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Abstract 
This paper presents an innovative approach to the structure deterinination problem in fuzzy modeling. 

By using the well-known CART (classification and regression tree) algorithm as a quick preprocess, the 
proposed method can roughly estimate the structure (numbers of membership functions and number of 
fuzzy rules, etc.) of a fuzzy inference system; then the parameter identification is carried out by the 
hybrid learning scheme developed in our previous work [3, 2, 51. Morevoer, the identified fuzzy inference 
system has the property that the total of firing strengths is always equal to one; this speeds up learning 
processes and reduces round-off errors. 

1 Introduction 
E’llzzy modeling [ll, 101 is a new branch of syst,em it1ent)ification which concerns with the construction of a 
fnzzy inference system (or fuzzy model) that, can  predict and hopefully explain the behavior of an unknown 
system described by a set of sample d a h .  Two primary hsks  of fuzzy modeling are structure determi- 
nation and parameter identification; the former determines t,hr iiiimlwrs of membership fiinctions and 
fiizzy if-then rules while the latter ident,ifies a feasible set. of paramet,ers iinder the given strnct,ure. 

To tackle the problem of paramet,er itlentification, we ha.ve proposed the ANFIS (Adaptive-Network- 
based Fuzzy Inference System) architecture [ 3 ,  2,  51 t,liat> can itlent,ify a feasible set, of parameters by a hybrid 
learning rule combining the lmckpropagat,ion gradient. tlescentf antl t,lw le,zst,-sclnares method. Applications 
and properties of ANFIS were fiirther invrst,igat,etl in [4, 61. However, t,lie prol)lem of st,ructure determination 
was not solved formally. 

Based on the CART (classification and regression t,ree) algorit,hni, this paper proposes a quick method to 
solve the problem of st,ruct,ure determination. The proposed method generat.es a t,ree partition of tohe input 
space, which relieves the problem of “curse of dimensionalit,y” (numlwr of rilles goes up exponentially with 
number of inputs) associated with grid part,it,ion. Moreover, t,he resiilt,ing ANFIS is more efficient because 
of its implicit, weight normalization. 

This paper is organized into five sections. In the next, sect-ion, t>he I)asics of ANFIS is introduced. Section 
3 explains briefly the CART algorit>hm. The proposed iiiet,liotl of stmict,iirr determination and t,he new 
ANFIS architecture are detailed in section 4. Sect,ion 5 givrs a coiicliitliiig remark. 

2 ANFIS 
This section int,rotluces t,he basic architectmure ant1 the liyl>ritl learning rille of ANFIS. For a detailed coverage, 
see [2, 51. 

Considering a first-order TSK (Takagi, Sugeno and Kang) fuzzy inference syst,em [ll, 101 which contains 
t,wo rules: 

Rule 1: If X is A I  antl Y is B1, then fi = p 1 r  + q l y  + P I ,  
Rule 2: If X is A2 and Y is Bg, t,hen fz = p z r  + q 2 y  + q. 

(If f l  and fi are constants instead of linear ecliiat,ions, t,heii we have zero-order TSK fuzzy model.) Figure l(a) 
and (b) illustrate the fuzzy reasoning mechanism and the corresponding ANFIS architecture, respectively. 
Node functions in the same layer of ANFIS are of t,he same function family: as described below. (Note that 
0; denotes the out,put of the i-tli node in layer j.) 
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Figure 1: ( a )  First-order TSK fii.tzy modt1; ( b )  corr1spo11d271y A N F I S  architcct~ire.  

1, =p,x+q,y+r, 

4 
Wl r , = w + e y + r *  = Y r l +  W*f, 

Layer 1 Each node in this layer generates a membership grades of a linguistic lahel. For instance, the node 
function of the i-th node might lw 

where .T is t,he input t,o node i; A; is t,he lingnist,ic lalwl ( . w u / /  , In7gr , e t c . )  associat,ed wit,h t,his node; 
and {ai, b , ,  c;} is t.he parainet,er set, t.1ia.t changes t.lie sliapes of the nieiiilwrsliip fiinct,ion. Paramders  
in this layer are referred t,o as talle p7.f 7 n i . s c  p u r . r r 7 ~ f  7' .$ .  

