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Abstract

This paper describes how techniques from the discipline
of neuro-fuzzy and soft computing techniques can be used,
in conjunction with methodologies from pattern recogni-
tion and digital signal processing, to effectively perform
speech data classification. In particular, we have applied
the proposed method to automatic speaker recognition and
achieved satisfactory results.

1. Introduction

This paper describes our experiments of using neuro-
fuzzy and soft computing techniques [5] to a challenging
real-world problem: automatic speaker recognition (ASR).
Given a speech input, the objective of ASR is to output the
identity of the person most likely to have spoken. ASR is
a difficult problem in pattern recognition. It involves typ-
ically a huge amount of data and we need to apply digital
signal processing techniques to down-size the data dimen-
sion and extract relevant features for further processing of
data classification or discriminant analysis. For such a diffi-
cultproblem, a single approach is usually not enough and we
need a collection of various methodologies to complement
each other to accomplish the task. Hence the techniques of
neuro-fuzzy and soft computing, are introduced in order to
solve the computation-intensive problem of ASR.

2. Automatic Speech Recognition

The task of text-independent automatic speaker recogni-
tion (ASR) is to determine the identity of a speaker by ma-
chine. By text-independent, we mean that the recognition
procedure should work for any text uttered by the speaker.
This is different problem than text-dependent recognition,
where the text comes from a predefined set. ASR may be
viewed as a complement to speech recognition, where the
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latter attgmpts to decode the linguistic message (or text) un-
derlying an utterance, rather than the identity of the speaker.
For ASR, the speech signal must be processed to extract
measures of speaker variability instead of segmental fea-
tures.

Speech exhibits significant variation from instance to in-
stance for the same speaker and text. An important step
in the speaker identification process is to extract sufficient
information for good discrimination, and at the same time,
to have captured the information in a form and size that is
amenable to effective modeling. Speech is usually digitized
at a rate jof 8kHz or higher, using 8 bits or more per sam-
ple, requiring tens of thousands of bytes for a few seconds.
It 1s virtpally impossible for a recognition system to take
such a huge amount of data as raw inputs, therefore we need
to do feature extraction that reduces data dimensions while
retaining classification information.

Speech information is primarily conveyed by the short-
time spe¢trum, the spectral information contained in about
a 20 ms time period [8, 3]. There are a variety of methods
for extract a feature vector from a short-term spectrum of
a speech|signal with 20 ms. The cepstrum of a segment of
speech signals is defined by

cepstium( frame) = FFT™!(log |FFT(frame)|), (1)

FT is a fast Fourier transform and frame is a
vector of speech signal of 20 ms. Cepstra are better fea-
tures for|speaker recognition since they can better reflect the
characteristics of vocal tracts [8, 7].

where F|

3. Approaches Employed

This section briefly described our approaches for tack-
ling the|speaker recognition problem. These approaches
include statistic pattern recognition methods, such as K-
nearest neighbor rule, editing and condensing for data re-
duction,|and methods from neuro-fuzzy and soft computing,
such as fuzzy c-means clustering and random search. Note
that the discipline of soft computing actually encompasses
a variety of different methodologies. In this study, we are
going to| apply only a part of soft computing techniques to
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complement the use of the nearest neighbor rule for speaker
recognition problems.

3.1. Nearest Neighbor Rule for Classifica-
tion

The basic idea behind the nearest-neighbor classification
rule [4] is that samples which fall close together in the feature
space are likely to belong to the same class. To explain the
classification process in practice, suppose that we are given
a sample data set 5, (also known as the design set) which
contains n samiple data points:

Sp = {(X1,y1),(X2,y2), : ..,(xn,yn)},

where x; is the feature vector and v; (which may designate
any of the » classes ¢y, ¢, ..., ¢q) 1s the true class of x;.
Now given a new feature vector x, we want to estimate the
class of x based on the sample data set 5,. To apply the
nearest neighbor rule (NNR), we first determine the nearest
neighbor x’ to x from S, and then assign x to the class
y' of x’. In symbol, the above first nearest neighbor rule
(I-NNR) can be expressed as

1-NNR(x) = ¢ if §(x,x") =  min §(x,xi),

i=1,...,n

where 6(-,-) is some metric (for instance, Euclidean dis-
tance) of the feature space.

