714 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 5, SEPTEMBER 1992

Self-Learning Fuzzy Controllers Based
on Temporal Back Propagation

Jyh-Shing R. Jang, Student Member, IEEE

Abstract—This paper presents a generalized control strategy
that enhances fuzzy controllers with self-learning capability for
achieving prescribed control objectives in a near-optimal manner.
This methodology, termed temporal back propagation, is model-
insensitive in the sense that it can deal with plants that can be
represented in a piecewise-differentiable format, such as differ-
ence equations, neural networks, GMDH structures, and fuzzy
models. Regardless of the numbers of inputs and outputs of the
plants under consideration, the proposed approach can either
refine the fuzzy if—then rules if human experts, or automatically
derive the fuzzy if-then rules obtained from human experts are
not available. The inverted pendulum system is employed as a
test-bed to demonstrate the effectiveness of the proposed control
scheme and the robustness of the acquired fuzzy controller.

I. INTRODUCTION

UZZY controllers (FC’s) have recently found various

applications in industry as well as in household ap-
pliances. For complex and/or ill-defined systems that are
not easily controlled by conventional control schemes, FC’s
provides a feasible alternative since they can easily capture
the approximate, qualitative aspects of human knowledge and
reasoning. However, the performance of FC’s relies on two
important factors: the soundness of knowledge acquisition
techniques and the availability of domain (human) experts.
These two factors substantially restrict the application domains
of FC’s.

We have proposed the ANFIS (adaptive-network-based
fuzzy inference system) architecture to solve the first problem
concerning the automatic elicitation of knowledge in the form
of fuzzy if—then rules. The proposed architecture can identify
the near-optimal membership functions and other parameters
of a rule base for achieving a desired input—output mapping.
The basics of the ANFIS architecture are introduced in the
next section.

This paper addresses the second problem: how does one
control a system through a self-learning FC. In other words,
without resorting to human experts, we want to construct an FC
that can perform a prescribed control task. The learning aspects
of FC’s have always been an interesting topic, and recent
developments are mostly based on reinforcement learning {2],
[9], [10]. Our learning method is based on a special form
of gradient descent (called back propagation), which is used

Manuscript received June 13, 1991; revised November 30, 1991. This
work was supported by NASA under Grant NCC-2-275, by LLNL under
Grant ISCR 89-12, by the MICRO State Program under Award 90-191, by
the MICRO industry, and by Rockwell under Grant B02302532.

The author is with the Department of Electrical Engineering and Computer

Sciences, University of California, Berkeley, CA 94720.
IEEE Log Number 9201467.

for training artificial neural networks [13], [15]. To control the
plant’s trajectory, we apply the back-propagation-type gradient
descent method to propagate the error signals through different
time stages. This is called TBP (temporal back propagation)
and it is explained in Section IIL

The proposed control strategy is quite general and can be
used to control plants with diverse characteristics. Moreover,
the a priori knowledge that we have about the plant can
be applied in an auxiliary manner to speed up the learn-
ing process. In our simulation described in Section IV, we
successfully employ the TBP to construct a fuzzy controller
with only four fuzzy if-then rules for balancing an inverted
pendulum system. The discussion and conclusions are given
in Section V.

1. Basics OF ANFIS

When employed as a controller, a fuzzy inference system is
often called a fuzzy controller; therefore we will use the terms
fuzzy inference system and fuzzy controller interchangeably
throughout this paper. In this section, we describe the basics
of adaptive networks, which include artificial neural networks
as a special case. A special configuration of adaptive networks,
ANFIS, is discussed in detail since it is functionally equivalent
to a fuzzy controller.

A. Adaptive Networks

An adaptive network (Fig. 1) is a multilayer feedforward
network in which each node performs a particular function
(node function) on incoming signals using a set of parameters
specific to this node. The form of node functions may vary
from node to node, and the choice of each node function
depends on the overall function which the adaptive network
is designed to implement.

To reflect different adaptive capabilities, we use both circle
and square nodes in an adaptive network. A square node
(adaptive node) has modifiable parameters while a circle node
(fixed node) has none. The parameter set of an adaptive
network is the union of the parameter sets of each adaptive
node. In order to achieve a desired input—output mapping,
these parameters are updated according to given training data
and a gradient-based update procedure described below.