Layer 2 Each node in this layer calcnlat,es the firing st.reiigth of each rule via miiIt.iplicat~ion: 

0: = ' f f l i  = / / A , ( , f ' )  x / / B , ( ? / ) ,  = 1 , 2 .  ( 2 )  

Layer 3 The i-th node of this layer calciilatses t.lie ratio of tllr i-t*li r~ile's firing st,rengt,h to the snni of all 
rules' firing st,rengt,hs: 

(3) 
'Ill; 

0; = Ea = ~ i =  1 , 2 .  
? t i ]  + Ill2 ' 

Layer 4 Node i in this layer has t,he following notlr fniict,ioii 

0; = ZifZ = Tilj(pi:r + qiy + V i ) ,  (4) 

where 
be referred t,o as t,he c o n s ~ q v r ~ r l  p a 7 ~ 1 , ? r r f f f 7 . . ~ .  

is t,he ont,put. of layer 3,  and { p i ,  q i ,  r t }  is i.he paramet,er set.. Paramet,ers in this layer will 

Layer 5 The single node in t,liis layer coiiipiit,es t,lir overall oiit,piit, as t,lw siimiiiatioii of all incoming signals: 

Thus we have constmct,etl an adapt.ivr net,work in Figlire I (  1)) wliicli is fniict,ionally equivalent, to a fuzzy 
inference system in Figure l(a). This atlapt,ive network is called ANFIS, wliicli st.ands for adapt,ive-net,work- 
based fuzzy inference syst,ems. 

The basic learning rule of ANFIS is t,hr I,ack-i)roI,agat,ioii gradient, clescent. [I'L], which calculates error 
signals (defined as t,he derivat,ive of t,he sqnaretl error wit,h respect, t,o each node's ont,piit,) recursively from 
t,he outputp layer backward t,o t,he inpiit, nodes. This learning rule is exact.ly the same as tshe hack-propagation 
learning rille used in t,he t,he coniiiioii fertlforwartl neural net.works [I)]. 

From t,he ANFIS archit,ect,ure in Fignrr 1, it. is ol,servrtl t,liat, giveii t,hr values of premise paramet,rrs, i.he 
overall out,put, f can he expressed as a liiiear ronil)iiiat ioiis of tlir coiiseclurnt~ paraniet.ers: 

Based on t,his ol,servat,ioii, we have proposed a hyliritl learning algorit l im [2, 51 wliich combines the gradient, 
descent, and t.he least-squares met.liot1 t,o fiiltl i~ feasilile srt of paraiiieters. Both oil-line and off-line learning 
paradigms are slipportmecl, see [5]  for  di>t,aiIs. 
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3 Decision Tree and CART Algorithm 
A. Decision Tree 

A binary decision tree is a tree structure that consists of internal nodes (with two children) and terminal 
nodes (without children). Each internal node is associated with a decision function to indicate which node 
to visit next; while each terminal node shows the output of a given input vector that leads the visit t o  this 
node. For classification problems, each terminal node contains an alphabet that, indicates the predicted class 
of a given feature vector. In contract,, for regression problems, the terminal nodes usually contain a constant 
that is the output value of the given input vector. Figure 2 (a) is a typical binary decision tree for regression 
purpose, where the inputs are t and y and the output is z .  Obviously the decision tree partitions the input 
space into four nonoverlapping rectangular regions (see Figure 2 (b)), each is assigned a constant fi as the 
outp i t  value. Figure 3 (a) is the surface plot of the overall input-output, behavior, with a = 6, b = 7,  c = 3, 
f l  = 9, fi = 5,  f3 = 3 and f4 = 1. 

Figure 2 (11) A hincrry dtrisrirn t r f t  o i r d  ( h )  i t s  i n p i i f  spcrcf p a r t i t i o n i n g .  

If we assign a linear function of the input variables to each terminal node, then the resulting surface will 
be piecewise linear as shown in Figilrr 3 (h) ,  where f i  = i3.r + 4y + 20, fz = 6~ - y + 5, f3 = - 2 ~  + 2y + 10, 
ant1 f4 = .LT - y - 20 

Figlire 3: Inpiit-otrtpii t  hcl~uoior:s of clfcisiorr t7y.c.s iuitli t c r . m i n a l  n.oc1f.q rharrrr l t r i zed  by c o n s t a n t s  a n d  l i n e a r  
tqirations, r e s p e r t i a e l y  . 

Apparently the decision t,ree is a very easy-to-int,erpret, representation of a nonlinear input-output map- 
ping. However, the disconthiit,y at, the decision boundaries (say, T = 6 in Figure 3 (a) and (b)) is unnatural 
and it brings undesired effects to t.he overall regression and generalization. 

B. Classification and Regression Trees (CART) Algoritliiii 

The use of treebased regression goes Imck to the AID (Automatic Interaction Detection) program of 
Morgan and Sonqiiist, [SI. A c.omplete treatmmento of this met,hodology was developed by Breiman et al. [l] 
in their book entitled Classification and Regression Trees; tphiis the methodology is often referred to as 
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the CART algorithm. We will briefly summarize our use of the CAR,T procedure to build a regression tree; 
the reader is directed to  the cited reference for the complete CART methodology. 