A natural extension to make the classification rule more
robust is to use the first several nearest neighbors instead of
one. That is, we can find the first k£ nearest neighbors to
x from S, and assign x to the class that is most heavily
represented in the labels of the first k nearest neighbors.
Statistic analysis and other variants of the k-nearest neighbor
rule (k-NNR) can be found in ref. [4].

3.2. Data Reduction: Editing and Condens-
ing

Assuming that a 256-point frame is adopted to generated
a feature vector in the sample data set. Then a 10-second
segment of speech signals, sampled at 8kHz, will produce
a sample data set of size 624 (= lo—g(fj—g(m— — 1). Such
a large-size design set makes the k-nearest-neighbor rule
very demanding in terms of storage space and computation
complexity, since each of the sample data must be examined
to find the first &£ nearest neighbors each time a new feature
vector is presented to be classified. One way to relieve
such constraints is to do data reduction. That is, reducing
the number of samples in 5, by retaining a representative
subset of the original set. In general, the techniques for data
reduction fall into two categories, editing and condensing.

The conceptbehind editing is to remove inconsistent sam-
ples, that is, samples that are close to each other but belong

to different categories. The basic step is torandomly select
a sample x and find its nearest neighbor x’, and delete ei-
ther one of them if they belong to different categories. The
editing technique removes inconsistent samples located ‘in
class boundary; the remaining samples are usually arranged
in homogeneous clusters.

The concept behind condensing is to remove redundant
samples, that is, samples that are close to each other and
belong to the same category. The basic step is to randomly
select a sample x and find its nearest neighbor x’, and delete
either one of them:if they belong to the same category. The
condensing technique removes deeply embedded samples
within the clusters; ‘the remaining samples-are ‘usually lo-
cated at the outer envelopes of the clusters.

Besides editing and condensing, anothér method for data
reduction 1s vector quantization, which designs a codebook
for each speaker from training data using the LBG algorithm,
K-means clustering, or fuzzy c-means clustering. For this
study, we apply the well-known fuzzy c-means clustering,
as described in the next section.

3.3. Fuzzy C-Means Clustering

Fuzzy C-means (FCM) clustering [1] partitions a collec-
tion of n vector X;,¢ = 1, ..., m into ¢ fuzzy groups, and
finds a cluster center in each group such that a cost function
of dissimilarity measure is minimized. To accommodate the
introduction of fuzzy partitioning, the membership matrix
U is allowed to have elements with values between -0 and 1.
However, imposing normalization stipulates that the sum-
mation of degrees of belongingness for a data set always be
equal to unity:

c
Zuij:I,Vj:I,...,n. )
i=1
The cost function (or objective function) for FCM is

=3 "Ji= Zzumdj, 3)

i=1 i=] j=1

J(U,er,. . ce)

where u;; is'between 0 and 1;°¢; isthe cluster center of fuzzy
group i; d;; = {j¢; — x| is the Euclidean distance between
ith cluster center and jth-data point; and m € [1,00) is a
weighting exponent. In our simulation, m is setto 2.

The necessary conditions for Equation (3) to reach a
minimum ¢an be found by forming a new objective function
J as follows:

U(‘,l,.. CC,)\I,... /\n)

J(
J(U,e1,y... ¢ +Z——1
Zz—lzn-—lumd“ +Z i=1

i

(chzlcuij - 1)
(Zi:l Uij — 1)>
4
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where };, 7 = 1 to n, are the Lagrange multipliers
for the n constraints in Equation (2). By differentiating
J(U,c1,...,¢c, A1, - .-, An) with respect to all its input ar-
guments, the necessary conditions for Equation (3) to reach
its minimum are

®)

and

©)

4= 2o\
< £y
D=t <dkj>

The fuzzy C-means algorithm is simply an iterated proce-
dure through the preceding two necessary conditions. In
a batch-mode operation, FCM determines the cluster cen-
ters ¢; and the membership matrix U using the following
steps [1]:

Step 1: Initialize the membership matrix U with random
values between O and 1 such that the constraints in
Equation (2) are satisfied.

