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Abstract- This paper pn?sents the continued work 
of a prwiously proposed ANFIS (Adaptive-Network-based 
Fup;y Inference System) architecture [2,1,3], with empha- 
sis on the applications to time series prediction. We explain 
bow to model the Mackey-Glass chaotic time d e s  with 16 
fuzzy if-then rules. The performance we obtained outper- 
forms various standard statistical approaches and artitiCial 
neural network modeling reported in the literature Other 
potential applications of ANFIS are also suggested. 

I. I~JTRODUCTION 
A fuzzy infemce system with adaptive capability is drawing 
more and more attention since it can not only incorporate human 
expertise in the form of fuzzy if-then rules but also fine-tune the 
membership functions according to a desired input-output data 
set. One architecture of the adaptive fuzzy inference systems 
proposed by the author [2, 11 employs the back-propagation- 
type gradient descent [16,12] and the least squares estmate to 
achieve the capability of learning by examples. A detailed treat- 
ment of the ANFIS (Adaptive-Network-based Fuzzy Inference 
System) architecture can be found in [3]. 

This paper reports further simulation results where a 16-rule 
ANFIS is used to predict the future values of the Mackey- 
Glass chaotic time series [6]. We choose this time series for 
the simulation simply because it is a benchmark problem that 
have been cited quite often in the literature, which allows us 
to compare the results obtained from other approaches such as 
linear regression and neural networks. 

In the next section, the basics of ANFIS is introduced. Se0 
tion 3 presents the simulation settings and simulation results, 
along with comparisons of generalization tests with other meth- 
ods. Section 4 gives a concluding remarks and suggests other 
apphcations of ANFIS. 

n. BASICS OF A " s  
This section introduces the basic architecture and the hybrid 
leaming rule of ANFIS. For a detailed coverage, see [l, 31. 
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Figure 1: (a)fuzzy reasoning; (b) equivalent ANFIS. 

Suppose that the fuzzy inference system contains two rules of 
T W  and Sugeno's type [14]: 

Rule 1: If 2 is AI and y i s  B1,then f1 = p l z  + ply + T I ,  

Rule2: If z is  At  and y i s  &,then f2 = n s  + y2y + ~ 2 .  

Figure l(a) and (b) illustrate the fuzzy reasoning mechanism 
and the corresponding ANFIS architecture, respectively. Node 
functions in the same layer of the ANFIS are of the same func- 
tion family, as described below. (Note that 0; denotes the 
output of i-th node in layer j.) 

Layer 1 Each node in this layer corresponds to a linguistic 
label and the node output is equal to the membership 
value of this linguistic label. The parameters of a node 
can change the shape of the membeship functionused to 
characterize the linguistic label. For instance, the node 
function of i-th node is 

where I is the input to node i; Ai is the linguisticlabel 
(small, large, etc.) associated withthis node; {ai, bi,  c i }  
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is the parameter set. Parameters in this layer are referred 
to as premise parameters. 

Layer 2 Each node in this layer calculates the firing strength 
of each rule: 

Layer 3 ?he i-th node of this layer calculates the ratio of the 
i-th rule's firing strength to the sum of all rules' firing 
stmgths: 

Layer 4 Node i in this layer has the following node function 

= G f i  = 6 ( P z z  + YiY + TI), (4) 

where E, is the Output of layer 3, and ( ~ $ 9  ~ z ,  + a }  is the 
paramem set. Parameters in this layer will be rekd 
to as consequent parameters. 

Layer5 The single node in this layer computes the overall 
output as the summation of all incoming signals: 

Thus we have coLIstIucted an adaptive network(Figure le)) 
whicb is fundonally equivalent to a fuzzy inference system 
(Figure l(a)), -fore it is d e d  ANFIS which stands for 
adaptive-xxnvork-based fuzzy inferenoe systems. 

The basic learning rule of ANFIS is the b&-propagation- 
type gradient descent [ 161 which calculates the error rates (de- 
fined as the derivative of the squared emor witb respect to each 
node's output) d v e l y  from the output backward to the 
input nodes. This learning rule is exactly the same as the 
baclr-propagation learning rule used in the artificial neural net- 
wolks [12]. 

