

X

i=1

j T (i)�O(i) j

j T (i) j

� 100%: (4.18)

66

output

z

y

x

C

C

B

B

A

A

predicted

1

2

3

4

5

6

7

8
2

2

1

1

2

1

Figure 4.15: The ANFIS architecture for example 2. (The connections from inputs to layer

4 are not shown.)

where P is the number of data pairs; T (i) and O(i) are i-th desired output and calculated

output, respectively.

Figure 4.16 illustrates the membership functions before and after training. The

training error curves with di�erent initial step sizes (from 0:01 to 0:09) are shown in Fig-

ure 4.17(a), which demonstrates that the initial step size is not too critical on the �nal

performance as long as it is not too big. Figure 4.17(b) is the training and checking er-

ror curves with initial step size equal to 0:1. After 199.5 epochs, the �nal results are

APE

trn

= 0:043% and APE

chk

= 1:066%, which is listed in Table 4.2 along with other

earlier work [83, 40]. Since each simulation cited here was performed under di�erent as-

sumptions and with di�erent training and checking data sets, we cannot make conclusive

comments here.

4.6.4 Example 3: On-line Identi�cation in Control Systems

Here we repeat the simulation example 1 of [60] where a 1-20-10-1 neural network

is employed to identify a nonlinear component in a control system, except that we use

67

0

0.2

0.4

0.6

0.8

1

-5 0 5 10

(a) Initial MF’s on x, y and z

x, y and z

0

0.2

0.4

0.6

0.8

1

-5 0 5 10

(b) Final MF’s on x

x

0

0.2

0.4

0.6

0.8

1

-5 0 5 10

(c) Final MF’s on y

y

0

0.2

0.4

0.6

0.8

1

-5 0 5 10

(d) Final MF’s on z

z

Figure 4.16: Example 2, (a) membership functions before learning; (b)(c) (d) membership

functions after learning .

0

1

2

3

4

0 50 100 150 200

epochs

av
er

ag
e

p
er

ce
n
ta

g
e

er
ro

r(
%

) (a)

0

2

4

6

0 50 100 150 200

av
er

ag
e

p
er

ce
n
ta

g
e

er
ro

r(
%

)

epochs

(b)

Figure 4.17: Error curves of example 2: (a) 9 training error curves for 9 initial step size

from 0.01 (solid line) to 0.09; (b) training (solid line) and checking (dashed line) error

curves with initial step size equal to 0.1 .

68

Model APE

trn

APE

chk

Para. no. Training Size Checking Size

ANFIS 0.043% 1.066% 50 216 125

GMDH model [40] 4.7% 5.7% - 20 20

Fuzzy model 1 [83] 1.5% 2.1% 22 20 20

Fuzzy model 2 [83] 0.59% 3.4% 32 20 20

Table 4.2: Example 2: comparisons with earlier work. (The last three rows are from [83].)

ANFIS to replace the neural network. The plant under consideration is governed by the

following di�erence equation:

y(k+ 1) = 0:3y(k) + 0:6y(k� 1) + f(u(k)); (4.19)

where y(k) and u(k) are the output and input, respectively, at time index k, and the

unknown function f(�) has the form

f(u) = 0:6sin(�u) + 0:3sin(3�u) + 0:1sin(5�u): (4.20)

In order to identify the plant, a series-parallel model governed by the di�erence equation

ŷ(k + 1) = 0:3ŷ(k) + 0:6ŷ(k � 1) + F (u(k)) (4.21)

was used where F (�) is the function implemented by ANFIS and its parameters are updated

at each time index. Here the ANFIS has 7 membership functions on its input (thus 7 rules,

and 35 �tting parameters) and the pattern (on-line) learning paradigm was adopted with

a learning rate � = 0:1 and a forgetting factor � = 0:99. The input to the plant and

the model was a sinusoid u(k) = sin(2�k=250) and the adaptation started at k = 1 and

stopped at k = 250. As shown in Figure 4.18, the output of the model follows the output

of the plant almost immediately even after the adaptation stopped at k = 250 and the

u(k) is changed to 0:5sin(2�k=250)+ 0:5sin(2�k=25) after k = 500. As a comparison, the

69

neural network in [60] fails to follow the plant when the adaptation stopped at k = 500 and

the identi�cation procedure had to continue for 50; 000 time steps using a random input.

Table 4.3 summarizes the comparison.

Method Parameter Number Time Steps of Adaptation

NN 261 50000

ANFIS 35 250

Table 4.3: Example 3: comparison with NN identi�er [60].)

In the above, the MF number is determined by trial and errors. If the MF number

is below 7 then the model output will not follow the plant output satisfactorily after 250

adaptations. But can we decrease the parameter numbers by using batch learning which

is supposed to be more e�ective? Figure 4.19, 4.20 and 4.21 show the results after 49.5

epochs of batch learning when the MF numbers are 5, 4 and 3, respectively. As can be

seen, the ANFIS is a good model even when the MF is as small as 3. However, as the MF

number is getting smaller, the correlation between F (u) and each rule's output is getting

less obvious in the sense that it is harder to sketch F (u) from each rule's consequent part.

In other words, when the parameter number is reduced mildly, usually the ANFIS can

still do the job but at the cost of sacri�cing its semantics in terms of the local-description

nature of fuzzy if-then rules; it is less of a structured knowledge representation and more

of a black-box model (like neural networks).

4.6.5 Example 4: Predicting Chaotic Dynamics

Example 1, 2 and 3 show that the ANFIS can be used to model highly nonlinear

functions e�ectively. In this example, we will demonstrate how the proposed ANFIS can be

70

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600 700

(a) u(k)

time index (k)

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600 700

(b) f(u(k)) and F(u(k))

time index (k)

-5

0

5

0 100 200 300 400 500 600 700

(c) plant output and model output

time index (k)

Figure 4.18: Example 3: (a) u(k); (a) f(u(k)) and F (u(k)); (b) plant output and model

output .

71

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

initial MF’s

u

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

final MF’s

u

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

f(u) and F(u)

u

-1

0

1

-1 -0.5 0 0.5 1

each rule’s output

u

Figure 4.19: Example 3: batch learning with 5 MF's .

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

initial MF’s

u

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

final MF’s

u

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

f(u) and F(u)

u

-2

0

2

-1 -0.5 0 0.5 1

each rule’s output

u

Figure 4.20: Example 3: batch learning with 4 MF's .

72

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

initial MF’s

u

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

final MF’s

u

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

f(u) and F(u)

u

-10

0

10

-1 -0.5 0 0.5 1

each rule’s output

u

Figure 4.21: Example 3: batch learning with 3 MF's .

employed to predict future values of a chaotic time series. The performance obtained in this

example will be compared with the results of a cascade-correlation neural network approach

reported in [69] and a simple conventional statistical approach, the auto-regressive (AR)

model.

The time series used in our simulation is generated by the chaotic Mackey-Glass

di�erential delay equation [54] de�ned below:

_x(t) =

0:2x(t� �)

1 + x

10

(t� �)

� 0:1x(t): (4.22)

The prediction of future values of this time series is a benchmark problem which has been

considered by a number of connectionist researchers (Lapedes and Farber [45], Moody [58,

56], Jones et al. [31], Crower [69] and Sanger [74]).

73

The goal of the task is to use known values of the time series up to the point x = t

to predict the value at some point in the future x = t + P . The standard method for this

type of prediction is to create a mapping from D points of the time series spaced 4 apart,

that is, (x(t� (D� 1)4), ..., x(t�4), x(t)), to a predicted future value x(t+P). To allow

comparison with earlier work (Lapedes and Farber [45], Moody [58, 56], Crower [69]), the

values D = 4 and 4 = P = 6 were used. All other simulation settings in this example were

purposedly arranged to be as close as possible to those reported in [69].

To obtain the time series value at each integer point, we applied the fourth-order

Runge-Kutta method to �nd the numerical solution to equation (4.22). The time step used

in the method is 0.1, initial condition x(0) = 1:2, � = 17, and x(t) is thus derived for

0 � t � 2000. (We assume x(t) = 0 for t < 0 in the integration.) From the Mackey-Glass

time series x(t), we extracted 1000 input-output data pairs of the following format:

[x(t� 18); x(t� 12); x(t� 6); x(t); x(t+ 6)]; (4.23)

where t = 118 to 1117. The �rst 500 pairs (training data set) was used for training the

ANFIS while the remaining 500 pairs (checking data set) were used for validating the

identi�ed model. The number of membership functions assigned to each input of the ANFIS

was arbitrarily set to 2, so the rule number is 16. Figure 4.22 (a) is the initial membership

functions for each input variable. The ANFIS used here contains a total of 104 �tting

parameters, of which 24 are premise parameters and 80 are consequent parameters

After 499.5 epochs, we had RMSE

trn

= 0:0016 and RMSE

chk

= 0:0015, which

are much better when compared with other approaches explained below. The resulting

16 fuzzy if-then rules are listed in the Appendix. The desired and predicted values for

74

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

x(t-18), x(t-12), x(t-6) and x(t)

(a) Initial MF's for all four input variables.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

first input, x(t-18)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

second input, x(t-12)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

third input, x(t-6)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

fourth input, x(t)

(b) Final MF's for each input variable.

Figure 4.22: Membership functions of example 4, (a) before learning; (b) after learning .

both training data and checking data are essentially the same in Figure 4.23(a); their

di�erences (Figure 4.23(b)) can only be seen on a �ner scale. Figure 4.22 (b) is the �nal

membership functions; Figure 4.24 shows the RMSE curves which indicate most of the

learning was done in the �rst 100 epochs. It is quite unusual to observe the phenomenon

that RMSE

trn

< RMSE

chk

during the training process. Considering both the RMSE's

are vary small, we conclude that: (1) the ANFIS has captured the essential components of

the underlying dynamics; (2) the training data contains the e�ects of the initial conditions

75

0.4

0.6

0.8

1

1.2

1.4

200 400 600 800 1000

time

(a) Mackey-Glass Time Series

-0.01

-0.005

0

0.005

0.01

200 400 600 800 1000

time

(b) Prediction Errors

Figure 4.23: Example 3, (a) Mackey-Glass time series from t = 124 to 1123 and six-step

ahead prediction (which is indistinguishable from the time series here); (b) prediction error.

(remember that we set x(t) = 0 for t � 0 in the integration) which might not be easily

accounted for by the essential components identi�ed by the ANFIS.

As a comparison, we performed the same prediction by using the auto-regressive

(AR) model with the same number of parameters:

x(t+ 6) = a

0

+ a

1

x(t) + a

2

x(t� 6) + :::+ a

103

x(t� 102 � 6); (4.24)

where there are 104 �tting parameters a

k

, k = 0 to 103. From t = 712 to 1711, we

extracted 1000 data pairs, of which the �rst 500 were used to identify a

k

and the remaining

were used for checking. The results obtained through the standard least squares estimate

are RMSE

trn

= 0:005 and RMSE

chk

= 0:078 which is much worse than those of ANFIS.

Figure 4.25 shows the predicted values and the prediction errors. Obviously, the over-

76

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x10-3

0 50 100 150 200 250 300 350 400 450 500

epoch number

ro
o

t
m

ea
n

 s
q

u
ar

es
 e

rr
o

r

Figure 4.24: Training and checking RMSE curves for ANFIS modeling .

parameterization of the AR model causes over-�tting in the training data and large errors

in the checking data. To search for the best AR model in terms of generalization capability,

we tried out di�erent AR models with parameter number being varied from 2 to 104;

Figure 4.26 shows the results where the AR model with the best generalization capability

is obtained when the parameter number is 45. Based on this best AR model, we repeat the

generalization test and Figure 4.27 shows the results where there is no over-�tting at the

price of larger training errors.

It goes with saying that the nonlinear ANFIS outperforms the linear AR model.

However, it should be noted that the identi�cation of the AR model took only a few seconds,

while the ANFIS simulation took about 2.5 hours on a HP Apollo 700 Series workstation.

(We did not pay special attention on the optimization of the codes, though.)

Table 4.4 lists other methods' generalization capabilities which are measured by

using each method to predict 500 points immediately following the training set. Here the

77

0.5

1

1.5

800 1000 1200 1400 1600

time (sec.)

(a) Desired (solid line) and predicted (dashed line) MG time series

-0.5

0

0.5

800 1000 1200 1400 1600

time (sec.)

(b) Prediction errors

Figure 4.25: (a) Mackey-Glass time series (solid line) from t = 718 to 1717 and six-step

ahead prediction (dashed line) by AR model with parameter = 104; (b) prediction errors .

0

0.5

1

0 20 40 60 80 100 120

parameter number

N
D

E
I

training (solid line) and checking NDEI (dashed line)

Figure 4.26: Training (solid line) and checking (dashed line) errors of AR models with

di�erent parameter numbers .

78

0.6

0.8

1

1.2

400 600 800 1000 1200

time (sec.)

(a) Desired (solid line) and predicted (dashed line) MG time series

-0.1

0

0.1

400 600 800 1000 1200

time (sec.)

(b) Prediction errors

Figure 4.27: Example 3, (a) Mackey-Glass time series (solid line) from t = 364 to 1363 and

six-step ahead prediction (dashed line) by the best AR model (parameter number = 45); (b)

prediction errors .

79

non-dimensional error index (NDEI) [45, 69] is de�ned as the root mean square error divided

by the standard deviation of the target series. (Note that the average relative variance used

in [99, 100] is equal to the square of NDEI.) The remarkable generalization capability of the

ANFIS, we believe, comes from the following facts:

1. The ANFIS can achieve a highly nonlinear mapping as shown in Example 1, 2 and

3, therefore it is superior to common linear methods in reproducing nonlinear time

series.

2. The ANFIS used here has 104 adjustable parameters, much less than those of the

cascade-correlation NN (693, the median size) and back-prop NN (about 540) listed

in Table 4.4.

3. Though without a priori knowledge, the initial parameter settings of ANFIS are intu-

itively reasonable and it leads to fast learning that captures the underlying dynamics.

Method Training Cases Non-Dimensional Error Index

ANFIS 500 0.007

AR Model 500 0.19

Cascaded-Correlation NN 500 0.06

Back-Prop NN 500 0.02

6th-order Polynomial 500 0.04

Linear Predictive Method 2000 0.55

Table 4.4: Generalization result comparisons for P = 6. (The last four rows are from [69].)

