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Abstract 

This paper describes how techniques from the discipline 
of neuro-fuzzy and so@ computing techniques can be used, 
in conjunction with methodologies from pattern recogni- 
tion and digital signal processing, to effectively perform 
speech data classifcation. In particulal; we have applied 
the proposed method to automatic speaker recognition and 
achieved satisfactory results. 

1. Introduction 

This paper describes our experiments of using neuro- 
fuzzy and soft computing techniques [SI to a challenging 
real-world problem: automatic speaker recognition (ASR). 
Given a speech input, the objective of ASR is to output the 
identity of the person most likely to have spoken. ASR is 
a difficult problem in pattern recognition. It involves typ- 
ically a huge amount of data and we need to apply digital 
signal processing techniques to down-size the data dimen- 
sion and extract relevant features for further processing of 
data classification or discriminant analysis. For such a diffi- 
cult problem, a single approach is usually not enough and we 
need a collection of various methodologies to complement 
each other to accomplish the task. Hence the techniques of 
neuro-fuzzy and soft computing, are introduced in order to 
solve the computation-intensive problem of ASR. 

2. Automatic Speech Recognition 

The task of text-independent automatic speaker recogni- 
tion (ASR) is to determine the identity of a speaker by ma- 
chine. By text-independent, we mean that the recognition 
procedure should work for any text uttered by the speaker. 
This is different problem than text-dependent recognition, 
where the text comes from a predefined set. ASR may be 
viewed as a complement to speech recognition, where the 

ts to decode the linguistic message (or text) un- 

same speaker and text. An important step 
identification process is to extract sufficient 

for good discrimination, and at the same time, 
ured the information in a form and size that is 

ctive modeling. Speech is usually digitized 
or higher, using 8 bits or more per sam- 
of thousands of bytes for a few seconds. 

ossible for a recognition system to take 
amount of data as raw inputs. therefore we need 
e extraction that reduces data dimensions while 

conveyed by the short- 
tion contained in about 

strum of a segment of 

where F T  is a fast Fourier transform and f r a m e  is a 
vector o speech signal of 20 ms. Cepstra are better fea- 
tures for speaker recognition since they can better reflect the 
characte I istics of vocal tracts [8, 71. 

3. Appboaches Employed 

from neuro-fuzzy and soft computing, 

techniques to 
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complement the use of the nearest neighbor rule for speaker 
recognition problems. 

3.1. Nearest Neighbor Rule for Classifica- 
tion 

nd the nearest-neighbor classification 
which fall close together in the feature 

'$2 = {(Xl.  Y l ) :  (x2; YZ)! ' ' . I  ( x n ,  Yn)}, 

to different categories. The basic step is to randomly select 
a sample x and find its nearest neighbor x', and delete ei- 
ther one of them if they g to different categories. The 
editing technique removes inconsistent samples located in 
class boundary; the remaining samples are usually arranged 
in homogeneous clusters. 

ndensing is to remove redundant 
that are close to each other and 

belong to the same category. The basic step is to randomly 
nd find its nearest neighbor x', and delete 
if they belong to the same category. The 

condensing technique removes deeply d samples 
within the clusters; the remaining samples are usually lo- 
cated at the outer envelopes of the clusters. 

Besides editing and c ther method for data 
reduction is vector quan ion, which designs a codebook 
for each speaker from tr ng the LBG algorithm, 
K-means clustering, or fuzzy c-means clustering. For this 
study, we apply the well-known fuzzy c-means clustering, 
as described in the next section. 

where x, is the feature vector and yt (which may designate 
any of the 7 classes cl, e?_, . . . , e,.) is the true class of x,. 
Now given a new feature vector x, we want to estimate the 
class of x based on the sample data set Sn. To apply the 
nearest neighbor rule (NNR), we first determine the nearest 
neighbor x' to x from S,, and then assign x to the class 
y' of x'. In symbol, the above first nearest neighbor rule 
(1-NNR) can be expressed as 

1-NNR(x) = y' i f6 (x ,x ' )  = min 6(x,x,), 

where 6(.. .) is some metric (for instance, Euclidean dis- 
tance) of the feature space. 

A natural extension to make the classification rule more 
robust is to use the first several nearest neighbors instead of 
one. That is, we can find the first k nearest neighbors to 
x from S,, and assign x to the class that is most heavily 
represented in the labels of the first k nearest neighbors. 
Statistic analysis and other variants of the k-nearest neighbor 

2 = 1 ,  ,n 

be found in ref. [4]. 