Suppose that a given adaptive network has L layers and
the kth layer has #(k) nodes. We can denote the node in the
ith position of the kth layer by (k,%) and its node function
(or node output) by OF. Since a node output depends on its

1045-9227/92$03.00 © 1992 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on May 30,2025 at 13:13:49 UTC from IEEE Xplore. Restrictions apply

JANG: SELF-LEARNING FUZZY CONTROLLERS

x1 y1
input output
x2 y2
Fig. 1. An adaptive network.
incoming signals and its parameter set, we have
k kf k-1 k-1
Oi :O1, (01 a"':O#(k_l),avbvcv"‘)v (1)

where a, b, c,, etc. are the parameters pertaining to this node.
(Note that we use OF as both the node output and the node
function.)

Assuming the given training data set has P entries, we can
define the error measure for the pth (1 < p < P) entry of
training data entry as the sum of squared errors:

#(L)

E (vaF - O,Ijl‘p)2,

m=1

E, = @

where Ty, p is the mth component of pth target output vector,
and Of‘n,p is the mth component of an actual output vector
produced by the presentation of the pth input vector. Hence
the overall error measure is E = Y f;lEp.

In order to develop an update procedure that implements
gradient descent in E over the parameter space, first we have
to calculate the error rate, OE, /00, for the pth training data
and for each node output O. The error rate for the output node

at (L,) can be calculated readily from (2):

OE,
L
a0L,

= -2(T;, — OF)). 3)

For the internal node at (k, ¢) the error rate can be derived by
the chain rule:

OB, _ #(k+1) OE, 30:“,3;}
a0k, ~ 2:1 9OETT BOF 4)
2 m= m, ©vp

where 1 < k < L—1. That is, the error rate of an internal node
can be expressed as the linear combination of the error rates
of the nodes in the next layer. Therefore for all 1 < k < L
and 1 < i < #(k), we can find 9E, /0%, by (3) and (4).
Now if « is a parameter of the given adaptive network, we
have
OE, _ dE, 00")
da S 00* O

where § is the set of nodes whose outputs depend on «
directly. Then the derivative of the overall error measure E
with respect to « is

", 9E,

Ba ©)

715

Accordingly, the update formula for the generic parameter
a is
OF
Aa = —1—5—, Q)
da
in which 7 is a update rate (or learning rate) of parameter .
Usually % is further expressed as

SO R ®)

9E\2
. (58)
where S is the step size, the length of each gradient transition

in parameter space. By a proper selection of S, we can vary
the speed of convergence.

B. ANFIS: Adaptive-Network-Based Fuzzy Inference System

For simplicity, we assume the fuzzy inference system under
consideration has two inputs z and y, one output z, and the rule
base contains two fuzzy if—then rules of Takagi and Sugeno’s
type [14]. The corresponding ANFIS architecture is shown
in Fig. 2, where node functions in the same layer are of the
same type, as described below:

Layer 1: Every node i in this layer is a square node with
a node function

O} = a, (), ©)

where z is the input to node 4, and A; is the linguistic label
(small, large, etc.) associated with this node function. In other
words, O} is the membership function of A; and it specifies
the degree to which the given z satisfies the quantifier A;.
Usually we choose 14,(z) to be bell shaped with maximum
equal to 1 and minimum equal to 0, such as

1
pa(x) = T:—[(’”—‘—"—)ﬁ"_’

na, (@) = exp{— [(z ;ﬁ)z] b}

where {a;,b;,c;} is the parameter set. As the values of these
parameters change, the bell-shaped functions vary accordingly,
thus exhibiting various forms of membership functions on
linguistic label A;. In fact, any continuous and piecewise-
differentiable functions, such as commonly used trapezoidal
or trangular-shaped membership functions, are also qualified
candidates for node functions in this layer. Parameters in this
layer are referred to as premise parameters.

Layer 2: Every node in this layer is a circle node labeled II
which multiplies the incoming signals and sends the product
out. Each node output represents the firing strength (or weight)
of a rule. (In fact, other T-norm operators can be used as the
node function for generalized AND function.)

Layer 3: Every node in this layer is a circle node labeled N.
The sth node calculates the ratio of the i rule’s firing strength
to the sum of all rules’ firing strengths. In other words, nodes
in this layer compute the normalized firing strength of each
rule.

(10)

or

an

Authorized licensed use limited to: National Taiwan University. Downloaded on May 30,2025 at 13:13:49 UTC from IEEE Xplore. Restrictions apply

716 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 5, SEPTEMBER 1992

A LB
l Wt =px gy
\ LTS
w, + W,
W, Ty =Py =Wt %l

(@

Fig. 2. (a) Fuzzy inference system. (b) Equivalent ANFIS.