Table 4.5 lists the results of the more challenging generalization test when P = 84

(the �rst six rows) and P = 85 (the last four rows). The results of the �rst six rows were

obtained by iterating the prediction of P = 6 till P = 84. ANFIS still outperforms these

80

Method Training Cases Non-Dimensional Error Index

ANFIS 500 0.036

AR Model 500 0.39

Cascaded-Correlation NN 500 0.32

Back-Prop NN 500 0.05

6th-order Polynomial 500 0.85

Linear Predictive Method 2000 0.60

LRF 500 0.10-0.25

LRF 10000 0.025-0.05

MRH 500 0.05

MRH 10000 0.02

Table 4.5: Generalization result comparisons for P = 84 (the �rst six rows) and 85 (the

last four rows). Results for the �rst six methods are generated by iterating the solution at

P = 6. Results for localized receptive �elds (LRF) are multi-resolution hierarchies (MRH)

are for networks trained for P = 85. (The last eight rows are from [69].)

statistical and connectionist approaches unless a substantially large amount of training data

(i.e., the last row of Table 4.5) were used instead. Figure 4.28 illustrates the generalization

test for the ANFIS where the �rst 500 points were used for the desired outputs while the

last 500 are the predicted outputs for P = 84.

4.7 Concluding Remarks

4.7.1 Summary and Extensions of Current work

We have described the architecture of adaptive-network-based fuzzy inference sys-

tems (ANFIS) with type-1 and type-3 reasoning mechanisms. By employing a hybrid learn-

ing procedure, the proposed architecture can re�ne fuzzy if-then rules obtained from human

experts to describe the input-output behavior of a complex system. However, if human ex-

pertise is not available, we can still set up intuitively reasonable initial membership functions

81

0.6

0.8

1

1.2

200 400 600 800 1000 1200

time

(a) Desired (solid) and predicted (dashed) time series of ANFIS when P=84

-0.02

0

0.02

200 400 600 800 1000 1200

time

(b) Prediction Errors

Figure 4.28: Generalization test of ANFIS for P = 84.

and start the learning process to generate a set of fuzzy if-then rules to approximate a de-

sired data set, as shown in the simulation examples of nonlinear function modeling and

chaotic time series prediction.

Due to the high
exibility of adaptive networks, the ANFIS can have a number of

variants from what we have proposed here. For instance, the membership functions can be

changed to L-R representation [15] which could be asymmetric, Furthermore, we can replace

� nodes in layer 2 with the parameterized T-norm [15] and let the learning rule to decide

the best T-norm operator for a speci�c application. By employing the adaptive network as

a common framework, we have also proposed other adaptive fuzzy models tailored for data

classi�cation [85, 86] and feature extraction [87] purposes.

Another important issue in the training of ANFIS is how to preserve the human-

82

plausible features such as bell-shaped membership functions, �-completeness [46, 47] or

su�cient overlapping between adjacent membership functions, minimal uncertainty, etc.

Though we did not pursue along this direction in this paper, mostly it can be achieved by

maintaining certain constraints and/or modifying the original error measure as explained

below.

� To keep bell-shaped membership functions, we need the membership functions to

be bell-shaped regardless of the parameter values. In particular, equation (6.4) and

equation (6.5) become up-side-down bell-shaped if b

i

< 0; one easy way to correct this

is to replace b

i

with b

2

i

in both equations.

� The �-completeness can be maintained by the constrained gradient descent [105]. For

instance, suppose that � = 0:5 and the adjacent membership functions are of the

form of equation (6.4) with parameter sets fa

i

; b

i

; c

i

g and fa

i+1

; b

i+1

; c

i+1

g. Then the

�-completeness is satis�ed if c

i

+ a

i

= c

i+1

� a

i+1

and this can be ensured throughout

the training if the constrained gradient descent is employed.

� Minimal uncertainty refers to the situation that within most region of the input space,

there should be a dominant fuzzy if-then rule to account for the �nal output, instead

of multiple rules with similar �ring strengths. This minimizes the uncertainty and

make the rule set more informative. One way to do this is to use a modi�ed error

measure

E

0

= E + �

P

X

i=1

[�w

i

� ln(w

i

)]; (4.25)

where E is the original squared error; � is a weighting constant; P is the size of training

data set; w

i

is the normalized �ring strength of the i-th rule (see equation (4.5)) and

83

P

P

i=1

[�w

i

� ln(w

i

)] is the information entropy . Since this modi�ed error measure is

not based on data �tting along, the ANFIS thus trained can also have a potentially

better generalization capability. (However, due to this new error measure, the training

should be based on the gradient descent alone.) The improvement of generalization

by using an error measure based both data �tting and weight elimination has been

reported in the neural network literature [99, 100].

In this paper, we assume the structure of the ANFIS is �xed and the parame-

ter identi�cation is solved through the hybrid learning rule. However, to make the whole

approach more complete, the structure identi�cation [83, 84] (which concerns with the selec-

tion of an appropriate input-space partition style and the number of membership functions

on each input, etc.) is equally important to the successful applications of ANFIS. E�ective

partition of the input space can decrease the rule number and thus increase the speed in

both learning and application phases. Advances on neural networks' structure identi�ca-

tion [18, 50] can shed some lights on this aspect.

4.7.2 Applications to Automatic Control and Signal Processing

Fuzzy control is by far the most successful applications of the fuzzy set theory

and fuzzy inference systems. Due to the adaptive capability of ANFIS, its applications to

adaptive control and learning control are immediate. Most of all, it can replace almost

any neural networks in control systems to serve the same purposes. For instance, Naren-

dra's pioneering work of using neural networks in adaptive control [60] can be all achieved

similarly by ANFIS. Moreover, four of the generic designs (i.e., supervised control , direct

84

inverse control , neural adaptive control and back-propagation of utility) of neural networks

in control, as proposed by Werbos [102, 25], are also directly applicable schemes for ANFIS.

Particularly we have employed a similar method of the back-propagation through time [62]

or unfolding in time to achieve a self-learning fuzzy controller with four rules that can bal-

ance an inverted pendulum in an near-optimal manner [29]; this will be introduced in the

next chapter. It is expected that the advances of neural network techniques in control can

promote those of ANFIS as well, and vice versa.

The active role of neural networks in signal processing [104, 42] also suggests similar

applications of ANFIS. The nonlinearity and structured knowledge representation of ANFIS

are the primary advantages over classical linear approaches in adaptive �ltering [22] and

adaptive signal processing [103], such as identi�cation, inverse modeling, predictive coding,

adaptive channel equalization, adaptive interference (noise or echo) canceling, etc.

85

Chapter 5

Self-Learning Intelligent Control

5.1 Introduction

Fuzzy controllers (FC's) have recently found various applications in industry as

well as in household appliances. For complex and/or ill-de�ned systems that are not easily

controlled by conventional control schemes, FC's provide a feasible alternative since they

can easily capture the approximate, qualitative aspects of human knowledge and reason-

ing. However, the performance of FC's relies on two important factors: the soundness of

knowledge acquisition techniques and the availability of domain (human) experts. These

two factors substantially restrict the application domains of FC's.

The ANFIS (Adaptive-Network-based Fuzzy Inference System) architecture de-

scribed in Chapter 3 is designed to solve the �rst problem concerning the automatic elicita-

tion of knowledge in the form of fuzzy if-then rules. The proposed architecture can identify

the near-optimal membership functions and other parameters of a rule base for achieving a

desired input-output mapping. The basics of the ANFIS architecture are introduced in the

86

next section.

This chapter addresses the second problem: how to control a system through a

self-learning FC. In other words, without resorting to human experts, we want to construct

an FC that can perform a prescribed control task. The learning aspects of FC's have

always been an interesting topic, and recent developments are mostly based on reinforcement

learning [48, 49, 5]. Our learning method is based on a special form of gradient descent

(called back propagation), which is used for training arti�cial neural networks [73, 101]. To

control the plant's trajectory, we apply the back-propagation-type gradient descent method

to propagate the error signals through di�erent time stages. This is called TBP (temporal

back propagation) and it is explained in Section 3.

The proposed control strategy is quite general and can be used to control plants

with diverse characteristics. Moreover, the a priori knowledge that we have about the plant

can be applied in an auxiliary manner to speed up the learning process. In our simulation

described in Section 4, we successfully employ the TBP to construct a fuzzy controller with

only 4 fuzzy if-then rules for balancing an inverted pendulum system.

5.2 Self-Learning Fuzzy Controllers through Temporal Back

Propagation

In this section, we propose a generalized control scheme which can construct a

fuzzy controller through temporal back propagation, such that the state variables can follow

a given desired trajectory as close as possible. The basic idea is to implement both the

controller and the plant at each time stage as a stage adaptive network , and cascade these

87

inputkfuzzy
controller

plant

statestatek k+1

Figure 5.1: Block diagram of a fuzzy controller and a plant. Also a stage adaptive network

at time stage k.

stage adaptive networks into a trajectory adaptive network to facilitate the temporal back

propagation learning process.

5.2.1 Stage Adaptive Network

Figure 5.1 illustrates the block diagram of a feedback control system consisting of

a fuzzy controller and a plant. We assume the delay through the controller is small and the

state variables are accessible with accuracy. Moreover, the plant block is viewed as a static

system since the dependency of the next state on the present state is shown explicitly. Before

�nding a controller to control the plant state, we have to �nd mathematical expressions for

both the controller block and the plant block. This step is referred to as the implementation.

In our case, we are going to implement both blocks as adaptive networks.

An obvious candidate for implementing the FC block in Figure 5.1 is the ANFIS

architecture, since it has exactly the same function as a fuzzy controller, as shown in Fig-

ure 4.1. If we have p inputs to the plant, then the FC block can be implemented either as

p ANFIS's, or as an ANFIS that has rules with multiple consequents.

Suppose that we have a human expert who knows how to control the plant. Then

the domain knowledge can be transformed into fuzzy if-then rules and the corresponding

88

parameters (which characterize membership functions) can be used as the initial parameters

of the FC block in the learning process. As a result, the domain knowledge can guide the

TBP learning process to get started from a point in the parameter space that is not far

from the optimal one, and the TBP can �ne-tune the domain knowledge for achieving a

better performance. This cooperative relation between the domain knowledge and the TBP

learning process is not always present in other types of controllers.

On the other hand, if we do not have a priori knowledge about controlling the

plant, then the number of fuzzy if-then rules has to be decided more or less by trial and

error. Fortunately, due to ANFIS's remarkable representational power [27, 30], usually we

do not need many rules to construct the desired mapping from state variables to control

action.

As for the implementation of the plant block, we can choose whatever function

approximators that can best represent the input-output behavior of the plant. This model-

insensitive attribute is mostly due to the
exibility of adaptive networks, which allows us

to choose either conventional models (di�erence or di�erential equations, transfer func-

tions, etc) or unconventional ones (ANFIS, neural networks [73], radial basis function net-

works [58], GMDH structure [26], etc.) to implement the plant block.

If the plant can be modeled as a set of n (= number of state variables) �rst-order

di�erence equations, then the plant block can be replaced with n nodes, each of which uses

one di�erence equation to obtain the state variable at the next time step. Furthermore, if

the state equations of the plant are a set of �rst-order di�erential equations:

_

~x(t) =

~

f(~x(t);

~

in(t); t); (5.1)

89

where ~x(t) is a vector consisting of state variables at time t and

~

in(t) is the input vector to

the plant, then we can just employ a linear approximation to get the di�erence equations

as below

~x(h � k + h) = h �

~

f(~x(h � k);

~

in(h � k); h � k) + ~x(h � k); (5.2)

where k is an integer and h is the sampling time. Therefore the plant block still has n

nodes, each of which performs a component function of equation (5.2).

When the sampling time h is too big or the plant has fast dynamics, the linear

approximation may not be a reasonable estimate of the next state. In this case, we can

utilize a large body of numerical analysis techniques to obtain a more precise estimate, for

instance, the second-order Runge-Kutta method:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

~a = h �

~

f(~x(h � k);

~

in(h � k); h � k);

~

b = h �

~

f(~x(h � k) + ~a;

~

in(h � k); h � k + h);

~x(h � k + h) = ~x(h � k) + 0:5 � (~a+

~

b):

(5.3)

However, to implement the above equations as an adaptive network (without modi�able

parameters) is more complex and some intermediate nodes would be present in the resulting

network for the intermediate variable vector ~a and

~

b. Higher order Runge-Kutta formulas

may be used to implement the plant block as well, but the increased complexity of the

adaptive network could slow down the learning process even more.

Consequently, the block diagram of Figure 5.1 can also be viewed as an adaptive

network containing two sub-networks, the FC block (ANFIS) and the plant block. Sub-

sequently, we refer to the adaptive network of Figure 5.1 as SAN

k

, representing the stage

adaptive network at time stage k.

90

m

m-121

0

SAN m-11SAN0

state

SAN

state

statestate

state

plant

FC

plant

FC

plant

FC

Figure 5.2: State transition diagram.

5.2.2 Trajectory Adaptive Network

Given the state of the plant at time t = k � h, the FC will generate an input to

the plant and the plant will evolve to the next state at time (k + 1) � h. By repeating this

process starting from t = 0, we obtain a plant state trajectory determined by the initial

state and the parameters of the FC. The state transition from t = 0 to t = m � h is shown

conceptually in Figure 5.2 which is, again, an adaptive network consisting of m SAN

k

,

k = 0 to m � 1. Accordingly we can still apply the back propagation gradient descent to

minimize the di�erences between adaptive network outputs and desired outputs. In order

to make the inputs and outputs more explicit, we redraw Figure 5.2 to get the trajectory

adaptive network shown in Figure 5.3, where the inputs to the network are the initial state

of the plant at time = 0; the outputs of the network are the state trajectory from t = h to

m � h; and the adjustable parameters are all pertaining to the FC block implemented as an

ANFIS. Hence each entry of the training data is of the form

(initial state; desired trajectory); (5.4)

and the corresponding error measure to be minimized is

E =

m

X

k=1

k~x(h � k)� ~x

d

(h � k)k

2

(5.5)

91

where ~x

d

(h � k) is the desired trajectory at t = h � k. With some minor modi�cations of

Figure 5.3, the above error measure can be revised as

E =

m

X

k=1

k~x(h � k)� ~x

d

(h � k)k

2

+ � �

m�1

X

k=0

k

~

in(h � k)k

2

(5.6)

where

~

in(h � k) is the controller's output at time h � k. By a proper selection of �, a

compromise between trajectory error and control e�ort can be obtained.

Since the error signals of back propagation can propagate through di�erent time

stages, this control methodology is called temporal back propagation, or simply TBP . As

a matter of fact, the basic idea of TBP is similar to Nguyen and Widrow's approach [62]

to constructing a self-learning neural controller, which Werbos has called back propagation

through time [25]. We generalize the idea to a much more
exible building block, the

adaptive network, which has two advantages over neural networks:

1. Accommodation of a priori knowledge from a human operator, in the form of fuzzy

if-then rules.

