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Abstract 
We present the results of applying the Leven,Oerg- 

Margua rdt meth od, a popular n onha ear 1 eost-sq t in  res 
method, to the A N F I S  (Adnptive Ne,iiro Ftizzy In- 
feren ce System) arch it ect ti re [L?] proposed ea 1-1 ier. 
Through empirical studies, we discirss the strengths 
and weaknesses of using such ail e f ic ie i i t  ~zoiiliizenr re- 
gression techniques for  neuro-fuzzy modeling, nnd  ex- 
plain the t rade-o f f s  be tween  mapping p r e c i s i o n  a n d  MF 
interpretability. 

1 Introduction 
The Levenberg-Ma.rquardt (LM)  method is an ef- 

fective nonlinear least-squares a.pproa.(:h t,o nonlinear 
regression problems, including neura.1 net~norks and 
fuzzy modeling. By changing the va.lue of n control 
parameter A, the Levenberg-Rilarclu",rdt, metliod ca.n 
vary smoothly between the sta,ble but, slow gracLieiit 
descent (or steepest descent) inethod and t.he greedy 
but less stable Gauss-Newton method. 

In this paper, we present empirical st,udierj of ap- 
plying the LM method to the ANFlS (Ada.ptive Neuro 
Fuzzy Inference System) architecture [l, 2 , 4 ]  proposecl 
earlier. We discuss the strengths and wealmesses of us- 
ing such an advanced nonlinear regression techniques 
for neuro-fuzzy modeling, coinpare t,he rcsults to  t,liose 
of the previously proposed hybrid learning method, 
and explain the trade-of& between mapping precision 
and membership function (NIP) iiit,erpretabilil,!r. 

This paper is organized into five 
next section, the basics of ANFIS are 
tion 3 explains the rationale behind 
Marquardt method. Simulation restilk are demon- 
strated in section 4. Section 5 gives coiicliitling re- 
marks. 

2 ANFIS 
This section introduces the basics of A N  FIS net- 

work architecture and its hybrid learning rule.. A de- 
tailed coverage of ANFIS can lie found i n  [l. '2, ,1]. 

The Sugeno fuzzy model wa.s prol~osed IIJ -  '1';tk- 
agi, Sugeno, and Kang [14, 131 in an effort. t,o ~c~ruialize 
a systemat,ic approach to  geiicraling f 
an input-output da t a  set,. A t.,vpical 
Sugeno fuzzy model has the format, 

I f  x is A and y is B t hen  3 = .J(:i:, I J ) .  
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Figure 1: ( a )  Fzrst-order Strgeno fuzzy model; (b)  cor- 
respondzng ANFIS archztecture. 

where A and B are fuzzy sets in the antecedent; 
2, y) is a crisp ifunction in the consequent. Usu- il; ;[I, y) is a polynoinialin the input variables 2 and 

y, but it can be any other functions that  can appro- 
priately describe the output of the system within the 
fuzzy region specified by the antecedent of the rule. 
When f ( x ,  y )  is a first-order polynomial, we have the 
first-order Sugeno fuzzy model, which was originally 
proposed in [14, 151. When f is a constant, we then 
have t,lie zero-order Sugeno fuzzy model, which can 
be viewed either as a special case of the Mamdani 
fuzzy inference system [7] where each rule's consequent 
is specified by a fuzzy singleton, or a special case of 
Tsuka.inoto's fuzzy model [15] where each rule's conse- 
quent is specified by a membership function of a step 
function centered a t  the constant. lMoreover, a zero- 
order Sugeno fuzzy model is functionally equivalent 
t,o a radial basis function network under certain ininor 
constraints [ 3 ] .  

Consider a first--order Sugeno fuzzy inference sys- 
t ,mi  which contains two rules: 

Rille 1: If S is '41 and Y is BI, then 
f l  = P l ~  + ply + 1-1, 

Rule 2: If X is A 2  and Y is B2, then 
f ?  = paz + qzy + ra. 

Figurc 1 (a) illiistrittes graphically the fuzzy reasoning 
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mechanism to derive an output .f froiii a gi\-eii input, 
vector [z, y]. The f i r ing  s t r e n g t h s  I L ' L  at id  t l .2  i l l '? 

usually obtained as the product, of t lic iiieiiiliersliip 
grades in the premise part. and t ,hp  out.ptit ,f is the 
weighted average of each rule's out>put. 

To facilitate the learning (or adapt,at,ion) of the  
Sugeno fuzzy model, it  is convenient t,o ptit t,lie f i i z z ~ .  
model into the framework of adaptive. iiet,worls t h a t  
can compute gradient vectors systematically. The re- 
sultant network architecture, called ANFIS ( A d a p  
tive Neuro-Fuzzy Inference Syst,em), is slion.11 i i i  Fig- 
ure 1 (b), where node within the sa.nie layer perform 
functions of the same type, as det,ailecl lx lo iv .  (Note 
that  0: denotes the output of' the i-t,li node in j - t l i  
layer.) 