3.2. Data Reduction: Editing and Condens- 
ing 

Assumng that a 256-point frame is adopted to generated 
a feature vector in the sample data set. Then a 10-second 
segment of speech signals, sampled at 8kHz, will produce 
a sample data set of size 624 (= lo 256,2 - 1). Such 
a large-size design set makes the k-nearest-neighbor rule 
very demanding in terms of storage space and computation 
complexity, since each of the sample data must be examined 
to find the first IC nearest neighbors each time a new feature 
vector is presented to be classified. One way to relieve 
such constraints is to do data reduction. That is, reducing 
the number of samples in S, by retaming a representative 
subset of the original set. In general, the techniques for data 
reduction fall into two categories, editing and condensing. 

Theconcept behindediting is to remove inconsistent sam- 
ples, that is, samples that are close to each other but belong 

3.3. Fuzzy C-Means Clustering 

Fuzzy C-means (FCM) clustering [ 13 partitions a collec- 
tion of n vector xz, i = 1. , n into c fuzzy groups, and 
finds a cluster center in each group such that a cost funchon 
of dissimilarity measure IS mnimized. To accommodate the 
introduction of fuzzy partitioning, the membership matrix 
C is allowed to have elements with values between 0 and 1. 
However, imposing normalization stipulates that the sum- 
mation of degrees of belongingness for a data set always be 
equal to unity: 

C CUZJ = l ,"j= 1, . . . ,  n. 
2 = 1  

The cost function (or objective function) for FCM is 

C c n  

J ( U :  C l , .  . . . c,) = c J,  = U p , ; ,  ( 3 )  
i = l  i = l  j=1 

where U,, is between 0 and 1 : c, is the cluster center of fuzzy 
group i; d,, = / / e ,  - xg / /  is the Euclidean distance between 
zth cluster center and j t h  data point; and m E [ I ,  CO) is a 
weighting exponent. In our simulation, m is set to 2. 

The necessary conditions for Equation (3) to reach a 
nunimum can be found by forming a new o 
J as follows: 

J(U. c1 , . . . , c, ,  A I ,  . . . ] A,) 
J ( U ,  C l :  ' . , c c )  + c;=l A, (CZc=I 2123 - 1) 
CL1 cy=, U p ? J  +E;=, X,(C,"=l UZJ - 11, 

= 
= 

(4) 
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Step 1: 
initial 

Step 2: 
current 
jective 

Step 3: I:! 
equal 

where Xj ,  j = 1 to n, are the Lagrange multipliers 
for the n constraints in Equation (2). By differentiating 
J (  U, CI . . , c c ,  XI, . . . , A,) with respect to all its input ar- 
guments, the necessary conditions for Equation (3) to reach 
its minimum are 

Choose a start point x as the 
bias b equal to a zero vector. 

Add a bias term b and a random vector dx to the 
point x in the input space and evaluate the ob- 
function at the new point at x + b + dx. 
f(x + b + dx) < f(x), set the current point x 
to x+b+dx and the bias b o 0.2bS0.4dx; 

and 
1 

= 2/(m-I)  ‘ (6) 
C L  (2) 

The fuzzy C-means algorithm is simply an iterated proce- 
dure through the preceding two necessary conditions. In 
a batch-mode operation. FCM determines the cluster cen- 
ters cz and the membership matrix li using the following 
steps [ 11: 

Step 1: Initialize the membership rix U with random 
values between 0 and 1 such that the constramts in 
Equation (2) are satisfied. 

Step 2: Calculate c fuzzy cluster centers cz i = 1 . . . e ,  
using Equation (5) .  

Step 3: Compute the cost function according to Equa- 
if either it is below a certain tolerance 

value or its improvement over previous iteration is be- 
low a certain threshold. 

Step 4: Compute a new U using Equation (6). Go to step 
2.  

The cluster centers can also be first initialized and then the 
iterative procedure carried out. No guarantee ensures that 
FCM converges to an optimum solution. The performance 
depends on the initial cluster centers, thereby allowing us 
either to use another fast algorithm to determine the initial 

ter centers or to run FCM several times, each starting 

graph [2] provides a detaded tre ent of fuzzy C-means 
clustering, including its variants and convergence proper- 
ties. 

a different set of initial cluster centers. Bezdek’s 

3.4. Fuzzy Classifiction System 

se of data reduction is to retain a represent 
subset of the original sample 
sentativeness” (MOR) of a reduced 

ned as the recognition rat 
the reduced sample data as a 
scores, we may easily rank the 
n schemes such as editi 

ance of data re- 

methods. 

ch point x, in the reduced sample set is supposed 
esentative point of the original sample set, we 

fuzzy if-then rule around the point: 

x is close to x;, then the output y is yz 

e output label associated with x,. The multi- 
antecedent membership function of “close to 
ture space may be defined as 

1 output. One may notice that 
m reduces to 1-NNR if ~i is the 

tative points. On the other hand, if we 
nt, then we can adjust them to achieve 

s of MOR. that is, to make better use of the 
set and thus produce a high recognition rate 
set. In this paper, we adjust ri via random 

3.5. Rdndom Search 

h explores the search space of an objective 

tive function to be minimized and x be the 
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I /  

Training set 1 1  148 
Test set / /  256 

Step 5:  Set the bias equal to 0.5b and go to step 6 

Step 6: Stop if the maximum number of function evalua- 
tions is reached. Otherwise go back to step 2 to find a 
new point. 