Layer 4: Every node i in this layer is a square node with
a node function

(12)

where wy is the output of layer 3, and {pi,qi,m:} is the
parameter set. Parameters in this layer are referred to as
consequent parameters.

Layer 5: This is a circle node labeled > that sums all
incoming signals.

Thus we have constructed an adaptive network which is
functionally equivalent to a fuzzy inference system. This
ANFIS architecture then can update its parameters accord-
ing to the gradient descent update procedure mentioned
before. Other ANFIS’s corresponding to different type of
fuzzy if-then rules and defuzzification mechanisms, plus a
fast update procedure combining the gradient method and a
sequential least square estimate, can be found in [6] and [7].

0} = wy(piz + iy + 73)s

1II. CONSTRUCTING SELF-LEARNING Fuzzy CONTROLLERS

In this section, we propose a generalized control scheme
which can construct a fuzzy controller through temporal back
propagation, such that the state variables can follow a given
desired trajectory as closely as possible. The basic idea is to
implement both the controller and the plant at each time stage
as a stage adaptive network, and cascade these stage adaptive
networks into a trajectory adaptive network to facilitate the
temporal back propagation learning process.

A. Stage Adaptive Network

Fig. 3 is a block diagram of a feedback control system
consisting of a fuzzy controller and a plant. We assume the
delay through the controller is small and the state variables are
accessible with accuracy. Moreover, the plant block is viewed
as a static system since the dependency of the next state on the
present state is shown explicitly. Before finding a controller
to control the plant state, we have to find mathematical
expressions for both the controller block and the plant block.
This step is referred to as the implementation. In our case, we
are going to implement both blocks as adaptive networks.

fuzzy
controller

E> state,,,

state,

Fig. 3. Block diagram of a fuzzy controller and a plant. Also a stage
adaptive network at time stage k.

An obvious candidate for implementing the FC block in
Fig. 3 is the ANFIS architecture, since it has exactly the same
function as a fuzzy controller, as shown in Fig. 2. If we have
p inputs to the plant, then the FC block can be implemented
cither as p ANFIS’s or as an ANFIS that has rules with
multiple consequents.

Suppose that we have a human expert who knows how
to control the plant. Then the domain knowledge can be
transformed into fuzzy if—then rules and the corresponding
parameters (which characterize membership functions) can be
used as the initial parameters of the FC block in the learning
process. As a result, the domain knowledge can guide the TBP
learning process to get started from a point in the parameter
space that is not far from the optimal one, and the TBP
can fine-tune the domain knowledge for achieving a better
performance. This cooperative relation between the domain
knowledge and the TBP learning process is not always present
in other types of controllers.

On the other hand, if we do not have a priori knowl-
edge about controlling the plant, then the number of fuzzy
if—then rules has to be decided more or less by trial and
error. Fortunately, as a consequence of ANFIS’s remarkable
representational power [6], [7], we usually do not need many
rules to construct the desired mapping from state variables to
control action.

As for the implementation of the plant block, we can choose
whatever function approximators that can best represent the
input—output behavior of the plant. This model-insensitive
attribute is mostly due to the flexibility of adaptive networks,
which allows us to choose either conventional models (dif-
ference or differential equations, transfer functions, etc.) or
unconventional ones (ANFIS, neural networks [13], radial
basis function networks [11], GMDH structure [5], etc.) to
implement the plant block.

In the case where the plant can be modeled as a set of n
(= number of state variables) first-order difference equations,
then the plant block can be replaced with n nodes, each of
which uses one difference equation to obtain the state variable
at the next time step. Furthermore, if the state equations of the
plant are a set of first-order differential equations:

i) = f(a'c’(t),z‘?z(t),t),

where #(t) is a vector consisting of state variables at time ¢
and in(t) is the input vector to the plant, then we can just
employ a linear approximation to get the difference equations
as below:

Fhxk+h)=hx f(a‘c‘(h* k), in(h % k), h * k) +#(h*k),
(14

(13)

Authorized licensed use limited to: National Taiwan University. Downloaded on May 30,2025 at 13:13:49 UTC from IEEE Xplore. Restrictions apply

JANG: SELF-LEARNING FUZZY CONTROLLERS

where k is an integer and h is the sampling time. Therefore
the plant block still has n nodes, each of which performs a
component function of (14).