2. No need to remodel the plant in neural networks if we already have other existing

models for it, such as di�erence equations.

In the trajectory adaptive network shown in Figure 5.3, though there are m FC

blocks, all of them refer to the same fuzzy controller at di�erent time stages. Namely, there

is only one parameter set which belongs to all m FC blocks at di�erent time stages. For

clarity, this parameter set is shown explicitly in Figure 5.3 and it is updated according to

the output of the error measure block.

92

trajectory
desired

trajectory
actual

conditions
initial

measure

error

FC

plant

FC

plant

FC

plant

state

state

state

state

0

1

2

m-1

parameter

set

SAN0 SAN1 m-1SAN

Figure 5.3: A trajectory adaptive network for control application.

5.3 Application to the Inverted Pendulum System

The proposed control scheme is quite general and it can be applied to a variety of

control problems. In this section, we demonstrate the e�ectiveness of the TBP by applying

it to a benchmark problem in intelligent control | the inverted pendulum system.

The Inverted Pendulum System

The inverted pendulum system (Figure 5.4) is composed of a rigid pole and a cart

on which the pole is hinged. The cart moves on the rail tracks to its right or left, depending

on the force exerted on the cart. The pole is hinged to the cart through a frictionless free

joint such that it has only one degree of freedom. The control goal is to balance the pole

starting from nonzero conditions by supplying appropriate force to the cart.

The dynamics of the inverted pendulum system are characterized by four state

variables: � (angle of the pole with respect to the vertical axis),

_

� (angular velocity of the

93

F

Figure 5.4: The inverted pendulum system.

pole), z (position of the cart on the track) and _z (velocity of the cart). The behavior of these

four state variables is governed by the following two second-order di�erential equations [7, 4]:

�

� =

g � sin� + cos� � (

�F�m�l�

_

�

2

�sin�

m

c

+m

)

l � (

4

3

�

m�cos

2

�

m

c

+m

)

; (5.7)

�z =

F +m � l � (

_

�

2

� sin� �

�

� � cos�)

m

c

+m

; (5.8)

where g (acceleration due to gravity) is 9.8meter=sec

2

,m

c

(mass of cart) is 1.0 kg,m (mass

of pole) is 0.1 kg, l (half length of pole) is 0.5 m, and F is the applied force in newtons. Our

control goal here is to balance the pole without regard to the cart's position and velocity,

hence only equation (5.7) is relevant in our simulation.

5.3.1 Simulation Settings

Figure 5.5 shows the stage adaptive network used in our simulation. Both the

controller and the plant block, together with the learning rule, are explained below.

Plant Block

94

controller block plant block

x (t)1

x (t)2

x (t+h)1

x (t+h)2

F

Figure 5.5: The implementation of a stage adaptive network .

As mentioned earlier, there are several ways to implement the plant block depend-

ing on how well we know the plant. In this case, the plant is a deterministic nonlinear

dynamic system with precisely de�ned di�erential equations, so we can just use 2 nodes to

calculate the state variables at the next time step by linear approximation

8

>

>

>

<

>

>

>

:

x

1

(t+ h) = h _x

1

(t) + x

1

(t);

x

2

(t+ h) = h _x

2

(t) + x

2

(t);

(5.9)

where x

1

(�) = �(�), x

2

(�) =

_

�(�). These two equations are the node functions of the plant

block in Figure 5.5.

Controller Block

We assume that no domain knowledge (from a human operator's point of view)

about the inverted pendulum system is available. The controller block in Figure 5.1 is

implemented as an ANFIS with two inputs, each of which is assigned two membership

functions, so it is a fuzzy controller with 4 fuzzy if-then rules of Takagi and Sugeno's

type [90]. See the controller block in Figure 5.5. (Though the number of fuzzy rules can be

more than four, the simulation indicates 4 rules are enough for balancing the pole.)

Without any domain knowledge, we have to set the initial parameters subjectively.

The consequent parameters of the FC are all set at zero, which means the control action is

95

0

0.2

0.4

0.6

0.8

1

-40 -20 0 20 40

(a)

pole angle

in
it

ia
l

M
F

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100

(b)

angular velocity

in
it

ia
l

M
F

0

0.2

0.4

0.6

0.8

1

-40 -20 0 20 40

(c)

pole angle

fi
n
al

 M
F

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100

(d)

angular velocity

fi
n
al

 M
F

Figure 5.6: (a)(b) Initial membership functions; (c)(d) �nal membership functions .

zero initially as shown in Figure 5.7. As a conventional way of setting membership functions

in a fuzzy controller, the premise parameters are set in such a way that the membership

functions can cover the domain interval (or universe of discourse) completely with su�cient

overlapping of each other. Figures 5.6(a) and (b) illustrate the initial membership functions

in the form of equation (6.4); the domain interval for � (degrees) and

_

� (degrees/sec) are

assumed to be [-20, 20] and [-50, 50], respectively.

Temporal Back Propagation

We employ 100 stage adaptive networks to construct the trajectory adaptive net-

work, and each stage adaptive network corresponds to the time transition of 10 ms. That

is, the time step (h) used is 10 ms, and the trajectory adaptive network corresponds to a

96

time interval from t = 0 to t = 1 sec. If h is too small, a large network has to be built to

cover the same time span, which increases the signal propagation time and thus delays the

whole learning process. On the other hand, if h is too big, then the linear approximation

of the plant behavior may not be precise enough and a higher order approximation has to

be used instead.

The training data set contains desired input-output pairs of the format

(initial condition; desired trajectory); (5.10)

where the initial condition is a two-element vector which speci�es the initial condition of

the pole; the desired trajectory is a 100-element vector which contains the desired pole

angle at each time step. In our simulation, only 2 entries of training data are used: the

initial conditions are (10; 0) and (�10; 0), respectively, and the desired trajectory is always

a zero vector. In short, we expect that the trajectory adaptive network can not only learn

to balance the pole from an initial pole angle of +10 or �10 degrees, but also achieve the

control goal in an near-optimal manner which minimizes the error measure

E =

100

X

k=1

�

2

(0:01 � k) + � �

99

X

k=0

f

2

(0:01 � k); (5.11)

where f(0:01 �k) is the controller's output force and � (= 10) accounts for the relative unit

cost of control e�ort.

To speed up the convergence, we follow a strict gradient descent in the sense that

each transition of the parameters will lead to a smaller error measure. If the error measure

increases after parameter update, we back up to the original point in the parameter space

and decrease the current step size by half. This process is repeated until the weight update

97

Figure 5.7: Initial control action surface.

leads to a smaller error measure. However, this step size update rule tends to use a small

step size if the error measure surface encountered in the �rst few updates is not smooth.

Therefore we multiply the step size by 4 after observing 3 consecutive transitions without

any back-up actions. The initial step size in the simulation is 20 and the learning process

stops whenever the number of transitions in parameter space (which is equal to the number

of reductions in error measure) reaches 10.

5.3.2 Simulation Results

All the simulation settings mentioned above are referred to as the reference setting ;

other simulations are based on this setting with minor changes. In the learning task with

98

Figure 5.8: Final control action surface.

99

the reference setting, it is amazing to observe that the FC is able to balance the pole right

after the �rst parameter transition, and it keeps on re�ning the controller (minimizing the

error measure) till the 10th parameter transition is done. Figures 5.6 (a) and (b) show

the initial membership functions on pole angle and angular velocity; (c) and (d) show the

�nal membership functions. Each membership function is characterized by 3 parameters as

described in equation (6.4). If � is in degree,

_

� in degree=sec, the initial fuzzy if-then rules

are

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

If � is A

1

and

_

� is B

1

; then force = 0

If � is A

1

and

_

� is B

2

; then force = 0

If � is A

2

and

_

� is B

1

; then force = 0

If � is A

2

and

_

� is B

2

; then force = 0

(5.12)

where A

1

, A

2

, B

1

and B

2

are the linguistic labels characterized by (20; 2; �20), (20; 2; 20),

(50; 2; �50) and (50; 2; 50), respectively. Figure 5.7 is the initial control action surface.

The �nal fuzzy if-then rules derived from the reference settings are

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

If � is A

1

and

_

� is B

1

; then force = 0:0502 � � + 0:1646 �

_

� � 10:09

If � is A

1

and

_

� is B

2

; then force = 0:0083 � � + 0:0119 �

_

� � 1:09

If � is A

2

and

_

� is B

1

; then force = 0:0083 � � + 0:0119 �

_

� + 1:09

If � is A

2

and

_

� is B

2

; then force = 0:0502 � � + 0:1646 �

_

� + 10:09

(5.13)

where A

1

, A

2

, B

1

and B

2

are the linguistic labels characterized by (�1:59; 2:34; �19:49),

(�1:59; 2:34; 19:49), (85:51; 1:94; �23:21) and (85:51; 1:94; 23:21), respectively. Fig-

ure 5.8 is the �nal control action surface.

Figure 5.6 indicates that the �nal membership functions for � are quite di�erent

from the initial membership functions. Visually there are no membership functions covering

100

0

0.2

0.4

0.6

0.8

1

-40 -20 0 20 40

(a)

pole angle

in
it

ia
l

M
F

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100

(b)

angular velocity

in
it

ia
l

M
F

0

0.2

0.4

0.6

0.8

1

-40 -20 0 20 40

(c)

pole angle

fi
n
al

 M
F

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100

(d)

angular velocity

fi
n
al

 M
F

Figure 5.9: (a)(b) Initial membership functions and (c)(d) �nal membership functions of a

9-rule fuzzy controller .

the interval [-10, 10] of �, making the linguistic interpretation of the fuzzy rules di�cult.

However, since we are utilizing the FC as a functional approximator that can generate the

required nonlinear mapping, linguistically desirable features (such as enough overlapping

between membership functions and total coverage of the domain interval) do not have to

be one of the FC's attributes in this case. If we want to keep those desirable features,

we can either impose some constraints on the premise parameters, or simply increase the

number of parameters of the fuzzy controller to endow it with more degree of freedom.

Figure 5.9 shows the membership functions of a 9-rule fuzzy controller which has about the

same performance as the 4-rule fuzzy controller. Due to its higher degrees of freedom, the

premise parameters of the 9-rule fuzzy controller do not have to change a lot to minimize the

101

-5

0

5

10

0 0.5 1 1.5 2

time (sec)

p
o
le

 a
n
g
le

 (
d
eg

)

(a)

-40

-30

-20

-10

0

10

0 0.5 1 1.5 2

time (sec)

an
g
u
la

r
v
el

o
ci

ty
 (

d
eg

/s
ec

)

(b)

-40

-30

-20

-10

0

10

-5 0 5 10

pole angle (deg)

an
g
u
la

r
v
el

o
ci

ty
 (

d
eg

/s
ec

)

(c)

-4

-2

0

2

4

6

0 0.5 1 1.5 2

time (sec)

in
p
u
t

fo
rc

e
(n

ew
to

n
)

(d)

Figure 5.10: (a) Pole angle; (b) pole angular velocity; (c) state space; (d) input force. (Solid,

dashed and dotted curves correspond to � = 10, 40 and 100, respectively.)

error measure; therefore the �nal membership functions can cover all the domain intervals

with desired overlapping.

Solid curves in Figure 5.10 demonstrate the state variable trajectories under the

reference setting: (a), (b) and (d) show the pole angle (degree), angular velocity (degree/sec)

and control actions (newtons) from t = 0 to t = 2 sec; (c) is the state space plot which

reveals how the trajectory approaches the origin from the initial point (10, 0). Dashed and

dotted curves in Figure 5.10 correspond to � equal to 40 and 100, respectively. From (a), it

is observed that a smaller � (solid curve) achieves the control goal faster since the controller

can apply a larger force to balance the pole. For a large � (dotted curve), the controller's

output has to be kept small, thus slowing down the approach to the goal.

102

-5

0

5

10

0 0.5 1 1.5 2

time (sec)

p
o
le

 a
n
g
le

 (
d
eg

)

(a)

-60

-40

-20

0

20

0 0.5 1 1.5 2

time (sec)

an
g
u
la

r
v
el

o
ci

ty
 (

d
eg

/s
ec

)

(b)

-60

-40

-20

0

20

-5 0 5 10

pole angle (deg)

an
g
u
la

r
v
el

o
ci

ty
 (

d
eg

/s
ec

)

(c)

-4

-2

0

2

4

6

0 0.5 1 1.5 2

time (sec)

in
p
u
t

fo
rc

e
(n

ew
to

n
)

(d)

Figure 5.11: (a) Pole angle; (b) pole angular velocity; (c) state space; (d) input force;

(Solid, dashed and dotted curves correspond to half pole lengths of 0.5, 0.25 and 0.125 m,

respectively.)

To demonstrate how the fuzzy controller can survive substantial changes of plant

parameters, we use poles of di�erent lengths to test the controller obtained from the refer-

ence setting. The results are shown in Figure 5.11, where solid, dashed and dotted curves

correspond to half-lengths of the pole equal to 0.5 (reference setting), 0.25 and 0.125 m

respectively. It is remarkable to note how the controller can handle the shorter pole easily

and gracefully.

In the learning phase, we supply only two training data corresponding to initial

conditions (10, 0) and (-10, 0) of the pole. Now it would be interesting to know how the

FC (obtained from the reference setting) deals with other initial conditions. In this part,

103

-10

0

10

20

30

0 0.5 1 1.5 2

time (sec)

p
o
le

 a
n
g
le

 (
d
eg

)

(a)

-60

-40

-20

0

20

40

0 0.5 1 1.5 2

time (sec)

an
g
u
la

r
v
el

o
ci

ty
 (

d
eg

/s
ec

)

(b)

-60

-40

-20

0

20

40

-10 0 10 20 30

pole angle (deg)

an
g
u
la

r
v
el

o
ci

ty
 (

d
eg

/s
ec

)

(c)

-5

0

5

10

15

0 0.5 1 1.5 2

time (sec)

in
p
u
t

fo
rc

e
(n

ew
to

n
)

(d)

Figure 5.12: (a) Pole angle; (b) pole angular velocity; (c) state space; (d) input force. (Solid,

dashed and dotted curves correspond to initial conditions (10, 20), (15, 30) and (20, 40),

respectively.)

we monitor the pole behavior starting from other initial conditions which make the control

goal even harder. Figure 5.12 shows the results, where the curve solid, dashed and dotted

curves correspond to the initial conditions (10, 20), (15, 30) and (20, 40), respectively.