Usually the initial bias is set to a zero vector. Each 
component of the random vector dx should be a random 
variable that has a zero mean and a variance proportional 
to the range of the corresponding parameter; this allows the 
method to apply the same degree of exploration for each 
dimension of the parameter space. A detailed coverage of 
random search with examples can be found in ref. [5] .  

, 
280 150 1 578 
457 350 1 1063 

4. Experimental Settings and Results 

Speaker 1 

4.1. Data Acquisition and Feature Extrac- 
tion 

83.5% I 5.8% 10.5% The speaker recognition experiments were conducted on 
a data set of 5 male speakers; each speaker contributed three 
sentences to the data set and each sentence lasts for about 2 
to 3 seconds. All the data acquisition was performed using 
the recording program under W-indows 95; the sampling 
frequency is 8kHz with a 8-bit A-D. The underlying platform 
is a Pentium-166 PC, with a dSPACE 1102 controller board 
that can eventually take speech signals from a speaker. do 
FFT (fast Fourier transform) and others to extract features, 
feed the features to a trained classifier. and return the identity 
of the speaker in a real-time fashion. 

The feature set used for encoding the speech signal was 
a form of cepstral coefficients computed as follows: 

SDeaker 2 

may assume the value of 1 ,2 ,  or 3. The following table lists 
the constituents of the training and test sets. 

17.9% I 73.9% 8.0% 

1 1  SDeaker 1 I SDeaker 2 I %:&er 3 1 Total 

4.2. Experimental Results 

4.2.1. k-NNR without data reduction 

Without using any data reduction techniques, the perfor- 
mance of k-NNR ( h  nearest-neighbor rule), with h = 4, 
is shown as the following confusion probability matrix C,  
where cij denotes the probability of a feature vector of class 
i being classified as class j :  

I /  I I 

Speaker3 / I  13.1% I 10.5% 1 76.2% 
Overall recognition rate = 77.9% 

At a first glance, it may seem that the recognition rates 
in the preceding table are on the low-end side. However. 
those percentages are based on single-frame recognition and 
higher recognition rates can be achieved if multiple consec- 
utive frames are used in a voting mechanism to find a overall 
computed class. A single frame corresponds to a speech sig- 
nal of 32-ms duration; an m-frame ensemble corresponds to 
a speech signal of ( (  m + 1) + 16) ms. Figure 2 demonstrates 

1. partition the speech signals into disjoint half-frames of 

a complete frame of 256 points. (In other words, each 
half..frame is presented in two complete frames, and the 

half-frame.) since the sampling frequency is 8 kHz, 
each frame lasts 256/8 = 32 ms. 

how the recognition rates increase with the input lengths (or 

The upper plot in Figure demonstrate the recognition 
rates for test data from different speakers, as the input length 

easiest one to identified, while speaker 2 is the most difficult. 
The lower plot in Figure shows the overall recognition rates 
as a function of the input length. A recognition rate of 100% 

128 points, Neighboring half-frmes are joined to form equivalentlY, numbers Of consecutive frames). 

intersection of two consecutive frames is a 128-point varies from 32ms to about2sec. Apparently speaker 1 is the 

2. Window each frame using a 256-point Hamming win- 
dow to lessen distortion. 

3. Compute the cepstral coefficients of each frame using 
Equation (1). 

4. The first 14 coefficients of the cepstrum is taken as the 
feature vector of the frame. 

In our simulation, we used the first sentences of the speak- 
ers as the training set (or design set), the second and third 
sentences as the test set. The above process can thus extract 
578 training entries and 1063 test entries; each entry con- 
tains a feature vector of 14 elements and a output label that 

can be achieve when the input length is longer than about 
0.6 sec (or equivalently, about 40 frames). 

The performance in this experiment serve as a bench- 
mark for other variants of data reduction methods and/or 
discriminative functions described next. 