When the sampling time h is too big or the plant has fast
dynamics, the linear approximation may not be a reasonable
estimate of the next state. In this case, we can utilize a
large body of numerical analysis techniques to obtain a more
precise estimate, for instance, the second-order Runge—Kutta
method:

h*f(f(h*k),iﬁ(h*k),h*k),
h*f(f(h*k)+ii,i7z(h*k),h*k+h)
xk+ b).

F(hxk+h) =Z(hxk)+0.5% ((i+b)

a=
b=

(15)

However, implementing the above equations as an adaptive
network (without modifiable parameters) is more complex and
some intermediate nodes would be present in the resulting
network for the intermediate variable vectors @ and b. Higher
order Runge—Kutta formulas may be used to implement the
plant block as well, but the increased complexity of the
adaptive network could slow down the learning process even
more.

Consequently, the block diagram of Fig. 3 can also be
viewed as an adaptive network containing two subnetworks,
the FC block (ANFIS) and the plant block. Subsequently, we
refer to the adaptive network of Fig. 3 as SANg, representing
the stage adaptive network at time stage k.

B. Trajectory Adaptive Network

Given the state of the plant at time ¢ = k * h, the FC will
generate an input to the plant and the plant will evolve to the
next state at time (k + 1) +h. By repeating this process starting
from ¢ = 0, we obtain a plant state trajectory determined by the
initial state and the parameters of the FC. The state transition
from ¢ = 0 to m * h is shown conceptually in Fig. 4, which
again, is an adaptive network consisting of mSANy’s, k=0
to m — 1. Accordingly we can still apply the back-propagation
gradient descent to minimize the differences between adaptive
network outputs and desired outputs. In order to make the
inputs and outputs more explicit, we redraw Fig. 4 to get the
trajectory adaptive network shown in Fig. 5, where the inputs
to the network are the initial state of the plant at time = 0;
the outputs of the network are the state trajectory from t = h
to m * h; and the adjustable parameters all pertain to the
FC block implemented as an ANFIS. Hence each entry of the
training data is of the form

(initial state; desired trajectory), (16)
and the corresponding error measure to be minimized is
E = ||#hxk) - Za(hx k)| an
k=1

where Z4(h k) is the desired trajectory at t = h x k. With
some minor modifications of Fig. 5, the above error measure

717

stato[

Fig. 5. A trajectory adaptive network for control application.

can be revised as

m—1

E=Y ||#hxk) = Za(h RIZ+ 2% Y llin(hx k)2,
k=1 k=0 (18)

where in(h * k) is the controller’s output at time h * k. By a
proper selection of A, a compromise between trajectory error
and control effort can be obtained.

Since the error signals of back propagation can propagate
through different time stages, this control methodology is
called temporal back propagation, or simply TBP. As a matter
of fact, the basic idea of TBP is similar to Nguyen and
Widrow’s approach {12] to construct a self-learning neural
controller, which was called back propagation through time
by Werbos [4]. We generalize the idea to a much more
flexible building block, the adaptive network, which has two
advantages over neural networks:

1) accommodation of a priori knowledge from a human

operator, in the form of fuzzy if—then rules;

2) no need to remodel the plant in neural networks if
we already have other existing models for it, such as
difference equations.

In the trajectory adaptive network shown in Fig. 5, though
there are m FC blocks, all of them refer to the same fuzzy
controller at different time stages. That is, there is only one
parameter set which belongs to all m FC blocks at different
time stages. For clarity, this parameter set is shown explicitly
in Fig. 5 and it is updated according to the output of the error
measure block.

IV. APPLICATION TO THE INVERTED PENDULUM SYSTEM

The proposed control scheme is quite general and it can
be applied to a variety of control problems. In this section,
we demonstrate the effectiveness of the TBP by applying it
to a benchmark problem in intelligent control—the inverted
pendulum system.

Authorized licensed use limited to: National Taiwan University. Downloaded on May 30,2025 at 13:13:49 UTC from IEEE Xplore. Restrictions apply

718 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 5, SEPTEMBER 1992

)

F—>

\/ N

Fig. 6. The inverted pendulum system.

A. The Inverted Pendulum System

The inverted pendulum system (Fig. 6) is composed of a
rigid pole and a cart on which the pole is hinged. The cart
moves on the rail tracks to its right or left, depending on the
force exerted on the cart. The pole is hinged to the cart through
a frictionless free joint such that it has only one degree of
freedom. The control goal is to balance the pole starting from
nonzero conditions by supplying appropriate force to the cart.