F h m  the ANFIS architecture in Figure 1, it is observed that 
given the values of premise parameten, the overall output f 
can be expressed as a linear combinations of the consequent 
paramem: 

f = W l  +%f2 
= (=lz)Pl + (WYIP1  + (Elbl (6) 

+ ( Z 2 Z ) P 2  + (Z2Y)Y2 + (E2b2. 
As a result, we have developed a hybrid leaming algorithm [ 1,3] 
which combines the gradient descent and the least squares es- 
tiamre. More specifically, in the forward pass of the hybrid 
learning algorithm, functional signals (node outputs) go for- 
ward till layer 4 and the consequent parameters are identified 
by the least squares estimate. In the backward pass, the error 

rates propagate backward and the premise parameters are up- 
dated by gradient descent. Note that the least squares estimate 
has a well-dehed sequential version whicb can account for 
thetimevaryingcharactenstl ' 'cs of the given data pairs, there- 
fore the hybrid learning rule can be easily adapted to a on-line 
p h g m  PI. 

m. PREDICTING A C H A C Y l ' I C ~  SERES 

The time series used in our simulation is generated by the 
chaotic Mackey-Glass differential delay equation [q dehed 
below: -~ 

d x ( t )  0.2z(t - T) -= - O.lz(t). dt 1 + ~ " ( t  - T) (7) 

The prediction of future values of this time series is a bench- 
mark problem which has been considered by a number of con- 
d o m s t  researchers @pedes and Farber [SI, Moody [8, 71, 
Jones et al. [4], Crower [ 111 and Sanger [ 131). ?he goal of the 
task is to use known values of the time series up to the point 
r = ftoprediathevalueatsomepointinthefunuer = t+P .  
The standard method for this type of prediction is to create a 
mapping from D points of the time series spaced A apart, that 
is ,(z(t-(D-1)A) ,..., x ( t - A ) , t ( t ) ) , t o a ~ a e d f u n u e  
value z( t  + P). To allow comparison with earlier work (La- 
pedes and Farber [5], Moody [8, 71, Crower [ll]), the values 
D = 4 and A = P = 6 were used. Allothersimulationset- 
tings in this example were purposedly arranged to be as close 
as possible to those reported in 1113. 
To obtain the time series value at each integer point, we 

applied the fourth-order Runge-Kutta method to find the nu- 
merical solution to equation (7). The time step used in the 
method is 0.1, initial condition x(0) = 1.2, T = 17, and z ( t )  
is thus derived for 0 5 t 5 2000. (We assume z ( t )  = 0 for 
1 < 0 in the integration.) From the Mackey-Glass time series 
t ( t ) ,  weextracted l000input-outputdatapairsofthe following 
fomat: 

[ ~ ( t  - 24). ~ ( i !  - 18), z( t  - 12), ~ ( t  - 6); ~ [ t ) ] ,  (8) 

where I = 124 to 1123. The first 500pairs (training data 
set) was used for training the ANFIS while the remaining 500 
pairs (checking data set) were used for validating the identijied 
model. The number of membership functions assigned to each 
input of the ANFIS is arbitrarily set to 2, so the rule number 
is 16. Figure 2 (a) is the initial membership functions for each 
input variable. Note that the ANFIS used here contains a total 
of 104 fitting parameters, of which 24 are premise parameters 
and 80 are consequent parameters 

After 499.5 epochs, we had RMSEt,, = 0.0016 and 

pared with other approaches explained below. The desired 
and predicted values for both training data and checking data 
are essentially the same in Figure 3(a); their differences (Fig- 
ure 3e)) can only be seen on a finer scale. Figure 2 (b) is the 

RMSEChk = 0.0015, Which are much better When COm- 
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(a) Initial MF's for all four input variables. 
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Figure 3: m p l e  3, (a) Mackey-Glass time series from 
f = 124 to 1123 and one-step ahead prediction (which is indis- 
tinguishable from the time series here); (b) prediction error. 

Figure 2: Membershipfunctions, (a) before learning: (b) afer 
learning. 

final membership functions; Kgure 4 shows the RMSE curves 
which indicate most of the leaming was done in the first 100 
epochs. It is interesting to note the unusual phenomenon that 

sidering both the RMsEis vary small, we conciude that this 
phenomenon is due to the following two faus: (1) the ANFIS 
has captured the essential components of the underlying dy- 
namics; (2) the training data contains the effeas of the initial 
conditions (remember that we set z ( t )  = 0 for i 5 0 in the 
integration) which might not be easily accounted for by the 
essential components identiiied by the ANFIS. 

RMSEt,, < RMSE,hk during the learning p-. COD- 

As a comparison, we perfomed the same prediction by us- 
ing the auto-regressive (AR) model with the same number of 
parameters: 

Figure 4: Training and checking RMSE curves for N F Z S  mod- 
eling. 
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Figure 5:  (a) Mackey-Glass time series (solid line) from t = 
7 18 to 1717 and one-step ahead prediction (dashed line) by AR 
model with parameter = 104, (b) prediction erron. 