Again, the same fuzzy controller can perform the control task starting from the unseen

initial conditions. Figure 5.12 together with Figure 5.11 reveals the robustness and fault

tolerance of the fuzzy controller obtained from the TBP.

104

Chapter 6

Neuro-Fuzzy Classi�ers

6.1 Introduction

In the previous two chapters, we introduced the ANFIS architecture and its ap-

plications to nonlinear function modeling, time series prediction and self-learning fuzzy

controllers. In this chapter, we will propose another neuro-fuzzy architecture which is de-

voted to the applications of pattern classi�cation. The proposed architecture, called the

neuro-fuzzy classi�er (NFC), is a class of adaptive networks which can update parameters

through the hybrid learning rule introduced in chapter 3. NFC is better than neural network

classi�ers in the sense that prior knowledge about the training data set can be encoded into

the NFC's parameters. This encoded knowledge, usually acquired from human experts or

data visualization techniques, can almost always allow the learning process to begin from

a good initial point not far away from the optimal one in the parameter space, thus speed-

ing up the convergence to the optimal or a near-optimal point. Moreover, the parameters

obtained after the learning process can be easily transformed into structure knowledge in

105

the form of fuzzy if-then rules. The basic architecture of the NFC is covered in the next

section.

Apparently the problem of (supervised) pattern classi�cation is quite similar to the

problem of neural network or fuzzy logic modeling: the parameters are identi�ed through a

learning process which makes use of a data set composed of desired input-output pairs, and

the input-output mapping of the resulting architecture should be able to make reasonable

generalization and interpolation for unseen input data. However, classi�cation is di�erent

from continuous modeling problems in that its output is discrete. In other words, if we want

to divide a data set into two classes, then the output of a classi�er should be either class 1 or

class 2, and nothing in between (unless we adopt the fuzzy classi�cation paradigm). In this

perspective, the original de�nition of least squared error measure is no longer appropriate

since it cannot re
ect the number of misclassi�cations. Therefore in section 6.3, we devise

another error measure, called maximum-type error measure, which is a continuous function

that can appropriately re
ect the number of misclassi�cations.

To demonstrate the strengths of the proposed NFC architecture, we perform two

simulation experiments in section 6.3. The �rst problem we attempted is the two-spiral

problem, a benchmark problem in neural network literature which is often used to verify

the feasibility of new learning algorithms or new network structures for neural network

classi�ers. In the second experiment, we try the NFC architecture on the IRIS data classi�-

cation which deals with the classi�cation of 150 iris
owers into 3 classes based on 4 features.

These simulations show both the advantages and the potential application domains of the

proposed NFC architecture.

106

2

1

3

2

B

B

A

A

2x

1A

3B

1x
1c

c2

3c

layer 3

layer 2

layer 1

inputs

(features)

outputs

(classes)

Figure 6.1: NFC architecture.

6.2 NFC Architecture

The format of fuzzy if-then rules used in a classi�er can be expressed as

If X

1

is A

1

and X

2

is A

2

; then Z is C: (6.1)

where X

1

and X

2

are input variables or observed features ; A

1

and A

2

are linguistic labels

characterized by appropriate membership functions; Z is the object with X

1

and X

2

as

its observed features; and C is the name of a class or category. Usually we do not distin-

guish between the object Z and its feature vector (X

1

, X

2

); therefore in the following text,

~

X = (X

1

; X

2

) is used loosely to represent both the feature vector and the object Z. Some

examples of this type of fuzzy if-then rule are:

107

If Time is around eight and Traffic is good, then Day is weekend.

If V oice is high and Hair is long, then Person is female.

Similar rules can be found repeatedly in the reasoning activities of our daily life.

Note that the classes in the above two examples are inherently nonfuzzy since a day should

be either weekday or weekend and a person should be either male or female. However, some

other applications may favor fuzzy classi�cation and thus C in equation (6.1) may assume

a fuzzy term; some such examples are:

If Temperature is high and Sky is bright, then Time is daytime.

If Pulse is weak and Face is pale, then Patient

0

s Condition is critical.

Based on adaptive networks, we propose a neuro-fuzzy classi�er (NFC) architec-

ture [85, 86] that can incorporate the above form of fuzzy if-then rules into its structure. For

simplicity, we assume the NFC architecture under consideration has two inputs (observed

features) x

1

and x

2

and three outputs c

1

, c

2

and c

3

, corresponding to three di�erent classes

or categories. As mentioned above, the consequent part of the fuzzy if-then rule in equation

(6.1) may have a crisp or fuzzy term C. For crisp-output NFC, we adopt the convention that

c

i

is 1 if and only if the presented feature vector ~x = (x

1

, x

2

) belongs to class i; otherwise

c

i

is 0. For fuzzy-output NFC, c

i

denotes the degree to which the presented feature vector

belongs to class i and its summation over i is equal to 1:

X

i

c

i

= 1: (6.2)

108

Figure 6.1 shows the NFC architecture where each of the two inputs is assigned

three membership functions. Node function in each layer of Figure 6.1 is explained below:

Layer 1 Every node i in this layer is a square node with a node function

O

1

i

= �

A

i

(x); (6.3)

where x is the input to node i, and A

i

is the linguistic label (small , large, etc.)

associated with this node function. This layer is exactly the same as the �rst layer in

the ANFIS structure of Figure 4.1 or Figure 4.3. In other words, O

1

i

is the membership

function of A

i

and it speci�es the degree to which the given x satis�es the quanti�er A

i

.

Usually we choose �

A

i

(x) to be bell-shaped with maximum equal to 1 and minimum

equal to 0, such as

�

A

i

(x) =

1

1 + [(

x�c

i

a

i

)

2

]

b

i

; (6.4)

or

�

A

i

(x) = expf�[(

x� c

i

a

i

)

2

]

b

i

g; (6.5)

where fa

i

, b

i

, c

i

g is the parameter set. As the values of these parameters change, the

bell-shaped functions vary accordingly, thus exhibiting various forms of membership

functions on linguistic label A. In fact, any continuous and piecewise di�erentiable

functions, such as commonly used trapezoidal or triangular-shaped membership func-

tions, are also quali�ed candidates for node functions in this layer. Parameters in this

layer are referred to as premise parameters .

Layer 2 Every node in this layer is a circle node labeled � which multiplies the incoming

109

signals and sends the product out. For instance, the output of node 4 in this layer is

w

4

= �

A

2

(x)�

B

1

(y); (6.6)

which speci�es the degree of match on the premise part of the three fuzzy if-then rules

with A

2

and B

1

on the premise part. From another viewpoint, it represents the degree

to which the presented feature vector belongs to the fuzzy region formed jointly by

the linguistic label A

2

and B

1

.

Layer 3 If the data is to be classi�ed into C categories, there are C nodes in this layer and

the output of each node indicates to what degree the presented pattern belongs to a

corresponding category. Node function in this layer is the cascade of two functions: a

weighted sum and a squashing function. The weighted sum function �rst multiplies

each output (w

i

) from the previous layer with a parameter (p

ij

) and then sums them

up. The squashing function, usually a sigmoidal function, forces the output of this

layer to be within [0; 1]. For instance, the output of node j is

O

3

i

= sig(

9

X

i=1

w

i

p

ij

); (6.7)

where sig(�) denotes the sigmoidal function. For convenience, parameters in this layer

are called consequent parameters .

Thus we have constructed the NFC architecture, a three-layer adaptive network

which can perform fuzzy if-then rules for pattern classi�cation. For crisp-output NFC, we

usually place a maximum selector following layer 3 to single out the class corresponding

to the maximum of c

i

's. Alternatively, for fuzzy-output NFC, we often add another layer

which calculates the normalized version of the outputs in Figure 6.1; the function of this

110

layer
normalization

(b)(a)

class

outputs
normalized

1c

c2

3cc3

2c

c1

c3

2c

c1

maximum

selector

Figure 6.2: Post-processor for NFC with (a) crisp outputs; (b) fuzzy outputs .

normalization layer is exactly the same as that of layer 3 in the ANFIS of Figure 4.1. Both

the maximum selector and the normalization layer can be viewed as post-processors for

di�erent types of outputs and they are depicted in Figure 6.2. In the following discussion,

we will con�ne our discussion to crisp-output NFC, though many of the arguments can also

be applied to fuzzy-output NFC.

Note that since the weighted sum mentioned above does not involve an o�set

term, the node function in layer 3 is not the same as that of a back-propagation neural

net. Moreover, the parameter p

ij

serves as an indicator to show how much the fuzzy region

i belongs to class j. In other words, a positive p

ij

strengthens the statement that region

i belongs to class j while a negative p

ij

strengthens the opposite statement that region

i does not belong to class j. Therefore, either the parameter set a

i

, b

i

, c

i

in layer 1 or

the parameter set p

ij

in layer 3 has speci�c physical meanings in the fuzzy if-then rules.

This meaningful representation of NFC is a primary advantage over the conventional neural

network classi�ers.

Next we will describe how to apply the hybrid learning algorithms developed in

Chapter 3 to identify the parameters in the NFC architecture mentioned above. Besides,

111

we will consider other error measures employed in the literature and their relationships with

the hybrid learning rule.

6.3 Learning Rule and Error Measure

From the description of the NFC architecture in the previous section, it is obvious

that if we take the �nal outputs as the outputs of the weighted sum functions instead of the

squashing functions, then we have output expressions which are linear in the consequent

parameters. In terms of the expression of equation (3.11), H(�) is the inverse sigmoidal

function:

H(x) = sig

�1

(x) = ln

x

1� x

(6.8)

And the decomposition of the parameter set S into S

1

and S

2

(see equation (3.10)) is

S

1

= set of premise parameters (layer 1),

S

2

= set of consequent parameters (layer 3).

As a result, the hybrid learning algorithm proposed in Chapter 3 can be applied directly if

the error measure is chosen as the squared errors of the transformed outputs.

Without loss of generality, we assume the class number is 3; the desired and

calculated outputs of NFC are denoted as

~

do = (do

1

; do

2

; do

3

) and ~co = (co

1

; co

2

; co

3

). For

fuzzy-output NFC, each element of

~

do is a real number between 0 and 1 and the outputs

of NFC are supposed to match the desired outputs

~

do as closely as possible. Therefore we

can just employ the hybrid learning algorithm as usual: use the gradient descent to update

the premise parameter in layer 1 and apply the Kalman �lter algorithm for identifying the

consequent parameters in layer 3.

112

However, when we are dealing with crisp-output classi�cation, only one element of

~

do is non-zero (usually 1); denoting the class which a corresponding feature vector belongs

to. Hence a maximum selector (Figure 6.2 (a)) is often utilized to decide the class according

to the maximum of NFC's outputs. In this case, the error measure de�ned as squared errors

in equation (3.2) is no longer appropriate since the calculated outputs are not expected to

match the desired outputs as closely as possible. For instance, suppose that the desired

output vector

~

do is (1; 0; 0) and we have two calculated output vectors

~

co1 = (0:9; 0; 0)

and

~

co2 = (0:9; 0:8; 0:8). If we employ the squared error as the error measure, then

~

co2

will have a much larger error than that of

~

co1. This is not quite right since after the

maximum selector, both

~

co1 and

~

co2 will be correctly assigned as class 1. In other words,

we need a new error measure that can more accurately re
ect the number of misclassi�ed

cases. Furthermore, by choosing such an error measure, we relax the requirement that the

calculated output should be as close as possible to the desired output, thus introducing

more degrees of freedom into the NFC architecture for reaching the desired outputs.

Assuming the desired class is 1, then we are looking for an error measure E with

the following properties:

if o

1

> o

2

and o

1

> o

3

, then E is small,

if o

1

> o

2

and o

1

< o

3

, then E is medium,

if o

1

< o

2

and o

1

> o

3

, then E is medium,

if o

1

< o

2

and o

1

< o

3

, then E is large,

113

where ~co = (co

1

; co

2

; co

3

) is the calculated output vector. This kind of error measure

can be implemented as

E = sgn(co

2

� co

1

) + sgn(co

3

� co

1

); (6.9)

where sgn(�) is the signum function de�ned below:

sgn(x) =

8

>

>

>

<

>

>

>

:

0 if x < 0;

1 if x � 0:

(6.10)

However, in order to preserve di�erentiability, we choose the sigmoidal functions to replace

the signum functions in equation (6.10):

E = sig[m(co

2

� co

1

)] + sig[m(co

3

� co

1

)] (6.11)

where m is a positive large number that makes the sigmoidal function approximate the

signum function. For di�erent desired classes, we have similar expressions. Thus for a

given desired output

~

do = (do

1

; do

2

; do

3

) and the corresponding calculated output ~co =

(co

1

; co

2

; co

3

), the desired error measure E can be formulated as:

E = do

1

(1� do

2

)(1� do

3

)f(sig[m(co

2

� co

1

)] + sig[m(co

3

� co

1

)]g

+ (1� do

1

)do

2

(1� do

3

)f(sig[m(co

1

� co

2

)] + sig[m(co

3

� co

2

)]g

+ (1� do

1

)(1� do

2

)do

3

f(sig[m(co

1

� co

3

)] + sig[m(co

2

� co

3

)]g

(6.12)

where the second and the third terms account for the conditions when the desired classes

are class 2 and 3, respectively. Since this error measure is reasonable when the maximum

selector is used, it is therefore referred to as maximum-type error measure.

The maximum-type error measure introduced above can increase the degrees of

freedom and therefore is suitable for crisp-output NFC. Note that by adopting this error

114

measure, we cannot apply the hybrid learning rules any more and the learning proceeds

by the gradient descent alone. Meanwhile, the slow convergence of the gradient descent is

compensated for by the proper choice of the maximum-type error measure, so the learning

process will not su�er from the drawbacks of the gradient descent. The next section presents

two application examples which employ NFC with maximum-type error measures to do crisp

pattern classi�cation.

6.4 Application Examples

In this section, we apply the proposed NFC architecture to two classi�cation prob-

lems: the two-spiral problem and the IRIS data classi�cation. Computer simulation results

demonstrate how NFC can easily solve these two problems with the use of its adaptive

capability and the prior knowledge about the training data.

6.4.1 Two-Spiral Problem

The two-spiral problem was proposed by Alexis P. Wieland on the connectionist

mailing list as an interesting benchmark task for neural networks. The task requires a neural

network classi�er with two inputs and one output to learning a mapping that distinguishes

between points of two intertwined spirals. The two sets of spiral data consist of 194 points,

with 97 points for each spiral. One spiral is generated as a mirror image of the other,

making the problem highly nonlinear-separable. The formulas used to generate the spirals

are given below, and the two spirals are shown in Figure 6.3:

115

Two Spirals

spiral 1

spiral 2

Y

X-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

-6.00 -4.00 -2.00 0.00 2.00 4.00 6.00

Figure 6.3: Training data for the two-spiral problem.