4.2.2. k-NNR with data ediiing and condensing 

As described earlier, the editing technique removes samples 
in the boundary areas, while the condensing technique re- 
moved samples deeply embedded in a same-class cluster. 
Thus it is a common practice to perform editing first and 
then condensing. In our simulation, the editing technique 
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0 

x Speaker3 

U 

0 2  0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Input length (sec) 

60 I 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Input length (sec) 

0 0.2 0.4 0 6  0.8 1 1.2 1.4 1.6 1 8  2 
Input length (sec) 

0 2  0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Input length (sec) 

Figure 1. Recognition rates of 4-NNR using the en- 
tire sample data. { Upper: recognition rates for indi- 
vidual speakers; lower: overall recognition rates.) 

Spe+er 1 / /  77.7% 
SDeaker 2 / /  20.5% 

reduced the training set size from 578 to 496, and the con- 
densing technique further reduced it to 75. The resulting 
confusion matrix is shown next. 13.2% 1 8.9% 

71.7% I 7.6% 
Speaier 

I !  I , 
3 / I  13.7% 1 14.8% 1 7 1.4% 
Overall recognition rate = 73.6% 

Overall recognition rate = 63.0% 

Speaker 1 
SDeaker 1 72.2% 

The recognition rate curves are in Figure 2 .  The recogni- 
tion rates in this case are generally lower, but the training set 
size is much smaller (75 compared to 578) and the computa- 
tion time of k-NNR is significantly reduced. Obviously the 
reduced sample set after editing and condensing is not really 
a good representative subset. In particular, the recognition 
rate for speaker 2 is very low, which makes the overall recog- 
nition rate curve below 100% even when the input length is 
2 sec. 

Speaker 2 I Speaker 3 
10.9% ! 16.7% 

4.2.3. k-NNR with data reduction via FCM 

Speaker2 
Speaker3 

In contrast, we applied the FCM (fuzzy c-means) cluster- 
ing [2] to each of the three classes of the original 578 training 
samples. The cluster centers found by FCM is then used as 
the design set for k-NNR with k = 4. To make a fair com- 
parison, the total number of cluster centers is equal to 75, 
and the number of clusters in each class is proportional to 
the number of training data in the class. The following table 
is the confusion probability matrix. 

41.3% 1 50.7% 1 7.8% 
13.4% 1 20.5% 1 66.0% , 

4.2.4. Fuzzy 

In this 
set of size 
system in 
search to 
reduced 
matrix is 

classification system 

experiment, we applied FCM to find areduced sample 
75, and then create a 75-rule fuzzy classification 

which the width of each rule is adjusted via random 
riaintain the consistency between the original and 

simple sets. The resulting confusion probability 

/ I  Sueaker 1 I SDeaker 2 I Speaker 3 I 

2 .  Recognition rates of 4-NNR using a re- 
data set obtained via editing and con- 

recognition rates for  individual 
recognition rates.) 

Speaker 1 57.8% 30.0% 14.0% 
SDeaker 2 

recognition rate curves. 
100% when the input 

8.7% 82.5% 7.6% 
Speaker 

I1 I 

3 / j  9.7% I 9.4% 1 82.8% 
Overall recognition rate = 75.4% 

Figure 
Because of 

4 is the corresponding recognition rate curves. 
the use of random search to adjust ri of each 

667 I 
Authorized licensed use limited to: National Taiwan University. Downloaded on June 29,2025 at 13:57:01 UTC from IEEE Xplore.  Restrictions apply. 



FUZZ-IEEE'97 

0 0.2 0 4  0 6  0 8  1 1 2  1 4  1 6  1 8  2 
input tength (sec) 

50 

100 

s - go 
d 

70 
a 

"b 0'2 0'4 0'6 0'8 1'2 1'4 1 6 1'8 !? 
Input length (sec) 

Figure 3. Recognition rates of 4-NNR using a re- 
duced sample data set obtained via FCM. 

ition rates are generally higher and the over- 
hes 100% when the input length is 
s close to the benchmark case (0.6 

r than those by FCM alone (1.2 sec.) and 

5. Concluding emarks and Future Work 

fully applied several soft- 
e the performance of the 

n rule for speaker recognition. 
enough computing power. the 

ng can effectively find representative 
an then be used as a design set without 

es too much. Further improve- 
e apply random search to find the 

oint of using soft computing tech- 
ng and pattern recognition. 

e ation to select the best framc 
on. (In this paper, the frame 

e n to select the most rele- 

s of influence to each feature and 
ent-free optimization to find their best val- 

100 
- - 8 90 
m - 

80 

70 

2 60 

0 

T 
I 

0 0.2 0 4  0 6  0 8  1 1 2  1 4  1 6  1 8  2 
input length (sec) 

50 ' 
too 

4 ff 
d ,  I 

0 0 2  0 4  0 6  0 8  1 1 2  1 4  1 6  1 8  2 
lnpur length (sec) 

75 I 

r, of each rule. 

on. 
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