The dynamics of the inverted pendulum system are char-
acterized by four state variables: f (angle of the pole with
respect to the vertical axis), § (angular velocity of the pole), 2
(position of the cart on the track), and 2 (velocity of the cart).
The behavior of these four state variables is governed by the
following two second-order differential equations [1], [3]:

g * sin @ + cos @ (—F—m*l*@%éin@)

me.+m

f = (19)
mxcos? 6
1% (% - me+m)
Fi4+mxlx (éz*sina—é*cosﬂ)
zZ= (20)
mc+m

where g (acceleration due to gravity) is 9.8 m/s?, m, (mass
of cart) is 1.0 kg, m (mass of pole) is 0.1 kg, ! (half-length
of pole) is 0.5 m, and F is the applied force in newtons. Our
control goal here is to balance the pole without regard to the
cart’s position and velocity; hence only (19) is relevant in our
simulation.

B. Simulation Settings

Fig. 7 shows the stage adaptive network used in our simu-
lation. Both the controller and the plant block, together with
the learning rule, are explained below.

1) Plant Block: As mentioned earlier, there are several ways
to implement the plant block depending on how well we know

controller block

plant block

x(1)
xft)

Fig. 7. The implementation of a stage adaptive network.

the plant. In this case, the plant is a deterministic nonlinear
dynamical system with precisely defined differential equations,
so we can use just two nodes to calculate the state variables
at the next time step by linear approximation:
{ z1(t + h) = ki1 (t) + £1(2) @1)

za(t + h) = hia(t) + z2(t),

where z1(+) = 0(:), and 2o(-) = 6(-). These two equations are
the node functions of the plant block in Fig. 7.

2) Controller Block: We assume that no domain knowledge
(from a human operator’s point of view) about the inverted
pendulum system is available. The controller block in Fig. 3
is implemented as an ANFIS with two inputs, each of which is
assigned two membership functions, so it is a fuzzy controller
with four fuzzy if—then rules of Takagi and Sugeno’s type
[14]. See the controller block in Fig. 7. (Though the number
of fuzzy rules can be more than four, the simulation indicates
four rules are enough for balancing the pole.)

Without any domain knowledge, we have to set the initial
parameters subjectively. The consequent parameters of the
FC are all set at zero, which means the control action is
zero initially, as shown in Fig. 9. As a conventional way of
setting membership functions in a fuzzy controller, the premise
parameters are set in such a way that the membership functions
can cover the domain interval (or universe of discourse)
completely with sufficient overlapping of each other. Parts (a)
and (b) of Fig. 8 illustrate the initial membership functions
in the form of (10); the domain interval for 6 (degrees)
and 6 (degrees/s) are assumed to be [-20,20] and [-50,50],
respectively.

3) Temporal Back Propagation: We employ 100 stage adap-
tive networks to construct the trajectory adaptive network, and
each stage adaptive network corresponds to the time transition
of 10 ms. That is, the time step (k) used is 10 ms, and the
trajectory adaptive network corresponds to a time interval from
t=0tot=1s. If his too small, a large network has to be
built to cover the same time span, which increases the signal
propagation time and thus delays the whole learning process.
On the other hand, if A is too big, then the linear approximation
of the plant behavior may not be precise enough and a higher
order approximation has to be used instead.

The training data set contains desired input—output pairs of

the format
(initial condition; desired trajectory), (22)

where the initial condition is a two-element vector which
specifies the initial condition of the pole; the desired trajectory

Authorized licensed use limited to: National Taiwan University. Downloaded on May 30,2025 at 13:13:49 UTC from IEEE Xplore. Restrictions apply.

—p—

JANG: SELF-LEARNING FUZZY CONTROLLERS

53}
=
g
g
pole angle
(@)
1 ' i
0.8}]
§ o6} .
2 '
g 04r P i
02t J Pl
0 , , FA

-40 -20 0 20 40
pole angie
©

719

initial MF
o
’'Y

-100 -50 0 50 100

(b)

final MF

0
-100 -50 0 50 100

angular velocity
(d)

Fig. 8. (a), (b) Initial membership functions; (c), (d) final membership functions.

is a2 100-element vector which contains the desired pole angle
at each time step. In our simulation, only two entries of training
data are used: the initial conditions are (10,0) and (-10,0),
respectively, and the desired trajectory is always a zero vector.
In short, we expect that the trajectory adaptive network not
only can learn to balance the pole from an initial pole angle
of +10° or —10°, but also can achieve the control goal in an
near-optimal manner which minimizes the error measure

100 99
E=Y 62001 k) +Axy_ f(001xk), (23)
k=1 k=0

where f(0.01 * k) is the controller’s output force and A= 10)
accounts for the relative unit cost of control effort.