~ ( t )  = % + ~ l ~ ( t  -6)+a2~(t  -2+6)+ ...+ ~ l o s t ( t  - 103 *6) .  
(9) 

where there are 104 fitting paramem a, k = 0 to 103. 
From t = 718 to 1717, we extxacted 1000 data pairs, of 
which the first 500 were used to identify uk and the remain- 
ing were used for checking. The mults obtained through the 
standard least squares estimate are RMSE,,, = 0.005 and 

FIS. Figure 5 shows the predicted values and the prediction 
errors; it is obvious the over-fitting of the training data cause 
large errors in the Checking data, which in tem k caused by 
the over-parameterization of equation (9). To search for the 
best AR model in terms of generalization capability, we tried 
out AR models with parameter number being varied from 2 
to 104, Figure 6 shows the results where the AR model with 
the best generalization capability is obtained when the param- 
eter number is 45. Based on this best AR model, we repeat 
the generalization test and Figure 7 shows the d t s  where 
there is no over-fitting at the price of larger training e m .  It 
goes without saying that the nonlinear ANFIS outperforms the 
linesrr AR madel. However, it should be noted that the identi- 
fication of the AR model took less than one second, while the 
ANFIS simulation took about 2.5 hours on a HP Apollo 700 
Series workstation. (We did not pay special attention on the 
optimization of the C programs, though.) 

Table 1 lists other methods' generalization capabilities which 
are measured by using each method to predict 500 points im- 

RMSE,hk = 0.078 Which is much WO= than thOSe Of AN- 

Figure 6: Training and checking errors of AR models with 
diflerent parameter numbers. 
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Figure 7: Example 3, (a) Mackey-Glass time series (solid line) 
from t = 364 to 1363 and one-step ahead prediction (dashed 
line) by the best AR model (parameter number = 45); (b) pre- 
diction errors. 
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mediately following the training set. Here the nondimensional 
error index (NDEI) is &fined as the root mean square error 
dividedbythestandarddeviationofthetargetseries [5,11,15]. 
The outstanding generalization capability of ANFIS ,  we be- 
lim, comes from the following: Table 2: Generalization result comparisons for P = 84 (the 

jrst six rows) ana' 85 (the last four rows). Results for thefirst 

1 

1. 

2. 

3. 

Table 

Method Training Errorhdex 
c= (NDET) 

ANFZS 500 0.036 r 

' b e  M S  can achieve a highly nonlinear mapping [l] 
and therefore it is superior to hear  methods in repro- 
ducing nonlinear time series. 

The ANmS used here has 104 adjustable parameters, 
much less than tbose of the cascade-correlation NN (693, 
the median size) and back-prop NN (about 540). 

The initial parameter settings of ANFIS are intuitively 
reasonable, which leads to fast leaming tbat capmm the 
underlying dynamics. Back-prOp NN 500 0.05 

6th-order Polynomial 0.84 

1: Generalization result comparisons for P = 6. (The 
last four rows are taken from 1.211.) 

Table 2 lists the results of the more challenging generalization 
testwhenP=84(thefirstsiXrows)andP=85(thelast 
four rows). The results of the first six rows were obtained by 
iterating the prediction of P = 6 till P = 84. ANFIS sti l l  
outperforms these statistic and connectionist methods unless 
a substantially large amount of training data are used instead. 
Figure 8 illustrates the generalization test for P = 84, where 
the first 500 points are the desired outputs of the training set 

I* 

0.6 

600 800 la00 
time 

( b ) P d i c t i o n ~  while the last 500 are the predicted outputs for P = 84. I '  
0.02 IV. CONUUDINGREMARKS 

We have successfully applied the A N m S  to the prediction of o 
the future values of a chaotic time series; the obtained results 
outperfom the AR (auto-regressive) models and other con- -0.ozL 
nectionist approaches. We think that the strengths of ANFlS 

markable approximation power. Furthermore, the ability to 
incorporate human knowledge (which is not explored in our 
simulation) could make ANFlS a more advantageous candidate 
over others. 
The application shown here is only the tip of a iceberg. Vir- 

tually the A N m S  can replace almost any feedforward neural 

primarily come from its effective hybrid leaming rule and re- 200 400 600 800 la00 1200 
timc 

Figure 8: Generalization test ofANFZS for P = 84. 
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networks and any regression models in almost all kind of ap- 
plications. To name a few, ANFIS can replace neural networks 
in self-leaming control [ 101, adaptive control [9], and adaptive 
filtering application [17]. 
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