To construct an appropriate regression t,ree, CART first grows the t,ree extensively based on the training 
data set, and then prunes the tree back based on a minimum cost-complexity principle [l]. The result is a 
sequence of trees of various sizes; the final tree is picked up as tlhe tree t,hat, performs best when the test 
data  set is presented. 

More specifically, CART grow a regression t,ree by determining a siic.cession of splits (decision boundaries) 
of a sample of training dat,a. Starting from tthe root, node (which contains all t,he training data), an exhaustive 
search is make for the best split, that, can reduce a error measure (usually squared error) most. Once the 
best) split, is determined, the procediire is repeated at, t,he two child nodes that, are subsequently formed. 
This recursive procedure terminates either when t,he error measure associate with a node is below a certain 
tolerance, or when the error reduction of furt,her splitting will not, exceed a certain threshold. 

The tree obtained by the above growing procedure is oftjen too large, and it, is biased toward the tjraining 
data set, yielding an untmdworthy high accuracy on reproducing desired outputs of the training data. Based 
on the principle of minimum cost,-coniplexit,y, a sequence of candidat,e trees can be obtained by pruning 
terminal nodes sequentially, where ea.cli priming should result, a minimal increase in the error measure. 
Then from these candidate trees, we pick t,he one t,hat, ca.n generatre minimal error measure when the test, 
(validat,ing) data  set is present,ecl. 

For terminal nodes wit,li const,aiit, out,put, values (see Figure 3 (a.)), CART can always construct an 
appropriate t,ree witJi a right, size and, at, t,lie same t,iiiie, find wliicli inpiit,s are irrelevant and thus not, 
used in the tree. On the ot,lier hand, if t,lw i.erminal nodes a.rr charact,erizetl by linear equations (Figure 3 
( I ) ) ) ,  t(1ien the irrelevant, inputs a.re liartler t,o f i i i t l  iiiiless iiiore coiiipiit,a.t.ioii are involved. Also for t,erminal 
iiotles witch linear equat,ions, t,he search of t,he best, split, can I)e more efficient, if we employ the sequent,ial 
Ieast,-squares met,hod (see, for rxatiiple, [7]) to itleiitify t,lie h e a r  coefficierit,~. 

4 Combining CART and ANFIS 
0l)viously t,he decision t,ree in Figure 2 is eqiiivaleiit~ t,o a set, of crisp rules: 

if :r > ( I  and y > b ,  i.lieti : = f l  . 
if .I' > (1 and y < b ,  t,lieii 2 = f2. 
if :I' < ( I  aiitl ,I/ > c ,  t,lieii 3 = f : 3 .  
if .I' < ( I  ant1 < e ,  tlieii z = f4. 

(7) 

Given any input, vector ( r ,  y), oiily one rille out, of four will he fired at, full st,reiigt*li while the other three 
rilles are not, a.ctivat,ed at, all. This crispness reduce t,hr compiit,at,ioii burtleii in  const,rncting the tree using 
CART, butt it, also gives undesired discoiit,inuoiis I,onntla.ries. To siiioot,li out, t.he discontinuit,y atr each split,, 
we propose t,he iise of fuzzy set,s t,o rrpresent, t,he premise part,s of the ride set, in equation (7) and thus 
convertring eqnat,ion (7) iiit,o a set, of fuzzy if-t,lien rilles of eit,lier zero-order (when fi's are constants) or 
first,-ortler (when fi's are linear equations) TSK fuzzy iiiotlrl [ll, 101. For inst,ance, the statcement, 3: > c 
c a n  be represeiit,ed as a fuzzy set cliarnct,erizetl by eit.lier t,lie siginoitlal menilwrship fiinction (MF) with one 
paramet,ers w :  

(Notre t,hai. when y = 0.5, t,he above .C: MF I)ecoinrs a r amp  fiiiictioii.) Figiirr 4 shows tlie sigmoidal and the 
S' MF's for t.lie lirigiiistic i.eriii :r > e ;  Figiire 5 is t l i e  resiilt.iiig surface ploh of Figure 3 when the S MF is 
iised (wit,li CY = 1 aiitl y = 1). Reiiieinl)er t,liat wlieti ( I  - m iii t,lie sigiiioitlal RIF or when y -+ oc, in the S 
MF, bot,li MF's reduce t,o t,lie st,rp fiinct,ioii aut1 t,lie fuzzy rrilrs retliicr t,o t,lie original cxisp rules. 