To speed up the convergence, we follow a strict gradient
descent in the sense that each transition of the parameters will
lead to a smaller error measure. If the error measure increases
after parameter update, we back up to the original point in the
parameter space and decrease the current step size by half. This
process is repeated until the weight update leads to a smaller
error measure. However, this step size update rule tends to use
a small step size if the error measure surface encountered in the
first few updates is not smooth. Therefore we multiply the step
size by 4 after observing three consecutive transitions without
any backup actions. The initial step size in the simulation is
20 and the learning process stops whenever the number of
transitions in parameter space (which is equal to the number
of reductions in error measure) reaches 10.

XX
Ao
VAN

Y
0
)
)

(uoweY) 8330} NANO B IS0 NUOD
o

Initial control action surface.

Fig. 9.

C. Simulation Results

All the simulation settings mentioned above are referred
to as the reference setting; other simulations are based on
this setting with minor changes. In the learning task with the
reference setting, it is amazing to observe that the FC is able
to balance the pole right after the first parameter transition,
and it keeps on refining the controller (minimizing the error
measure) until the tenth parameter transition is done. Parts (a)

Authorized licensed use limited to: National Taiwan University. Downloaded on May 30,2025 at 13:13:49 UTC from IEEE Xplore. Restrictions apply

720 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 5, SEPTEMBER 1992

and (b) of Fig. 8 show the initial membership functions on
pole angle and angular velocity; parts (c) and (d) show the
final membership functions. Fig. 9 is the initial control action
surface, and Fig. 10 is the final control action surface after the
tenth parameter transition. A listing of the fuzzy rules with
numerical parameters can be found in the Appendix.

Fig. 8 indicates that the final membership functions for
@ are quite different from the initial membership functions.
Visually there are no membership functions covering the
interval [-10, 10] of 6§, making the linguistic interpretation of
the fuzzy rules difficult. However, since we are utilizing the
FC as a functional approximator that can generate the required
nonlinear mapping, linguistically desired features (such as
enough overlapping between membership functions and total
coverage of the domain interval) do not have to be one of
the FC’s attributes in this case. If we want to keep those
desired features, we can either impose certain constraints on
the premise parameters or simply increase the number of
parameters of the fuzzy controller to endow it with more
degree of freedom. Fig. 11 shows the membership functions
of a nine-rule fuzzy controller which has about the same
performance as the four-rule fuzzy controller. Because of its
larger number of degrees of freedom, the premise parameters
of the nine-rule fuzzy controller do not have to change much
to minimize the error measure; therefore the final membership
functions can cover all the domain intervals with desired
overlapping.

Solid curves in Fig. 12 demonstrate the state variable tra-
jectories under the reference setting: parts (a), (b) and (d)
show the pole angle (degree), angular velocity (degrees/s) and
control actions (newtons) from ¢ = 0 to ¢ = 2s; (c) is the state
space plot which reveals how the trajectory approaches the
origin from the initial point (10,0). The dashed and dotted
curves in Fig. 12 correspond to A equal to 40 and 100,
respectively. From (a), it is observed that a smaller A (solid
curve) achieves the control goal faster since the controller
can apply a larger force to balance the pole. For a large A
(dotted curve), the controller’s output has to be kept small,
thus slowing the approach to the goal.

To demonstrate how the fuzzy controller can survive sub-
stantial changes of plant parameters, we use poles of different
lengths to test the controller obtained from the reference
setting. The results are shown in Fig. 13, where solid, dashed,
and dotted curves correspond to a pole half lengths of 0.5
(reference setting), 0.25, and 0.125 m respectively. It is re-
markable to note how the controller can handle the shorter
pole easily and gracefully.

In the learning phase, we supply only two training data,
corresponding to initial conditions (10,0) and (-10,0) of the
pole. Now it would be interesting to know how the FC
(obtained from the reference setting) deals with other initial
conditions. In this part, we monitor the pole behavior starting
from other initial conditions which make the control goal even
harder. Fig. 14 shows the results, where the solid, dashed,
and dotted curves correspond to the initial conditions (10, 20),
(15,30), and (20,40), respectively. Again, the same fuzzy
controller can perform the control task starting from the unseen
initial conditions. Fig. 14 together with Fig. 13 reveals the

(WO 8210} INKGINO 8 JHONUOD

Fig. 10. Final control action surface.

robustness and fault tolerance of the fuzzy controller obtained
from the TBP.