Step 2: Calculate ¢ fuzzy cluster centers ¢;,2 = 1,...,¢,
using Equation (5).

Step 3: Compute the cost function according to Equa-
tion (3). Stop if either it is below a certain tolerance
value or its improvement over previous iteration is be-
low a certain threshold.

Step 4: Compute anew U using Equation (6). Go to step
2.

The cluster centers can also be first initialized and then the
iterative procedure carried out. No guarantee ensures that
FCM converges to an optimum solution. The performance
depends on the initial cluster centers, thereby allowing us
either to use another fast algorithm to determine the initial
cluster centers or to run FCM several times, each starting
with a different set of initial cluster centers. Bezdek’s mono-
graph [2] provides a detailed treatment of fuzzy C-means
clustering, including its variants and convergence proper-
ties.

3.4. Fuzzy Classifiction System

The purpose of data reduction is to retain a representative
subset of the original sample data. The “measure of repre-
sentativeness” (MOR) of a reduced sample data set may be
defined as the recognition rate of the original sample data
using the reduced sample data as a design set. Using the
MOR scores, we may easily rank the performance of datare-
duction schemes such as editing, condensing, and VQ-based
methods.
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Since ¢ach point x; in the reduced sample set is supposed
to be a representative point of the original sample set, we
may create a.fuzzy if-then rule around the point:

If x is close to x;, then the output y is y;,

where y; is the output label associated with x;. The multi-
dimensional antecedent membership function of “close to
x; " 1n the feature space may be defined as

e =oAL

T

where r; is the radius of influence of the point x;. If we have

allow r; to be different, then we can adjust them to achieve
a higher scores of MOR, that is, to make better-use of the
reduced sample set and thus produce-a high recognition rate
for the test data set. In this paper, we adjust r; via random
search, as described next.
3.5. Random Search

Random search explores the search space of an objective
function sequentially in a seemingly random fashion to find
the optimal point that minimizes the objective function. Let
f(x) be the objective function to be minimized and x be the
point curtently under consideration. The original random
search method [6] keeps on evaluating a randomly selected
new point and adopting the new point if the objective fune-
tion is smaller. This is a primitive version in the sense that
search directions are purely guided by a random number
generator| An improved version that contains a reverse step
and a biag term was proposed in ref. [9] and it involves the
following steps:

Step 1: Choose a start point x as the current point. Set
initial bias b equal to a zero vector.

jective function at the new pointat x + b + dx.

Step 3: If f(x + b + dx) < f(x), set the current point x
equal to x+b+dx and the biasb equal to 0.2b+0.4dx;
20 tg step 6. Otherwise, go to the next step.

Step 4: If f(x + b — dx) < f{x), set the current point X
equal tox + b — dx and the bias b equal to b — 0.4dx;
2o ta step 6. Otherwise, go to the next step.
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Step 5: Set the bias equal to 0.5b and go to step 6.

Step 6: Stop if the maximum number of function evalua-
tions is reached. Otherwise go back to step 2 to find a
new point.

Usually the initial bias is set to a zero vector. Each
component of the random vector dx should be a random
variable that has a zero mean and a variance proportional
to the range of the corresponding parameter; this allows the
method to apply the same degree of exploration for each
dimension of the parameter space. A detailed coverage of
random search with examples can be found in ref. [5].

4. Experimental Settings and Results

4.1. Data Acquisition and Feature Extrac-
tion

The speaker recognition experiments were conducted on
a data set of 5 male speakers; each speaker contributed three
sentences to the data set and each sentence lasts for about 2
to 3 seconds. All the data acquisition was performed using
the recording program under Windows 95; the sampling
frequency is 8kHz with a 8-bit A-D. The underlying platform
is a Pentium-166 PC, with a dSPACE 1102 controller board
that can eventually take speech signals from a speaker, do
FFT (fast Fourier transform) and others to extract features,
feed the features to a trained classifier, and return the identity
of the speaker in a real-time fashion.