116

8

>

>

>

<

>

>

>

:

 =

1

�

(� +

�

2

)

� =

k�

16

; k = 0; 1; 2; :::; 96:

(6.13)

spiral 1:

8

>

>

>

<

>

>

>

:

x =
cos(�)

y =
sin(�)

(6.14)

spiral 2:

8

>

>

>

<

>

>

>

:

x = �
cos(�)

y = �
sin(�)

(6.15)

As pointed out by Wieland, this task has several features that makes it an in-

teresting test for neural network's learning algorithms. First of all, it requires the neural

networks to learn the highly nonlinear separation of the input space, which is di�cult for

most current learning algorithms. Secondly, its 2-dimensional input space makes it easy to

plot the overall input-output relations as a 3-dimensional surface or 2-dimensional image

for visual inspection and analysis.

Lang andWitbrock [43] attempted to learn the task with standard back-propagation

nets with a couple of hidden layers, but they failed. In Cios and Liu's experiments [13], the

number of hidden layers for the back-propagation nets varied from 2 to 4, and the number

of nodes per layer varied from 10 to 100, but none of the trials showed signs of convergence

even after 10,000 epochs. These unsuccessful trials show that this problem is non-trivial

for standard feed-forward back-propagation nets, and therefore new learning rules as well

as new architectures in connectionist models are invoked to tackle this problem. Lang and

Witbrock [43] employ back-propagation nets with short-cut connections as pathways for

providing information to all parts of the network, thus eliminating the problem of atten-

117

uated error signals when back-propagating through layers [70]. Cios and Liu [13] devise a

continuous version of the ID3 [68] algorithm to solve this problem and then map the result

back to a neural network structure. Fahlman and Lebiere [18] develop a new connectionist

structure called cascade-correlation nets and use quick-propagation [17] as the learning rule

to successfully separate the two spirals.

Although this problem has been solved by the approaches mentioned above, it

remains di�cult to �gure out the network con�gurations and to choose a suitable learning

algorithm. Moreover, it is hard, if not impossible, to extract information from a neural

network after learning the mapping perfectly. In contrast, the proposed NFC architecture

can solve this problem with meaningful representation both before and after learning, and

the network structure, or primarily the rule number, can be estimated roughly through a

glance at the training data distribution.

To proceed with the simulation, �rst the rule number has to be decided. Since

the input partition of NFC is checkerboard-like (similar to the case of ANFIS, see the right

sub-�gure of Figure 4.3), we expect that the partition number (or equivalently, the number

of membership functions) on either input x and y should be equal to the maximum number

of alternations between classes along one dimension when the other is �xed. In the two-

spiral problem, the maximum number of alternations on y is approximately 14, which occurs

on the straight line x = 0; the maximum number of alternations on x is approximately 13,

which occurs on y = 0. Our simulation consists of two groups which utilize the squared error

measure and maximum-type error measure, respectively. Within each group, we perform

four runs of simulation; the number of membership functions on both inputs is varied from

118

10 to 13 sequentially for runs in both group. That is, we have 8 runs in our simulation:

the four runs in the �rst group employ the hybrid learning rule and they are stopped at

199.5 epochs, while those in the second group use the gradient descent method and they

are stopped at 200 epochs. It is found that for both groups, 13 is the minimum number for

NFC to classify the two spirals correctly. This agrees with our observation of the maximum

number of alternations along each dimension.

Figure 6.4 shows the initial and �nal membership functions when the 2-spirals

problem can be solved correctly, namely, when the number of membership functions on

both inputs is 13. Figure 6.4 (a) and (b) are initial membership functions which are set

uniformly to cover the whole universe of discourse; (c)(d) and (e)(f) are the �nal membership

functions for run 4 (in group 1) and run 8 (in group 2), respectively. Note that the NFC with

maximum-type error measure has more degrees of freedom, therefore the �nal membership

functions (Figure 6.4 (e) and (f)) do not have to go through as many variations as those in

group 1 (Figure 6.4 (c) and (d)) to reach the same goal.

Figure 6.5 and Figure 6.6 display the error measures and misclassi�cation numbers

as functions of epoch numbers for group 1 (run 1 through 4) and group 2 (run 5 through 8).

It is observed that the initial misclassi�cation numbers of the runs in group 1 are always

smaller than those of the corresponding runs in group 2 due to the powerful Kalman �lter

algorithm employed in the hybrid learning rule. However, because the squared error is

not an appropriate measure for misclassi�cation numbers, the reduction in misclassi�cation

numbers in group 1 is not as signi�cant as that of group 2 (except run 2 vs. run 6, which

is an anomaly).

119

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8

x

m
em

be
rsh

ip
 v

alu
e

(a) initial membership functions on x

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8

y

m
em

be
rsh

ip
 v

alu
e

(b) initial membership functions on y

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8

x

m
em

be
rsh

ip
 v

alu
e

(c) final membership functions on x (group 1)

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8

y

m
em

be
rsh

ip
 v

alu
e

(d) final membership functions on y (group 1)

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8

x

m
em

be
rsh

ip
 v

alu
e

(e) final membership functions on x (group 2)

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8

y

m
em

be
rsh

ip
 v

alu
e

(f) final membership functions on y (group 2)

Figure 6.4: Membership functions on input x and y for solving the two-spiral problems:

(a)(b) initial membership functions for group 1 and 2; (c)(d) �nal membership functions

for group 1; (e)(f) �nal membership functions for group 2 .

120

0

20

40

60

80

0 50 100 150 200

.

.

.

.

.

..

.

.

...
...
..
..

.
...
.

.
.
..
.
.

.
.

.
..
.
..

..

.
..

.
.

.

.
..
.

.

..

.
...
.

.

.
.
.

..

.
.

...
.

....
.
..

...

.
..
.
.

.
.
.
.

.
...
..
.........

.
..
.
.
.

.
..
......

.....
...
..
.
.
.
.
.
..
.
...
.
.
.
.
.
.
.
.
.
.
......

.
...............

...........................
.

epochs

er
ro

r
m

ea
su

re
/m

is
cl

as
si

fi
ca

ti
o

n (a)

0

20

40

60

80

0 50 100 150 200

..
.

..
...

.

.
.
.

.

.

.
.

..
..

.

..

..
..

.

.
.

.
..
.

.
..
.
.
.
.
...

.

.

.
..
..
.
.

.
..
..
..
.

..
.....

..
.
.
...
..
.

.

.
..
...
.

..
.
...
.

.
.
...............................

..
.
...
.
..
...................

.....
.
..

epochs

er
ro

r
m

ea
su

re
/m

is
cl

as
si

fi
ca

ti
o

n (b)

0

20

40

60

80

0 50 100 150 200

.
.
.

....

.

.

..

.

.
.

..
..
.

.
.

...

.

.
.

.

.
..
.
.
.
.

.
.
.
.
.
.
...
.
.

.
........

.
..
.
...
.
.
.
.

..

....
.
..
....
...
...
.
......

...
...
....
.
.
.
.
...
.................

.
.
..
.
......................

.
.........

.

.
....
...
.
.
.
......................

...

epochs

er
ro

r
m

ea
su

re
/m

is
cl

as
si

fi
ca

ti
o

n (c)

0

20

40

60

80

0 50 100 150 200

.
....

.
..
.

.

.

.

..
.
..
.

.

...

..
.

.

.
.

.
..
.
..

.
.

..
..
....
.
.
.
.
..
.
...
...
.
..
.
...
.
......

.
........

.....
......

....
.
.
..
.
.....

....
.
.....

..
.

..
.
.
..
..............

.
.
.
.
...

.
.
.
.
......

.
.
.
.
.
.
.
.
.......

.
...
........

.
.................

epochs

er
ro

r
m

ea
su

re
/m

is
cl

as
si

fi
ca

ti
o

n (d)

Figure 6.5: (Group 1) Error measure and misclassi�cation numbers w.r.t. epoch number:

(a) run 1; (b) run 2; (c) run 3; (d) run 4. (Solid line: error measure, dot: misclassi�cation

number).

As mentioned earlier, this problem is suitable for visual inspection or analysis on

the classi�er's input-output behavior through data visualization techniques such as 3-D

surface or 2-D image. Figure 6.7 and Figure 6.8 depict the NFC's input-output behavior

obtained from the two groups; each of the eight images is composed of 22,500 (150�150)

pixels which are 8 bit deep. Since the NFC's outputs c

1

and c

2

are always between 0 and

1, in order to preserve the gray shades, they are converted to pixel values by the following

121

0

20

40

60

80

0 50 100 150 200

.
....
...
.

.

.

.

.
.
..

.
.

.
...
.

..
.

.
..
.
.
.......

.
..

epochs

er
ro

r
m

ea
su

re
/m

is
cl

as
si

fi
ca

ti
o

n (a)

0

20

40

60

80

0 50 100 150 200

.
...
.

....

.
.....

.
..
.

.

.
..
.

..
.
...
..
.
...
.
......

.
.
....
..
..............

.
.
.
.
.
.
.
.........

.
.
.
.
.
...
..

epochs

er
ro

r
m

ea
su

re
/m

is
cl

as
si

fi
ca

ti
o

n (b)

0

20

40

60

80

0 50 100 150 200

...

..

.
.
.
.
.

....
.
.

.
....
...
.
.
.
.

.
..

epochs

er
ro

r
m

ea
su

re
/m

is
cl

as
si

fi
ca

ti
o

n (c)

0

20

40

60

80

0 50 100 150 200

.
......

..
.
..
.
.
.
...
.
.
.
....
.
.............

.
...

epochs

er
ro

r
m

ea
su

re
/m

is
cl

as
si

fi
ca

ti
o

n (d)

Figure 6.6: (Group 2) Error measure and misclassi�cation numbers w.r.t. epoch number:

(a) run 5; (b) run 6; (c) run 7; (d) run 8. (Solid line: error measure, dot: misclassi�cation

number).

equation (with round-o� to the nearest integer):

image(x; y) =

c

1

(x; y)� c

2

(x; y) + 1

2

� 255; (6.16)

where image(x; y) is the pixel value at position (x; y). It is clearly shown in Figure 6.7 (a),

(b) and (c) that when the number of membership functions is not enough, there will be some

\grey bands" in the images indicating that NFC cannot decide which class these regions

belong to. This is caused by the fact that the universe of discourse (domain interval)

is not covered properly. This situation does not appear in Figure 6.8 because the NFC

122

(a) (b)

(c) (d)

Figure 6.7: Group 1, image representation of NFC's input-output behavior, with number of

membership functions on x and y equal to (1) 10 (run 1); (b) 11 (run 2); (c) 12 (run 3)

and (d) 13 (run 4).

123

(a) (b)

(c) (d)

Figure 6.8: Group 2, image representation of NFC's input-output behavior, with number of

membership functions on x and y equal to (1) 10 (run 5); (b) 11 (run 6); (c) 12 (run 7)

and (d) 13 (run 8).

124

with maximum-type error measure has higher degrees of freedom. The images shown in

Figure 6.7 are more distinct since the squared error measure causes the calculated outputs

to be as close as possible to the desired outputs which are nonfuzzy. The images shown

in Figure 6.8 are less distinct; however, if we pass them through a threshold �lter shown

below:

image

enhanced

(x; y) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

255; if image(x; y)> 127;

127; if image(x; y) = 127;

0; if image(x; y)< 127;

(6.17)

then we get a more distinct version of Figure 6.8 as shown in Figure 6.9. This is equivalent

to using a maximum selector, expressed as follows, to convert the NFC's output c

1

(x; y)

and c

2

(x; y) into pixels with three values only:

image

enhanced

(x; y) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

255; if c

1

> c

2

;

127; if c

1

= c

2

;

0; if c

1

< c

2

:

(6.18)

Needless to say, Figure 6.9 appears to be more regular and symmetric than Figure 6.7, thus

�tting the training data more closely and having better generalization capability.

Although we can always employ a large number of membership functions in NFC

to achieve a perfect classi�cation, this kind of over-parameterized structure is not recom-

mended since it not only slows down the learning but also degrades the generalization power

for unseen data sets; this is just like the case in over-parameterized neural networks. There-

fore, the ability to determine the number of membership functions from visual inspection is

a very practical and useful technique that enables us to �nd roughly a minimum structure

125

(a) (b)

(c) (d)

Figure 6.9: Enhanced images of experiments in group 2 .

126

for NFC to do the job. For neural networks, we do not have similar quick and easy tech-

niques to determine the minimum structure (node numbers and layer numbers) simply due

to the uniformity in the node function.

6.4.2 IRIS Classi�cation

The IRIS data set [1] is the measurements of the sepal length (SL) and width (SW)

and petal length (PL) and width (PW) in millimeters of �fty plants for each of three types

of iris: iris setosa (class 1), iris versicolor (class 2) and iris virginica (class 3). The data

set contains 150 feature vectors and the corresponding classes; each of the feature vectors

has 4 elements (SL, SW, PL and PW) which are used for classifying the data set into three

classes.

The training data format is

(SL; SW;PL; PW ; d

1

; d

2

; d

3

),

where

~

fv = (SL; SW; PL;PW) is the presented feature vector,

~

do = (d

1

; d

2

; d

3

) is the

desired output speci�ed by

d

i

=

8

>

>

>

<

>

>

>

:

1 if

~

fv belongs to class i,

0 otherwise.

(6.19)

Since the feature vector

~

fv is the input to our NFC classi�er, it will be referred to as the

input vector with input variables x1 (SL), x2 (SW), x3 (PL) and x4 (PW).