V. CONCLUSIONS

We have proposed a generalized controller design methodol-
ogy, called temporal back-propagation (TBP), for constructing
self-learning fuzzy controllers. This methodology employs the
adaptive network as a building block and the back-propagation
gradient method as the update procedure to minimize the
difference between an actual trajectory and a given desired
trajectory. Because of the flexibility of this methodology, we
can easily customize it for a wide range of control applications.
The inverted pendulum is used as a test-bed to verify the
effectiveness of the TBP and to exhibit the robustness and
fault tolerance of the resulting fuzzy controller.

Best of all, the TBP is not tailored for fuzzy controllers
only. Almost all nonpathogenic mathematical representations
or equations (such as difference equations, ANFIS architecture,
feedforward neural networks, radial function basis networks,
and the GMDH structure) can be used to implement the plant
block as well as the controller block. This provides us with
plenty of freedom in choosing accurate and efficient models.

APPENDIX

Each linguistic label used in the FC is characterized by three
parameters, as described in (10). If is in degrees, and ¢ in
degrees/s, the initial fuzzy if—then rules are

If is A; and 9:is B, then force =0

If 8 is A; and ¢ is By, then force = 0 (A1)
If 6 is A and 6 is By, then force =0 ’

If § is Ay and 6 is Bs, then force =0

where A;, Ao, By and B are the linguistic labels character-
ized by {20,2,-20}, {20,2,20}, {50,2,-50}, and {50,2,50},
respectively. Fig. 9 is the initial control action surface.

Authorized licensed use limited to: National Taiwan University. Downloaded on May 30,2025 at 13:13:49 UTC from IEEE Xplore. Restrictions apply.

JANG: SELF-LEARNING FUZZY CONTROLLERS

721

u‘ -
3
g)
100
(b)
= 4
=
'a -
&
5I0 100
angular velocity
@)

Fig. 11. (a), (b) Initial membership functions and (c), (d) final membership functions of 2 nine-rule fuzzy controller.

1
08} .
S osf -
0.2+ .
%0 20
1 T -
08} .
§ o6 -
02 .
0 L ot L
-40 -20 0 20 40
pole angle
©
10 : % :
g sp
2
8o ;
2 or H
[~ N
=
S0 0s 1 15 2
time (sec)
@
£
g
2
k-
[3]
>
=2
&
]
pole angle (deg)
©

-angular velocity (deg/sec)

£
g
g
5
5
time (sec)
@)

Fig. 12. (a) Pole angle, (b) pole angular velocity, (c) state space, and (d) input force. (Solid, dashed, and dotted curves correspond to A = 10, 40,

and 100, respectively.)

Authorized licensed use limited to: National Taiwan University. Downloaded on May 30,2025 at 13:13:49 UTC from IEEE Xplore. Restrictions apply.

722 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 5, SEPTEMBER 1992

~ 20 T T T
§
~)
o0
g &
g E
[-1]
: g
2 >
& 8
I g
0 0.5 1 1.5 2
time (sec)
(@)
] s
)
g 5
> &
2
] =]
5 g
5 -60 1
-5 0 5 10
pole angle (deg) time (sec)
© ()

Fig. 13. (a) Pole angle, (b) pole angular velocity, (c) state space, and (d) input force. (Solid, dashed, and dotted curves correspond to half-pole lengths
of 0.5, 0.25, and 0.125 m, respectively.)

W
(=

3
—_)
g 20 §
© oy
w 10)
5 g
= >
g 0 %
_10 1 1 1 5
0 0.5 1 1.5 2
time (sec) time (sec)
(@) (b)
3 _
@ g
g 5
> &
2 g
o &
o 5
B 5
§ s . : .
0 0.5 1 1.5 2
pole angle (deg) time (sec)
© (d)

Fig. 14. (a) Pole angle, (b) pole angular velocity, (c) state space, and (d) input force. (Solid, dashed, and dotted curves correspond to initial conditions
(10, 20), (15,30), and (20, 40), respectively.)

Authorized licensed use limited to: National Taiwan University. Downloaded on May 30,2025 at 13:13:49 UTC from IEEE Xplore. Restrictions apply.