The feature set used for encoding the speech signal was
a form of cepstral coefficients computed as follows:

1. Partition the speech signals into disjoint half-frames of
128 points. Neighboring half-frames are joined to form
a complete frame of 256 points. (In other words, each
half-frame is presented in two complete frames, and the
intersection of two consecutive frames 1s a 128-point
half-frame.) Since the sampling frequency is 8 kHz,
each frame lasts 256/8 = 32 ms.

Window each frame using a 256-point Hamming win-
dow to lessen distortion.

Compute the cepstral coefficients of each frame using
Equation (1).

. The first 14 coefficients of the cepstrum is taken as the
feature vector of the frame.

In our simulation, we used the first sentences of the speak-
ers as the training set (or design set), the second and third
sentences as the test set. The above process can thus extract
578 training entries and 1063 test entries; each entry con-
tains a feature vector of 14 elements and a output label that

666

may assume the value of 1, 2, or 3. The following table lists
the constituents of the training and test sets.

i | Speaker 1 [ Speaker 2 | Sp.uker 3 | Total
Training set 148 280 150 578
Test set 256 457 350 1063

4.2. Experimental Results

4.2.1. k-NNR without data reduction

Without using any data reduction techniques, the perfor-
mance of k-NNR (k nearest-neighbor rule), with & = 4,
is shown as the following confusion probability matrix C,
where c¢;; denotes the probability of a feature vector of class
1 being classified as class j:

| | Speaker 1 | Speaker 2 | Speaker 3 |
Speaker 1 83.5% 5.8% 10.5%
Speaker 2 17.9% 73.9% 8.0%
Speaker 3 13.1% 10.5% 76.2%
Overall recognition rate = 77.9%

At a first glance, it may seem that the recognition rates
in the preceding table are on the low-end side. However,
those percentages are based on single-frame recognition and
higher recognition rates can be achieved if multiple consec-
utive frames are used in a voting mechanism to find a overall
computed class. A single frame corresponds to a speech sig-
nal of 32-ms duration; an m-frame ensemble corresponds to
a speech signal of ((m+ 1) % 16) ms. Figure 2 demonstrates
how the recognition rates increase with the input lengths (or
equivalently, numbers of consecutive frames).

The upper plot in Figure demonstrate the recognition
rates for test data from different speakers, as the input length
varies from 32ms to about 2 sec. Apparently speaker 1 is the
easiest one to identified, while speaker 2 1s the most difficult.
The lower plot in Figure shows the overall recognition rates
as a function of the input length. A recognitionrate of 100%
can be achieve when the input length is longer than about
0.6 sec (or equivalently, about 40 frames).

The performance in this experiment serve as a bench-
mark for other variants of data reduction methods and/or
discriminative functions described next.

4.2.2. k-NNR with data editing and condensing

As described earlier, the editing technique removes samples
in the boundary areas, while the condensing technique re-
moved samples deeply embedded in a same-class cluster.
Thus it is a common practice to perform editing first and
then condensing. In our simulation, the editing technique
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Figure 1. Recognition rates of 4-NNR using the en-
tire sample data. (Upper: recognition rates for indi-
vidual speakers; lower: overall recognition rates.)

reduced the training set size from 578 to 496, and the con-
densing technique further reduced it to 75. The resulting
confusion matrix is shown next.

| | Speaker 1 | Speaker 2 | Speaker 3 |

Speaker 1 72.2% 10.9% 16.7%

Speaker 2 41.3% 50.7% 7.8%

Speaker 3 13.4% 20.5% 66.0%
Overall recognition rate = 63.0%

The recognition rate curves are in Figure 2. The recogni-
tion rates in this case are generally lower, but the training set
size is much smaller (75 compared to 578) and the computa-
tion time of £-NNR is significantly reduced. Obviously the
reduced sample set after editing and condensing is not really
a good representative subset. In particular, the recognition
rate for speaker 2 is very low, which makes the overall recog-
nition rate curve below 100% even when the input length is
2 sec.

4.2.3. k-NNR with data reduction via FCM

In contrast, we applied the FCM (fuzzy c-means) cluster-
ing [2] toeach of the three classes of the original 578 tratning
samples. The cluster centers found by FCM is then used as
the design set for k-NNR with # = 4. To make a fair com-
parison, the total number of cluster centers is equal to 75,
and the number of clusters in each class is proportional to
the number of training data in the class. The following table
is the confusion probability matrix.