Figure 6.10 contains four plots showing the discriminating power of each input

variables. Clearly x1 and x2 have less discriminating power since we cannot �nd a single

value of x1 or x2 that can be used as a threshold to identify any one of the three classes,

127

1

1.5

2

2.5

3

40 50 60 70 80
xxxx x xx xx x xxxx xxxx xx xxx xx xx xxxx xx xxx xxx xxxx xxx xx xx

xx xx xx xx xxx xxxx xx x xx x x xx x x xxxxxx x xx x xxxxx xxx xxx xx x

xx xx x xx xx xxx xxx xx xxx xx xx x xxx x x x xxxx xxxx xx xx xxxx xxx

x1 (sepal length)

cl
as

s

(a)

1

1.5

2

2.5

3

20 30 40 50
xx xx x xxxx x xxxx x xxx xxx xxx xx x xxxx x x xx x x xx x xx x x xx xx xx

xxxx xx xx xxx xx xx xxxx x xxx x x xx xxxxx xx x xxx xx x xxx x xxxx x

xx xx xxx xx xxx xx x xx xxx xxxx xxx xx xx xxxx x xxx xxxx x xxx x xx

x2 (sepal width)

cl
as

s

(b)

1

1.5

2

2.5

3

0 20 40 60 80
xxxxx xxxxxxxxxx xxx xxxxx xxxxxxxxxxxxxxxxxxxx x xxxxxx

xx xx xxxx xxx xx xx xxx xx xx xxxx xxxx xxx xxxxxxx xxxx xxxxx x

xx xxx xx xx xxxxxxxx xxx xx xx x xxx xx x xxx x xxxx xxxx xxxxxxx

x3 (petal length)

cl
as

s

(c)

1

1.5

2

2.5

3

0 10 20 30
xxxxx xxxxx xxxx x xxxxxx xx xxx xxxxx xx xxxxx xx xxx xxxxxxx

x xxx xx xx x xx xx xx x xx xx xx xx x xx xxx xx x xx xxxxxx xxx xx xxx x

xx xx xxx xx xxx xx xxx x xx xxxx xxxx xx x x xxx x xxx x xxx x xxx x xx

x4 (petal width)

cl
as

s

(d)

Figure 6.10: Plots of classes w.r.t. single input variable (feature).

128

as shown in Figure 6.10 (a) and (b). However, from Figure 6.10 (c) and (d), we notice that

x3 and x4 have more discriminating power since, for instance, x3 = 25 or x4 = 8 can be

used as a threshold to distinguish class 1 from others. These statements can be con�rmed

through the plots of Figure 6.11 which shows the plots of classes with respect to two of the

input variables. Again it is obvious that class 1 can be identi�ed by either x3 or x4. But

for class 2 or 3, the discriminating power combining any two variables does not seem good

enough and we have to rely on the combined discriminating power of three or four variables.

In our simulation, we assume the knowledge obtained from the class-variable plot

(Figure 6.10 and 6.11) is not available, so the number of membership functions on each

variable is set arbitrarily. We perform two experiments on the IRIS data set: experiment 1

has two membership functions on each input variable while experiment 2 has three.

As observed in the previous section, the adoption of the squared error measure

causes a smaller initial misclassi�cation number and less reduction in the misclassi�cation

number in the learning process. On the other hand, when the maximum-type error measure

is chosen, it causes a larger initial misclassi�cation number which decreases rapidly after-

wards. As a result, we can take advantage of both sides and employ a combined approach.

Namely, in order to get a smaller initial misclassi�cation number, we choose the squared

error measure �rst and identify the consequent parameters by the Kalman �lter algorithm

in the �rst half epoch. Then, to achieve a large reduction in the misclassi�cation number,

we switch to the maximum-type error measure after the �rst epoch and the adaptation

proceeds by the gradient descent only. This approach is used for both experiment 1 and 2.

As for the initial parameters for the membership functions, they are set in such a

129

way that the domain intervals (obtained as the range between the minimum and maximum

of each variable in the training data set) are totally covered and adjacent membership

functions have overlappings satisfying �-completeness with � equal to 0:5. Figure 6.12 (a)

and (c) show the initial membership functions for experiment 1 and 2; (b) and (d) are the

membership functions after 200 epochs of adaptation. Since we adopt the maximum-type

error measure after the �rst epoch, the �nal membership functions for both experiments do

not di�er too much from the initial ones.

We apply the same heuristics in Section 3.5 to dynamically adjust the step size

according to the error measures obtained so far. The maximum-type error measure and the

number of misclassi�ed cases for both experiments are demonstrated as functions of epoch

numbers in Figure 6.13. Because of the use of the Kalman �lter algorithm to set up the

initial consequent parameters, the initial misclassi�cation numbers for both experiments

are fairly small (both are below 10) compared to the number of cases to be classi�ed

(150). After 200 epochs of learning, experiment 1 still has one case of misclassi�cation

while experiment 2 can classify all cases correctly. This conforms to our observation on the

scatter plot (Figure 6.11) that three membership functions for each input variable seem to

be the minimum structure to perform the correct classi�cation.

130

20

25

30

35

40

45

40 50 60 70 80

o

o

o
o

o

o

o o

o

o

o

o

oo

o

o

o

o

oo

o

o
o

o
o

o

o
o
o

o
o

o

o
o

o
o

o
o

o

o
o

o

o

o

o

o

o

o

o

o
**

*

*

**

*

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*
*

*

*

*
*

*

**

* *

*

*

*

*

*

*
*

*

*

*

*

*
* *

*

*

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.
.

.

.

.

.

.

.

..

.

.

.

.
.

.. .

.

.
.

.

.

.

.

.

x1 (sepal length)

x
2

 (
se

p
al

 w
id

th
)

(a)

0

20

40

60

80

40 50 60 70 80

oooo o
o

o oo o ooo
o o

ooo
oo oo

o

oo
oo oooo oo oo
o ooo oooo
o

o
o oo oo

**
*

*
** *

*

*

*
*

**

*

*

**
*

*
*

*

*

**
* *

**
*

*
** *

*
* * *

*
**

* *
*

*

*** *

*

*

.

.

.
. .

.

.

.
.

.

.. .
. . . .

..

.

.

.

.

.

.
.

..

. .
.

.

.
.

.
.

. .

.
..
..

..
.. ..

.

x1 (sepal length)
x

3
 (

p
et

al
 l

en
g

th
)

(b)

0

5

10

15

20

25

40 50 60 70 80

oooo o

o
o

oo
o

oo
oo

o

oo
o oo

o

o

o

o

o o

o

oooo

o

o
ooo o

o
o o

oo
o

o

o
o

oo oo

*
* *

*

*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*

* *

*

*

*
*
*

*

*
*

*
*

*

*

*

*

*
*
* *

*

*

.

.

.

.

.
.

.
..

.

.
.

.
.

.
.

.

.

.

.

.

. .

.

.

...

.

.

.
.

.

.
.

.
.

..

.

.
.

.

.

.

.

.
.

.

.

x1 (sepal length)

x
4

 (
p

et
al

 w
id

th
)

(c)

0

20

40

60

80

20 30 40 50

oo oo o
o

ooo o ooo
o o

ooo
ooo o

o

o o
o o oooo o o oo

o o oo o oo o
o

o
o oo oo

**
*

*
** *

*

*

*
*

**

*

*

**
*

*
*

*

*

* *
* *

* *
*

*
** *

*
* **

*
**

* *
*

*

* ***

*

*

.

.

.
. .

.

.

.
.

.

.. .
. . ..

..

.

.

.

.

.

.
.

. .

. .

.
.

.

.
.

.
..

.
..
..

. .
.. . .
.

x2 (sepal width)

x
3

 (
p

et
al

 l
en

g
th

)

(d)

0

5

10

15

20

25

20 30 40 50

oo oo o

o
o
oo

o
oo

oo
o

oo
o oo

o

o

o

o

oo

o

oooo

o

o
oo o o

o
o o

oo
o

o

o
o

oo oo

*
**

*

*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*

**

*

*

*
*
*

*

*
*

*
*

* **
*

*

*

*

*
*

**

*

*

.

.

.

.

.

.

.
..

.

.
.

.
.

.
.

.

.
.

.

.

..

.

.

.. .

.

.

.
.

.

.
.

.
.

..

.

.

.

.

.

.

.

.
.

.

.

x2 (sepal width)

x
4

 (
p

et
al

 w
id

th
)

(e)

0

5

10

15

20

25

0 20 40 60 80

ooooo

o
o
oo
o
oo

oo
o

oo
o oo

o

o

o

o

oo

o

oooo

o

o
oooo
o

oo
oo
o

o

o
o

oooo

*
* *

*

*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*
* *

*

*

*
*

*

*

*
*
*

*

*

*

*

*

*
*
**

*

*

.

.

.

.

.
.

.
..

.

.
.

.
.

.
.

.

.
.

.

.

. .

.

.

...

.

.

.
.

.

.
.

.
.

..

.

.
.

.

.

.

.

.
.

.

.

x3 (petal length)

x
4

 (
p

et
al

 w
id

th
)

(f)

Figure 6.11: Plots of classes w.r.t. two input variables. (o: class 1, *: class 2, .: class 3)

131

0

0.2

0.4

0.6

0.8

1

50 60 70

MF vs. x1

x1(sepal length)

in
it

ia
l

M
F

0

0.2

0.4

0.6

0.8

1

20 30 40

MF vs. x2

x2 (sepal width)

in
it

ia
l

M
F

0

0.2

0.4

0.6

0.8

1

20 40 60

MF vs. x3

x3 (petal length)

in
it

ia
l

M
F

0

0.2

0.4

0.6

0.8

1

10 20

MF vs. x4

x4 (petal width)

in
it

ia
l

M
F

0

0.2

0.4

0.6

0.8

1

50 60 70

MF vs. x1

x1(sepal length)
fi

n
al

 M
F

0

0.2

0.4

0.6

0.8

1

20 30 40

MF vs. x2

x2 (sepal width)

fi
n

al
 M

F

0

0.2

0.4

0.6

0.8

1

20 40 60

MF vs. x3

x3 (petal length)

fi
n

al
 M

F

0

0.2

0.4

0.6

0.8

1

10 20

MF vs. x4

x4 (petal width)

fi
n

al
 M

F
(a) (b)

0

0.2

0.4

0.6

0.8

1

50 60 70

MF vs. x1

x1(sepal length)

in
it

ia
l

M
F

0

0.2

0.4

0.6

0.8

1

20 30 40

MF vs. x2

x2 (sepal width)

in
it

ia
l

M
F

0

0.2

0.4

0.6

0.8

1

20 40 60

MF vs. x3

x3 (petal length)

in
it

ia
l

M
F

0

0.2

0.4

0.6

0.8

1

10 20

MF vs. x4

x4 (petal width)

in
it

ia
l

M
F

0

0.2

0.4

0.6

0.8

1

50 60 70

MF vs. x1

x1(sepal length)

fi
n

al
 M

F

0

0.2

0.4

0.6

0.8

1

20 30 40

MF vs. x2

x2 (sepal width)

fi
n

al
 M

F

0

0.2

0.4

0.6

0.8

1

20 40 60

MF vs. x3

x3 (petal length)

fi
n

al
 M

F

0

0.2

0.4

0.6

0.8

1

10 20

MF vs. x4

x4 (petal width)

fi
n

al
 M

F

(c) (d)

Figure 6.12: Initial and �nal membership functions: (a)(b) experiment 1; (c)(d) experiment

2 .

132

0

2

4

6

8

10

0 50 100 150 200

.

...............................

.

.

.

.

.

.

.

.

.

.

.

.

..

epochs

er
ro

r
m

ea
su

re
/m

is
cl

as
si

fi
ca

ti
o

n (a) experiment 1

0

2

4

6

8

10

0 50 100 150 200

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.

...

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

epochs

er
ro

r
m

ea
su

re
/m

is
cl

as
si

fi
ca

ti
o

n (b) experiment 2

Figure 6.13: Error curves and misclassi�ed case numbers of (a) experiment 1 and (b) ex-

periment 2. (Note that solid lines are maximum-type error measures; the dotted lines are

misclassi�cation numbers.)

133

Chapter 7

Conclusions and Future Directions

7.1 Concluding Remarks

Before the introduction of learning algorithms into the fuzzy inference system, the

relationships between the neural network (NN) and the fuzzy inference system (FIS) can be

viewed as two extreme endpoints on a spectrum of modeling approaches. At one end, FIS

has meaningful representations (fuzzy if-then rules and fuzzy reasoning) derived from human

expertise, but it has no adaptive capability (learning from examples) to take advantage of a

desired input-output data set. At the other end, NN represents a totally di�erent paradigm

with learning capability that adapts its parameters based on desired input-output pairs, but

neither can it accommodate a priori knowledge from human experts, nor can we transform

network con�gurations and connection weights into a meaningful representation to account

for structured knowledge. Conceptually speaking, we may say that FIS is a top-down

approach which employs high-level knowledge (rules) to describe a system, while NN is a

bottom-up approach which uses low-level knowledge (input-output pairs) to tackle the same

134

problem.

However, ever since the introduction of learning rules or adaptive capability into

FIS, FIS has gained an obvious advantage over NN, that is, the knowledge-representation

feature that can both speed up learning (by encoding prior knowledge, in the form of fuzzy

if-then rules, into parameters) and interpret the parameters after learning (by transforming

the parameters back to fuzzy if-then rules). This breakthrough is signi�cant because of the

following:

1. For most applications, prior knowledge and/or human experts do exist and the \rules

of thumb" can be expressed in various forms of fuzzy if-then rules. For a simple ex-

ample, NN needs a couple of learning epochs to solve the XOR problem which is not

linearly separable. However, for FIS, the speci�cation of fuzzy if-then rules and corre-

sponding membership functions to solve the same problem is trivially straightforward.

2. The knowledge base (rule base and database) derived from human experts may be

inconsistent or biased due to personal di�erences, or it could be incomplete in some

regions (ignorant regions) of input space due to the absence of knowledge. Based on

desired input-output pairs, we can employ the learning rules to re�ne the knowledge

base and thus improve the performance of FIS. (Note that the ignorant regions could

cover the whole input space, resulting in the case of rule extraction from scratch.)

3. The structured knowledge representation in FIS is important for both rule-level ma-

nipulations (such as rule consistency checking, rule merging, incremental learning,

etc.) and system-level operations (such as system compositions, modular design,

etc.). Therefore the ability to keep meaningful representation after learning is also

135

crucial for other post-processes. For NN, it is hard to give physical meanings of each

connection weight (especially when the number of layers is large, e.g., more than four)

even when the NN can discover a perfect input-output mapping. For instance, sup-

pose that we successfully employ a 2-1000-1 NN to solve the two-spiral problem, then

how can we bene�t from the obtained parameters and structure to solve a similar

problem but with another added dimension, i.e., a 3-D two-spiral problem (with 2-D

projection the same as the original problem)?

4. The basic learning rule of FIS is of gradient descent type which is the same as that

of NN's. As a result, almost all kinds of new developments of NN's learning algo-

rithms [79, 61, 66, 3, 98, 24, 17] which do not depend on NN's peculiar con�guration

can also be applied to FIS's learning algorithm, and vice versa. This fact allows

these two modeling approaches to bene�t from research �ndings and results in both

literatures.