JANG: SELF-LEARNING FUZZY CONTROLLERS

The final fuzzy if—then rules derived from the reference
settings are

 If 6 is A; and @ is By, then force = 0.0502 * 0
+0.1646 % § — 10.09

If 0 is A; and § is Bo, then force = 0.0083 x 6
4+ 0.0119 %6 — 1.09

If 6 is Az and 6 is By, then force = 0.0083 * 0
+0.0119 %6 + 1.09

If f is Ap and 6 is Bz, then force = 0.0502 = ¢

| + 0.1646 * 6 + 10.09,

(A2)

.

where A, As, By, By are the linguistic labels characterized
by {-1.59,2.34,-19.49}, {-1.59,2.34, 19.49}, {85.51,1.94,
-23.21}, and {85.51, 1.94,23.21}, respectively. Fig. 10 is the
final control action surface.

ACKNOWLEDGMENT

The guidance and help of Prof. L.A. Zadeh and other
members of the “fuzzy group” at UC Berkeley are gratefully
acknowledged.

REFERENCES

[1] A.G. Barto, R.S. Sutton, and C.W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE Trans.
Syst. Man, Cybern., vol. SMC-13, no. 5, pp. 834-846, 1983.

[2] H.R. Berenji, “Refinement of approximate reasoning-based controllers
by reinforcement leaming,” in Proc. Eighth Int. Workshop of Machine
Learning, (Evanston, IL), June 1991.

{3] R.H. Cannon, Dynamics of Physical Systems. New York: McGraw-
Hill, 1967.

[4] W.T. Miller III, R.S. Sutton, and P.J. Werbos, Eds., Neural Networks

for Control. Cambridge, MA: MIT Press, 1990.

'A.G. Ivakhnenko, “Polynomial theory of complex systems, “IEEE

Trans. Syst. Man, Cyber., vol. SMC-1, pp. 364-378, Oct. 1971.

(6] 3.S. Jang, “ANFIS; Adaptive-network-based fuzzy inference systems,”
submitted to IEEE Trans. Syst., Man, Cybern.

(s

—

723

[7] J.S. Jang, “Fuzzy modeling using generalized neural networks and
Kalman filter algorithm,” in Proc. Ninth National Conf. Artificial In-
telligence (AAAI-91), July 1991, pp. 762-767.

[8] J.S.Jang, “Rule extraction using generalized neural networks, “in Proc.
4th IFSA World Congress, July 1991.

[9] C.-C. Lee, “Intelligent control based on fuzzy logic and neural network
theory,” in Proc. Int. Conf. Fuzzy Logic and Neural Networks, (lizuka),
1990, pp. 759-764.

[10] C.-C. Lee, “A self-learning rule-based controller employing approx-

imate reasoning and neural net concepts,” Int. J. Intelligent Systems,

vol. 5, no. 3, pp. 71-93, 1991.

J. Moody and C. Darken, “Fast learning in networks of locally-tuned

processing units,” Neural Computation, vol. 1, pp. 281-294, 1989.

[12] D.H. Nguyen and b. Widrow, “Neural networks for self-learning control
systems,” IEEE Control Systems Magazine, pp. 18-23, Apr. 1990.

[13] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, D.E. Rumelhart
and James L. McClelland, Eds., vol. 1. Cambridge, MA: MIT Press,
1986, ch. 8, pp. 318-362.

[14] T. Takagi and M. Sugeno, “Derivation of fuzzy control rules from
human operator’s control actions,” in Proc. IFAC Symp. Fuzzy Infor-
mation, Knowledge Representation and Decision Analysis, July 1983,

. 55-60.

[15] gl.)Werbos, «Beyond Regression: New tools for prediction and analysis

in the behavioral sciences,” Ph.D. thesis, Harvard University, 1974.

11

Jyh-Shing R. Jang (8°90) was born in Taipei,
Taiwan, in 1962. He reccived the B.S. degree in
electrical engineering from National Taiwan Uni-
versity in 1984. Currently he is a Ph.D. candidate
in the Department of Electrical Engineering and
Computer Sciences at the University of California,
Berkeley.

Since 1988, he has been a Research Assistant in
the Electronics Research Laboratory at the Univer-
sity of California, Berkeley. He spent the summer
of 1991 at the Lawrence Livermore National Lab-
oratory working on spectrum modeling and analysis using neural networks
and fuzzy logic. His interests lie in the area of neuro—fuzzy modeling with
applications to learning control, pattern classification, and signal processing.

Mr. Jang is a student member of the American Association for Artificial
Intelligence and of International Neural Networks Society.

Authorized licensed use limited to: National Taiwan University. Downloaded on May 30,2025 at 13:13:49 UTC from IEEE Xplore. Restrictions apply