667

FUZZ-1EEE’97

801

70~-

)
60F
50

40
[

Recognition rate (%)

O Speaker 1 1
X  Speaker 2
X Speaker 3

L

©
o

2 04 0.6 0.8 1 1.2 14 1.6 1.8 2
input length (sec)

00
=]

@
<

Recognition rate (%)
~
(=]

[
te)

: L L . i L L

Figur
duced

densing.

speake

2 0.4 086 08 1 1.2 14 1.6 1.8 2
input length {sec)

e 2. Recognition rates of 4-NNR using a re-
sample data set obtained via editing and con-
(Upper: recognition rates for individual
rs; lower: overall recognition rates.)

| Speaker 1 | Speaker 2 | Speaker 3 |

Speaker 1

77.7% 13.2% 8.9%

Speaker 2

20.5% 71.7% 7.6%

Speal

ker 3 13.7% 14.8% 71.4%

Overall recognition rate = 73.6%

In gene
vious case
FCMism
ing. Figur
The overal
length is aj

4.2.4. Fuz

In this exp
set of size

ral, the recognition rates are higher than the pre-
, which indicates that the reduced sample set by
bre consistent than the one by editing and condens-
¢ 3 is the corresponding recognition rate curves.
1 recognition curve reaches 100% when the input
round 1.2 sec.

zy classification system

eriment, we applied FCM to find areduced sample
75, and then create a 75-rule fuzzy classification

system in which the width of each rule is adjusted viarandom

search ton

naintain the consistency between the original and

reduced sample sets. The resulting confusion probability
matrix is
| [ Speaker 1 [ Speaker 2 [ Speaker 3 |
Speaker 1 57.8% 30.0% 14.0%
Speaker 2 8.7% 82.5% 7.6%
Speaker 3 9.7% 9.4% 82.8%
Overall recognition rate = 75.4%
Figure |4 is the corresponding recognition rate curves.

Because o

f the use of random search to adjust r; of each
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Figure 3. Recognition rates of 4-NNR using a re-
duced sample data set obtained via FCM.

rule, the recognition rates are generally higher and the over-
all recognition rate reaches 100% when the input length is
around 0.9 sec, which is close to the benchmark case (0.6
sec.), and better than those by FCM alone (1.2 sec.) and
editing plus condensing (more than 2 sec.).

5. Concluding Remarks and Future Work

In this paper, ‘we have successfully applied several soft-
computing techniques to enhance the performance of the
nearest neighbor classification rule for speaker recognition.
It is demonstrated that, with enough computing power, the
fuzzy c-means clustering can effectively find representative
sample points, which canthen be used as a design set without
degrading the recognition rates too much. Further improve-
ments can be obtained if we apply random search to find the
near-optimal radius of each sample point.

This is'only a starting point of using soft computing tech-
niques for digital signal processing and pattern recognition.
Other potential directions include:

e Use gradient-free optimization to select the best frame
size-for speaker recognition. (In this paper, the frame
size 1§ fixed at 256 points.)

o Use gradient-free optimization to select the most rele-
vant features for further classification. (In this paper,
the number of features is the first 14 cepstral coeffi-
cients.)

o Assign different radius of influence to each feature and
apply gradient-free optimization to find their best val-

100
& 90 i
2
€ 80 ) =
S o Speaker 1
= * Speaker2 _
§> 70 X -Speaker3
& w0 8

50 : . . . . . o - ;

o] 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2

nput length (sec)

Recognition rate (%)

75 g i1 1 B 1 i 4 1. ! il
0

0.2 0:4 0.6 0.8 1 1.2 1.4 1.6 18 2
laputlength (sec)

Figure 4. Recognition rates of the fuzzy classifica-
tion system which-applies random search for adjusting
r; of each rule.

ues. (In this papers, the radius of influence is the same
for each features for a given representative point.)

Moreover, the experiences we gained from the experi-
ments pave he avenue to a set of more difficult biometric
identification problems, including recognition of faces, fin-
gerprints, palm prints, retinal blood-vessel patternis, and-so
on.
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