Based on tllie fuzzy versioii of t,lie rides in  eqiiat,ioii ('i), we caii derive atiot,lirr cla.ss of adapt,ive network to 
itleiit,ify t,he premise aiid conseqiiriit, paratiiet,rrs for t,he uiitlerlyiiig fiizzy iiifereiice syst,em. This innovative 
ANFIS a.rchitfect8iire is shown in Figure (j, where layer 1 calciilat,es tlie iiieiii1)ersliip grades of given input, 
variables (INV nodes represeiit, iiegat,ioti operat or) ;  layer 2 niiilt~il)les t lie givrii iiiriiiI)ersliip grades t,o find the 
firing strengt,h of each rule; layer 3 coiiipiit,es t.lie coiitril)iit,ioii of racl i  nile Imsrtl oii given firing st,rengt,hs; and 
layer 4 find the siimniation of incoiniiig signals, wliicli is eclii;il to t l i r  overiill oiitpiit8 of t,liis fuzzy inference 
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(a) Sigmoidal MF (b) S MF 

7 

5 D 
X X 

Figure 4: Two types of MF’s for T > c (uJherf: c = 5): (a) sigmoidal M F  iriith different n ’s; (b) extended S 
MF with diflerent 7’s. 

Figure 5: Inpiit-ciutpnt beliaoiors o f  drcision l r r r s  imitli t f  r w t i r d  rio(lt s chnrnctr rzztrl b y  constunts and linear 
cyiiutions, rt-speriively. 

system. Premise and consequente parameters are contained in layer 1 aiitl 3,  respectively; these parameters 
are fine-tuned according to the fast hylwitl learning rules developed in [2, 51. Note that, the normalization 
layer (layer 3) in Figure 1 is missing in Figure 6. This is at,trihiitetl to the following theorem. 

Theorem 4.1 In cotivertiny u decision t r f f .  t o  a fiizzy injf.rencf. systc n i ,  if (1) pz>a(z)+pz<a(x) = 1,  where 
x i s  any (if the inpiit i inriabl i ; .~ and rr is (iny of thi: splttling points  of :r; ontl (2) mdtiplicat&n i.s used as the 
T-norm operator to culciilute fuch ride ’s firing .strc:ngiIi., iliwn tlif, srr~rt~~rritiort. oiif r each rille ’s firing strength 
i s  always equal to one. 

Proof: This theorem can be prove by induction. Let 11 be t,he Iiuinl~er of rules antl t u * ,  i = 1,  . . . R be the 
firing strength of the ith rille. For n = 2, we have w1 + = 1 since U J ~  antl 1112 are the membership grades 
for pI>a(z) and pz ln (z : )  for c,ertain input X and crrt,airi split point (1. 

wi = 1 holds when 71 = k:. When = k + 1, we want, to show that wi = 1 still 
holds. Without loss of generality, we can assuiiie the newly generatfed rules are rules k and k + 1, which are 

Suppose that 
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the result of t,he splitsting at, t,he previously t,erininal node A: (or rule A:),  Consecluent,ly, we have 

'Illi = 111; + 71lk + 111k+1 
= E.;; wi + 7fik(l lz>n(z) + / lz :<&))  
- 2 - 1  
- '1ui + 7Gk 
= 1 ,  

where 2irk is the firing st>rengt,h of rule k before split,t,ing. This concliitles the proof. 

0 

These two constrains are satisfied through out, the learning process of t,he ANFIS architecture in Figure 6;  
this eliminat,es t.he need for another normalizat,ion layer and t,hns reducing t,he computation burden and 
round-off errors. 

However, due to  the ttime constraint,, we do not, have simulation resultss at, this moment. Extensive 
simulat,ion result,s will be present,ed along with t,his paper at, tflie conference. 

5 Concluding Remarks: Advantages and Problems Solved 
We have proposed a CART plus ANFIS approach t,o coniplet,e t.lw t>wo t,a.sks of fiizzy modeling, that, is, 
st,ructure determination and para.met,er ideiit,ificat,ion. The major advant,ages offered by this approach is 
t,hat, we can now quickly determine t,he ronglily correct, strriict,iire of a fuzzy inference through CART, and 
t8hen refine the MF's and out,put, fnnct>ions via an efficient, ANFIS archit,ecture without, normalization layer. 
Notme CART can select, relevant, inputs and do t,ree part,it,ion (instmead of grid part,it,ion whic,h causes the 
problem of "ciirse of dimensionalit,y" ) of t,lw inpiit, spa.ce; wliile ANFIS refine t,he regression and make it, 
smooth and continuous everywhere. Thus it, can he seen t,liat. CART antl ANFIS are complement,ary and 
t,heir coml)ination makes a solid approacli t.o fuzzy motleling. 
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