Neural Networks Conventional FIS Adaptive FIS

Meaningful representation? No Yes Yes

Reasoning mechanism? No Yes Yes

Adaptive capability? Yes No Yes

Hardware implementation? Easier Harder Harder

Table 7.1: Comparisons of NN, FIS and adaptive FIS .

Thus, the demonstrated superiority of FIS to NN is mostly due to the fact that

NN's uniform structure is hard to analyze, making it hard to represent structured knowl-

edge. Quite a few researchers [20, 19, 67, 8, 13] are working on this problem in order to give

appropriate interpretation of NN's con�guration and connection weights, though with lim-

136

ited results for the time being. However, on the other hand, the uniform structure of NN's

do o�er some advantages: they simplify the computation in both learning and application

phases and thus favor VLSI circuit implementations.

Table 7.1 summarizes the comparisons between NN, conventional FIS and adaptive

FIS.

7.2 Future Directions

This work provides a foundation for future expansion of integrated modeling ap-

proaches based on both fuzzy if-then rules (prior knowledge) and input-output pairs (data

set). We shall conclude this dissertation with several crucial and promising research direc-

tions along these lines.

� Constrained membership functions : As shown in the simulations in Section 3.6, 4.3

and 5.4, the initial membership functions are always set in such a way that the universe

of discourse is covered with minimal membership value equal to 0.5. This setting is

in spirit close to human concepts of reasonable distribution of membership functions.

However, the membership functions after learning do not always conform to this

guideline used for setting initial membership functions. This fact indicates that the

adaptation, though almost always leading to a good function approximator, does not

always lead to a parameter set that allows for intuitive and reasonable interpretation

for humans. To remedy this, a constrained gradient method [105] has to be invoked

for the adaptation process.

137

� Structure-level adaptation: Up to now, the adaptation (learning) process is only con-

cerned with parameter-level adaptation within �xed structures. This is satisfactory

only on the condition that we have the ability to set up an appropriate structure

(premise structure, consequent structure, rule number, etc.) before the learning takes

place. For large-scale problems, this is not always possible, and structure-level adap-

tation has to be introduced to reduce the cost of trial-and-error. The counterpart

of this in NN, such as cascaded-correlation neural nets [18] or FUNNET (FUNction

NETwork) [50], has been investigated for some time. Usually the structure-level adap-

tation for NN's can be classi�ed into either constructive learning (start learning with

a small NN and add neurons and/or connections if necessary) or destructive learning

(start learning with a large NN and cut out connections and/or neurons if possible).

We believe the structure-level adaptation for FIS can be pursued similarly.

� On-line self-learning neuro-fuzzy controllers : The self-learning fuzzy controller pro-

posed in Chapter 5 needs a plant model before the learning can be started; therefore it

falls into the category of o�-line learning . For a real-world problem, the plant model

is not always available and the learning has to be performed in an on-line manner.

Thus it would be desirable if the TBP proposed in Chapter 5 has an on-line version.

One way to achieve this is to establish the identi�cation of the plant as part of the

learning process such that the plant model and the controller are identi�ed simultane-

ously. The other way is to incorporate the reinforcement learning [4, 25, 102, 49, 11],

a well-known on-line learning paradigm derived from animal behavior, as a part of

our original learning scheme.

138

� Stability analysis for neuro-fuzzy controllers : The lack of stability analysis for both

neural networks and fuzzy controllers is the major reason why conventional control

literature is resistant to these controllers. Due to the success of fuzzy control, the

investigation of stability in fuzzy control is already underway [12, 10, 44, 37]. We

think that the establishment of stability analysis can greatly expand the application

domains of neuro-fuzzy controllers.

139

Appendix A

Appendix

Here we list the �nal 16 fuzzy if-then rules in example 4 of Chapter 4 which predicts

the Mackey-Glass chaotic time series. Suppose that the i-th input variable is assigned two

linguistic values SMALL

i

and LARGE

i

, then the fuzzy if-then rules after training can be

expressed as:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

If x(t� 18) is SMALL

1

and x(t� 12) is SMALL

2

and x(t� 6) is SMALL

3

and x(t) is SMALL

4

; then x(t + 6) = ~c

1

�

~

X

If x(t� 18) is SMALL

1

and x(t� 12) is SMALL

2

and x(t� 6) is SMALL

3

and x(t) is LARGE

4

; then x(t + 6) = ~c

2

�

~

X

If x(t� 18) is SMALL

1

and x(t� 12) is SMALL

2

and x(t� 6) is LARGE

3

and x(t) is SMALL

4

; then x(t + 6) = ~c

3

�

~

X

If x(t� 18) is SMALL

1

and x(t� 12) is SMALL

2

and x(t� 6) is LARGE

3

and x(t) is LARGE

4

; then x(t + 6) = ~c

4

�

~

X

If x(t� 18) is SMALL

1

and x(t� 12) is LARGE

2

and x(t � 6) is SMALL

3

and x(t) is SMALL

4

; then x(t + 6) = ~c

5

�

~

X

If x(t� 18) is SMALL

1

and x(t� 12) is LARGE

2

and x(t � 6) is SMALL

3

and x(t) is LARGE

4

; then x(t + 6) = ~c

6

�

~

X

If x(t� 18) is SMALL

1

and x(t� 12) is LARGE

2

and x(t � 6) is LARGE

3

and x(t) is SMALL

4

; then x(t + 6) = ~c

7

�

~

X

If x(t� 18) is SMALL

1

and x(t� 12) is LARGE

2

and x(t � 6) is LARGE

3

and x(t) is LARGE

4

; then x(t + 6) = ~c

8

�

~

X

If x(t� 18) is LARGE

1

and x(t � 12) is SMALL

2

and x(t � 6) is SMALL

3

and x(t) is SMALL

4

; then x(t + 6) = ~c

9

�

~

X

If x(t� 18) is LARGE

1

and x(t � 12) is SMALL

2

and x(t � 6) is SMALL

3

and x(t) is LARGE

4

; then x(t + 6) = ~c

10

�

~

X

If x(t� 18) is LARGE

1

and x(t � 12) is SMALL

2

and x(t � 6) is LARGE

3

and x(t) is SMALL

4

; then x(t + 6) = ~c

11

�

~

X

If x(t� 18) is LARGE

1

and x(t � 12) is SMALL

2

and x(t � 6) is LARGE

3

and x(t) is LARGE

4

; then x(t + 6) = ~c

12

�

~

X

If x(t� 18) is LARGE

1

and x(t � 12) is LARGE

2

and x(t� 6) is SMALL

3

and x(t) is SMALL

4

; then x(t + 6) = ~c

13

�

~

X

If x(t� 18) is LARGE

1

and x(t � 12) is LARGE

2

and x(t� 6) is SMALL

3

and x(t) is LARGE

4

; then x(t + 6) = ~c

14

�

~

X

If x(t� 18) is LARGE

1

and x(t � 12) is LARGE

2

and x(t� 6) is LARGE

3

and x(t) is SMALL

4

; then x(t + 6) = ~c

15

�

~

X

If x(t� 18) is LARGE

1

and x(t � 12) is LARGE

2

and x(t� 6) is LARGE

3

and x(t) is LARGE

4

; then x(t + 6) = ~c

16

�

~

X

(A.1)

140

where

~

X = [x(t � 18); x(t � 12); x(t � 6); x(t); 1] and ~c

i

is the i-th row of the following

consequent parameter matrix C:

C =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0:2167 0:7233 �0:0365 0:5433 0:0276

0:2141 0:5704 �0:4826 1:2452 �0:3778

�0:0683 0:0022 0:6495 2:7320 �2:2916

�0:2616 0:9190 �2:9931 1:9467 1:6555

�0:3293 �0:8943 1:4290 �1:6550 2:3735

2:5820 �2:3109 3:7925 �5:8068 4:0478

0:8797 �0:9407 2:2487 0:7759 �2:0714

�0:8417 �1:5394 �1:5329 2:2834 2:4140

�0:6422 �0:4384 0:9792 �0:3993 1:5593

1:5534 �0:0542 �4:7256 0:7244 2:7350

�0:6864 �2:2435 0:1585 0:5304 3:5411

�0:3190 �1:3160 0:9689 1:4887 0:7079

�0:3200 �0:4654 0:4880 �0:0559 0:9622

4:0220 �3:8886 1:0547 �0:7427 �0:4464

0:3338 �0:3306 �0:5961 1:1220 0:3529

�0:5572 0:9190 �0:8745 2:1899 �0:9497

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(A.2)

The linguistic labels SMALL

i

and LARGE

i

(i=1 to 4) are de�ned by the bell

membership function (with di�erent parameters a, b and c):

�

A

(x) =

1

1 + [(

x�c

a

)

2

]

b

: (A.3)

These membership functions are shown in Figure 4.22. The following table lists the linguistic

labels and the corresponding consequent parameters in equation (A.3):

141

A a b c

SMALL

1

0.1790 2.0456 0.4798

LARGE

1

0.1584 2.0103 1.4975

SMALL

2

0.2410 1.9533 0.2960

LARGE

2

0.2923 1.9178 1.7824

SMALL

3

0.3798 2.1490 0.6599

LARGE

3

0.4884 1.8967 1.6465

SMALL

4

0.2815 2.0170 0.3341

LARGE

4

0.1616 2.0165 1.4727

Table A.1: Table of premise parameters in example 4.

142

Bibliography

[1] D. F. Andrews and A. M. Herzberg. Data: a collection of problems from many �elds

for the student and research worker. Springer-Verlag, 1985.

[2] K. J. Astr�om and B. Wittenmark. Computer Controller Systems: Theory and Design.

Prentice-Hall, 1984.

[3] N. Baba. A new approach for �nding the global minimum of error function of neural

networks. Neural Networks, 2:367{373, 1989.

[4] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that

can solve di�cult learning control problems. IEEE Trans. on Systems, Man, and

Cybernetics, 13(5):834{846, 1983.

[5] H. R. Berenji. Re�nement of approximate reasoning-based controllers by reinforce-

ment learning. In Proc. of the Eighth International Workshop of Machine Learning,

Evanston, Illinois, June 1991.

[6] S. M. Botros and C. G. Atkeson. Generalization properties of radial basis functions.

In D. S. Touretzky, editor, Advances in Neural Information Processing Systems III,

pages 707{713. Morgan Kaufmann Publishers, San Mateo, CA, 1991.

143

[7] R. H. Cannon. Dynamics of Physical Systems. McGraw-Hill, New York, 1967.

[8] L.-W. Chan. Analysis of the internal representations in neural networks for ma-

chine intelligence. In Proc. of the Ninth National Conference on Arti�cial Intelligence

(AAAI-91), pages 578{583, July 1991.

[9] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least squares learning algo-

rithm for radial basis function networks. IEEE Trans. on Neural Networks, 2(2):302{

309, March 1991.

[10] Y.-Y. Chen. The global analysis of fuzzy dynamical systems. PhD thesis, University

of California at Berkeley, 1989.

[11] Y.-Y. Chen. A self-learning fuzzy controller. In Proc. of IEEE international conference

on fuzzy systems, March 1992.

[12] Y.-Y. Chen and T.-C. Tsao. A description of the dynamic behavior of fuzzy systems.

IEEE Trans. on Systems, Man, and Cybernetics, 19(4):745{755, July 1989.

[13] K. J. Cios and N. Liu. A machine learning method for generation of a neural network

architecture: a continuous ID3 algorithm. IEEE Trans. on Neural Networks, 3(2):280{

291, March 1992.

[14] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals, and Systems, 2:303{314, 1989.

[15] D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications. Academic

press, New York, 1980.

144

[16] D. Dubois and H. Prade. New results about properties and semantics of fuzzy set

theoretic operators. In P. P. Wang and S. K. Chang, editors, Fuzzy Sets: Theory and

Applications to Policy Analysis and Information Systems, pages 59{75. Plenum, New

York, 1980.

[17] S. E. Fahlman. Faster-learning variations on back-propagation: an empirical study. In

D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proc. of the 1988 Connectionist

Models Summer School, pages 38{51, Carnegic Mellon University, 1988.

[18] S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In D. S.

Touretzky, G. Hinton, and T. Sejnowski, editors, Advances in Neural Information

Processing Systems II. Morgan Kaufmann, 1990.

[19] Limin Fu. Rule learning by searching on adapted nets. In Proc. of the Ninth National

Conference on Arti�cial Intelligence (AAAI-91), pages 590{595, July 1991.

[20] S. Gallant. Connectionist expert systems. Communication of Association for Com-

puting Maching, 31(2):152{169, February 1988.

[21] G. C. Goodwin and K. S. Sin. Adaptive �ltering prediction and control. Prentice-Hall,

Englewood Cli�s, N.J., 1984.

[22] S. S. Haykin. Adaptive �lter theory. Prentice Hall, Englewood Cli�s, NJ, 2nd edition,

1991.

[23] S. Horiawa, T. Furuhashi, S. Ouma, and Y. Uchikawa. A fuzzy controller using a

neural network and its capability to learn expert's control rules. In Proc. of the

145

International Conference on Fuzzy Logic and Neural Networks, pages 103{106, Japan,

1990.

[24] S.-C. Huang and Y.-F. Huang. Learning algorithms for perceptrons using back-

propagation with selective updates. IEEE Control Systems Magazine, pages 56{61,

April 1990.

[25] W. T. Miller III, R. S. Sutton, and P. J. Werbos, editors. Neural Networks for Control.

Massachusetts Institute of Technology, 1990.

[26] A. G. Ivakhnenko. Polynomial theory of complex systems. IEEE Trans. on Systems,

Man, and Cybernetics, 1(4):364{378, October 1971.

[27] J.-S. Roger Jang. Fuzzy modeling using generalized neural networks and Kalman

�lter algorithm. In Proc. of the Ninth National Conference on Arti�cial Intelligence

(AAAI-91), pages 762{767, July 1991.

[28] J.-S. Roger Jang. Rule extraction using generalized neural networks. In Proc. of the

4th IFSA World Congress, pages 82{86 (in the Volume for Arti�cial Intelligence),

July 1991.

[29] J.-S. Roger Jang. Self-learning fuzzy controller based on temporal back-propagation.

IEEE Trans. on Neural Networks, 3(5):714{723, September 1992.

[30] J.-S. Roger Jang. ANFIS: Adaptive-network-based fuzzy inference systems. IEEE

Trans. on Systems, Man, and Cybernetics, 23(03):665{685, May 1993.

146

[31] R. D. Jones, Y. C. Lee, C. W. Barnes, G. W. Flake, K. Lee, and P. S. Lewis. Function

approximation and time series prediction with neural networks. In Proc. of IEEE

International Joint Conference on Neural Networks, pages I{649{665, 1990.

[32] V. Kadirkamanathan, M. Niranjan, and F. Fallside. Sequential adaptation of radial

basis function neural networks. In D. S. Touretzky, editor, Advances in Neural In-

formation Processing Systems III, pages 721{727. Morgan Kaufmann Publishers, San

Mateo, CA, 1991.

[33] R. E. Kalman. A new approach to linear �ltering and prediction problems. Journal

of Basic Engineering, pages 35{45, March 1960.

[34] L. V. Kantorovich and G. P. Akilov. Functional analysis. Pergamon, Oxford, 2nd

edition, 1982.

[35] A. Kaufmann. Introduction to Theory of Fuzzy Subsets. Academic, New York, 1975.

[36] A. Kaufmann and M. M. Gupta. Introduction to Fuzzy Arithmetic. Van Nostrand

Reinhold Company, 1985.

[37] S. Kawamoto, K. Tada, A. Ishigame, and T. Taniguchi. An approach to stability

analysis of second order fuzzy systems. In Proc. of IEEE international conference on

fuzzy systems, pages 1427{1434, March 1992.

[38] J. Keyes. AI on a chip. AI Expert Magazine, pages 33{38, April 1991.

147

[39] M. S. Klassen and Y.-H. Pao. Characteristics of the functional-link net: A higher order

delta rule net. In IEEE Proc. of the International Conference on Neural Networks,

San Diego, June 1988.

[40] T. Kondo. Revised GMDH algorithm estimating degree of the complete polyno-

mial. Tran. of the Society of Instrument and Control Engineers, 22(9):928{934, 1986.

(Japanese).

[41] B. Kosko. Neural networks and fuzzy systems: a dynamical systems approach. Prentice

Hall, Englewood Ci�s, NJ, 1991.

[42] B. Kosko. Neural networks for signal processing. Prentice Hall, Englewood Ci�s, NJ,

1991.

[43] K. J. Lang and M. J. Witbrock. Learning to tell two spirals apart. In D. Touretzky,

G. Hinton, and T. Sejnowski, editors, Proc. of the 1988 Connectionist Models Summer

School, pages 52{59, Carnegic Mellon University, 1988.

[44] G. Langari. A framework for analysis and synthesis of fuzzy linguistic control systems.

PhD thesis, University of California at Berkeley, 1990.

[45] A. S. Lapedes and R. Farber. Nonlinear signal processing using neural networks: pre-

diction and system modeling. Technical Report LA-UR-87-2662, Los Alamos National

Laboratory, Los Alamos, New Mexico 87545, 1987.

[46] C.-C. Lee. Fuzzy logic in control systems: fuzzy logic controller-part 1. IEEE Trans.

on Systems, Man, and Cybernetics, 20(2):404{418, 1990.

148

[47] C.-C. Lee. Fuzzy logic in control systems: fuzzy logic controller-part 2. IEEE Trans.

on Systems, Man, and Cybernetics, 20(2):419{435, 1990.

[48] C.-C. Lee. Intelligent control based on fuzzy logic and neural network theory. In Proc.

of the Int. Conf. on Fuzzy Logic and Neural Networks, Iizuka, pages 759{764, 1990.

[49] C.-C. Lee. A self-learning rule-based controller employing approximate reasoning and

neural net concepts. International Journal of Intelligent Systems, 5(3):71{93, 1991.

[50] T.-C. Lee. Structure level adaptation for arti�cial neural networks. Kluwer Academic

Publishers, 1991.

[51] C.-T. Lin and C. S. G. Lee. Neural-network-based fuzzy logic control and decision

system. IEEE Trans. on Computers, 40(12):1320{1336, December 1991.

[52] R. P. Lippmann. An introduction to computing with neural networks. IEEE Acoustics,

Speech, and Signal Processing Magazine, 4(2):4{22, 1987.

[53] L. Ljung. System identi�cation: theory for the user. Prentice-Hall, Englewood Cli�s,

N.J., 1987.

[54] M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems.

Science, 197:287{289, July 1977.

[55] M. Minsky and S. Papert. Perceptrons. MIT Press, MA, 1969.

[56] J. Moody. Fast learning in multi-resolution hierarchies. In D. S. Touretzky, editor,

Advances in Neural Information Processing Systems I, chapter 1, pages 29{39. Morgan

Kaufmann, San Mateo, CA, 1989.

149

[57] J. Moody and C. Darken. Learning with localized receptive �elds. In D. Touretzky,

G. Hinton, and T. Sejnowski, editors, Proc. of the 1988 Connectionist Models Summer

School. Carnegie Mellon University, Morgan Kaufmann Publishers, 1988.

[58] J. Moody and C. Darken. Fast learning in networks of locally-tuned processing units.

Neural Computation, 1:281{294, 1989.

[59] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D. M. Hummels. On the

training of radial basis function classi�ers. Neural Networks, 5(4):595{603, 1992.

[60] K. S. Narendra and K. Parthsarathy. Identi�cation and control of dynamical systems

using neural networks. IEEE Trans. on Neural Networks, 1(1):4{27, 1990.

[61] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural networks

by choosing initial values of the adaptive weights. In Proc. of IEEE International

Joint Conference on Neural Networks, pages III{21{26, 1990.

[62] D. H. Nguyen and B. Widrow. Neural networks for self-learning control systems.

IEEE Control Systems Magazine, pages 18{23, April 1990.

[63] N.J. Nilsson. Learning machines: foundations of trainable pattern classifying systems.

McGraw-Hill, New York, 1965.

[64] Y.-H. Pao. Adaptive Pattern Recognition and Neural Networks, chapter 8, pages 197{

222. Addison-Wesley Publishing Company, Inc., 1989.

[65] D. B. Parker. Learning logic. Invention Report S81-64, File 1, O�ce of Technology

Licensing, Standford University, October 1982.

150

[66] D. B. Parker. Optimal algorithms for adaptive networks: Second order back propa-

gation, second order direct propagation, and second order Hebbian learning. In Proc.

of IEEE International Conference on Neural Networks, pages 593{600, 1987.

[67] L. Y. Pratt, J. Mostow, and C. A. Kamm. Direct transfer of learned information

among neural networks. In Proc. of the Ninth National Conference on Arti�cial

Intelligence (AAAI-91), pages 584{589, July 1991.

[68] J. R. Quinlan. Learning e�cient classi�cation procedures and hteir application to

chess and games. In R. S. Michalski, J. G. Carbonell, and T. M Mitchell, editors,

Maching Learning, chapter 15, pages 463{483. Morgan Kaufmann, Los Altos, 1983.

[69] III R. S. Crowder _ Predicting the Mackey-Glass timeseries with cascade-correlation

learning. In D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proc. of the 1990

Connectionist Models Summer School, pages 117{123, Carnegic Mellon University,

1990.

[70] A. K. Rigler, J. M. Irvine, and T. P. Vogl. Rescaling of variables in back propagation

learning. Neural Networks, 4(2):225{229, 1991.

[71] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the theory of brain

mechanisms. Spartan, New York, 1962.

[72] H. L. Royden. Real analysis. Macmillan, New York, 2nd edition, 1968.

[73] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations

by error propagation. In D. E. Rumelhart and James L. McClelland, editors, Parallel

151

Distributed Processing: Explorations in the Microstructure of Cognition, volum 1,

chapter 8, pages 318{362. The MIT Press, 1986.

[74] T. D. Sanger. A tree-structured adaptive network for function approximate in high-

dimensional spaces. IEEE Trans. on Neural Networks, 2(2):285{293, March 1991.

[75] B. Schweizer and A. Sklar. Associative functions and abstract semi-groups. Publ.

Math. Debrecen, 10:69{81, 1963.

[76] S. Shah, F. Palmieri, and M. Datum. Optimal �ltering algorithms for fast learning in

feedforward neural networks. Neural Networks, 5(5):779{787, 1992.

[77] S. Shar and F. Palmieri. MEKA-a fast, local algorithm for training feedforward neural

networks. In Proc. of International Joint Conference on Neural Networks, pages III

41{46, 1990.

[78] J. M. Sibigtroth. Implementing fuzzy expert rules in hardware. AI Expert Magazine,

pages 25{31, April 1992.

[79] S. Singhal and L. Wu. Training multilayer perceptrons with the extended kalman

algorithm. In David S. Touretzky, editor, Advances in neural information processing

systems I, pages 133{140. Morgan Kaufmann Publishers, 1989.

[80] S. M. Smith and D. J. Comer. Automated calibration of a fuzzy logic controller using

a cell state space algorithm. IEEE Control Systems Magazine, 11(5):18{28, August

1991.

152

[81] P. Strobach. Linear prediction theory: a mathematical basis for adaptive systems.

Springer-Verlag, 1990.

[82] M. Sugeno. Fuzzy measures and fuzzy integrals: a survey. In M. M. Gupta, G. N.

Saridis, and B. R. Gaines, editors, Fuzzy Automata and Decision Processes, pages

89{102. North-Holland, New York, 1977.

[83] M. Sugeno and G. T. Kang. Structure identi�cation of fuzzy model. Fuzzy Sets and

Systems, 28:15{33, 1988.

[84] C.-T. Sun. Rulebase structure identi�cation in an adaptive network based fuzzy

inference system. IEEE Trans. on Fuzzy Systems, 2(1), 1994. (Forthcoming).

[85] C.-T Sun and J.-S. Roger Jang. Adaptive network based fuzzy classi�cation. In Proc.

of the Japan-U.S.A. Symposium on Flexible Automation, July 1992.

[86] C.-T. Sun and J.-S. Roger Jang. A neuro-fuzzy classi�er and its applications. In Proc.

of IEEE international conference on fuzzy systems, San Francisco, March 1993.

[87] C.-T. Sun, J.-S. Roger Jang, and C.-Y. Fu. Neural network analysis of plasma spectra.

In Proc. of the International Conference on Arti�cial Neural Networks, Amsterdam,

September 1993.

[88] H. Takagi and I. Hayashi. Arti�cial-neural-network-driven fuzzy reasoning. In Proc. of

International Workshop on Fuzzy System Applications, pages 217{218, August 1988.

[89] H. Takagi and I. Hayashi. NN-driven fuzzy reasoning. International Journal of Ap-

proximate Reasoning, 5(3):191{212, 1991.

153

[90] T. Takagi and M. Sugeno. Derivation of fuzzy control rules from human operator's

control actions. Proc. of the IFAC Symp. on Fuzzy Information, Knowledge Repre-

sentation and Decision Analysis, pages 55{60, July 1983.

[91] T. Takagi and M. Sugeno. Fuzzy identi�cation of systems and its applications to

modeling and control. IEEE Trans. on Systems, Man, and Cybernetics, 15:116{132,

1985.

[92] M. Togai and H. Watanabe. Expert system on a chip: an engine for real-time approx-

imate reasoning. IEEE Expert, pages 55{62, 1986. Fall issue.

[93] Y. Tsukamoto. An approach to fuzzy reasoning method. In Madan M. Gupta, Ram-

mohan K. Ragade, and Ronald R. Yager, editors, Advances in Fuzzy Set Theory and

Applications, pages 137{149. North-Holland, Amsterdam, 1979.

[94] L.-X. Wang. Fuzzy systems are universal approximators. In Proc. of the IEEE Inter-

national Conference on Fuzzy Systems, San Diego, March 1992.

[95] L.-X. Wang and J. M. Mendel. Generating fuzzy rules from numerical data, with

applications. Technical Report USC-SIPI-169, Signal and Image Processing Institute,

Univ. of Southern California, Los Angeles, 1990.

[96] L.-X. Wang and J. M. Mendel. Back-propagation fuzzy systems as nonlinear dynamic

system identi�ers. In Proc. of the IEEE International Conference on Fuzzy Systems,

San Diego, March 1992.

154

[97] L.-X. Wang and J. M. Mendel. Fuzzy basis function, universal approximation, and

orthogonal least squares learning. IEEE Trans. on Neural Networks, 3(5):807{814,

September 1992.

[98] R. L. Watrous. Learning algorithms for connectionist network: applied gradient meth-

ods of nonlinear optimization. In Proc. of IEEE International Conference on Neural

Networks, pages 619{627, 1991.

[99] A. A. Weigend, D. E. Rumelhart, and B. A. Huberman. Back-propagation, weight-

elimination and time series prediction. In D. Touretzky, G. Hinton, and T. Sejnowski,

editors, Proc. of the 1990 Connectionist Models Summer School, pages 105{116,

Carnegic Mellon University, 1990.

[100] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization by weight-

elimination with application to forecasting. In D. S. Touretzky, editor, Advances in

Neural Information Processing Systems III, pages 875{882. Morgan Kaufmann, San

Mateo, CA, 1991.

[101] P. Werbos. Beyond regression: New tools for prediction and analysis in the behavioral

sciences. PhD thesis, Harvard University, 1974.

[102] P. J. Werbos. An overview of neural networks for control. IEEE Control Systems

Magazine, 11(1):40{41, January 1991.

[103] B. Widrow and D. Stearns. Adaptive Signal Processing. Prentice-Hall, Englewood

Cli�s, N.J., 1985.

155

[104] B. Widrow and R. Winter. Neural nets for adaptive �ltering and adaptive pattern

recognition. IEEE Computer, pages 25{39, March 1988.

[105] D. A. Wismer and R. Chattergy. Introduction to nonlinear optimization: a problem

solving approach, chapter 6, pages 139{162. North-Holland Publishing Company,

1978.

[106] R. Yager. On a general class of fuzzy connectives. Fuzzy Sets and Systems, 4:235{242,

1980.

[107] T. Yamakawa. High-speed fuzzy controller hardware systems: the mega-FIPS ma-

chine. Information Sciences, 45:113{128, 1988.

[108] T. Yamakawa and H. Kabuo. A programmable fuzzi�er integrated circuit-synthesis,

design and fabrication. Information Sciences, 45:75{112, 1988.

[109] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338{353, 1965.

[110] L. A. Zadeh. Outline of a new approach to the analysis of complex systems and deci-

sion processes. IEEE Trans. on Systems, Man, and Cybernetics, 3(1):28{44, January

1973.

[111] L. A. Zadeh. Fuzzy logic. Computer, 1(4):83{93, 1988.

[112] H. J. Zimmermann, editor. Fuzzy Set Theory and Its Applications. Kluwer Academic,

Boston, 1985.

[113] H. J. Zimmermann. Fuzzy Sets, Decision Making, and Expert Systems. Kluwer Aca-

demic Publishers, 1987.