Laye r  1 Each node in this hye r  generat,es a iiieiiilier- 
ship grades of a linguistic label. For instance, tlie 
node function of t,he i-th node ilia!; lie a general- 
ized bell membership fiinct,ion: 

where z is the input to node i ;  A, is the liiiguis- 
tic label (small ~ large,  etc.) assoc:iat,ed l v i t l i  t,liis 
node; and {ai, b i ,  c i }  is the pa.raiiiet,er set, t h a t  
changes the shapes of the membership funct,ion. 
Parameters in this layer are rrfrrretl to as (lie 
premise parameters. 

Laye r  2 Each node in this layer calculates t , l iP firing 
strength of a rule via iiiult,iplica.t,ioii: 

Laye r  3 Node i in this layer calculates the ratio of 
the i-th rule's firing strength to the total of all 
firing strengths: 

U l ,  

, I = 1 - 2  (2) 0; = E, ___ 
I l l 1  + I 1  L' 

Layer  4 Node i in this layer compiit.e t,he coiit,riliii- 
tion of i-th rule toward t,he overall out,put,. with 
the following node function: 

0: = 7 3 2  fi = G,(&2! + q j g  + T i ) >  ( L 4 )  

where Wi is the output of layer 3: and { I J ~ ,  q z ,  r i }  
is the parameter set. Pa.ra.iiieters i n  this  la)^ are  
referred to  as t.he coiiseqiient p;wai:ieters. 

Laye r  5 The single node in this la.!;er c:oiiipiit,rs t lie 
overall output as the suitima.t~ioii of  cmiitri Iiiit,ioii 
from each rule: 

'The const,ruct,ed adaptive network in Figure l (b)  is 
friiictionally equivalent t,o a fuzzy inference system in 
Figure 1 (a ) .  The ba.sic learning rule of ANFIS is the 
liackpropagation gradient descent [16], which calcu- 
lates error signals (tlie derivative of the squared error 
n-ith respect t,o each node's output) recursively from 
tlie output layer backward to the input nodes. This 
leariiirig rule is exactly the same as the backpropa- 
gation learning rule used in the common feedforward 
neural networks [ll]. 

From the ANFIS adi i tec ture  in Figure 1, i t  is ob- 
served tha t  given the values of premise parameters, 
the overall out,put f can be expressed as a linear com- 
binations of  the consequent parameters: 

f = -  11'1 f l  + u'2.f2 

= ( m z ) P l +  (WIY)QI + (E1)'I ( 6 )  + (%Z)PZ + (way)q2 + (wa)r2. 
Based on this observafion, we have proposed a hybrid 
learning algorithm [I, 21 which combines the gradi- 
ent descent. a.nd the least-squares method for an  effec- 
tive search of optimal parameters; both on-line and 
off-line learning paradigms were developed and re- 
ported in [2]. Following the concept of ANFIS, we 
have also proposed the CANFIS (Coactive ANFIS) 
architecture 19, 51 that has multiple outputs and non- 
linear output equat,ioiis. Details of ANFIS/CANFIS 
and  t,lieir applications can be found in [5]. 

3 Levenberg-Marquardt Method 
A4NFIS is a network architecture tha t  a.llows sys- 

tematic calculation of gradient vectors (derivatives of 
output, error with respect t,o modifiable parameters), 
so we are not limited to the backpropagation or hy- 
brid learning method only. In fact, we can apply any 
gradient-based t.echniques in nonlinear regression and 
optimization, such as the Gauss-Newton method, the 
Le\.enberg-;I;Iarquardt method 6, 81, and the extended 
Iialirian filter algorithm [ l a ,  10 I . This section presents 
t,lie Levenberg-Marquardt (LM) method. 

.A nonlinear neuro-fuzzy model can be generally ex- 
pressed as 

where x is the input vector, 6 = [ B I ,  . . . , B,] is the pa- 
rameter vector a.nd y is the model's (scalar) output. 
(The extension to  mult,iple-output systems is straight- 
forward.) Given a set of training da ta  { (xp; t p ) ,  p = 
I .  . . . , 1 7 2 ) .  a squared error measure takes the form 

!/ = f(x, e) ,  (7 )  

?n 

E(@) = Crt, - f(xp 1 w, (8) 
p = l  

Tvliich is tlie object,ive function we want t o  mini- 
mize. Before introducing t,lie Levenberg-Marquardt 
iiiet,liod for iniiiimiziiig Equation (8) , we shall review 
t,lir closely related Gauss-Newton method. 

The G a u s s - N e w t o n  method, also known as the 
l i i iearization method. uses a Taylor series expa.n- 
bioi1 to obtain a linear model taliat approximates the 
original lionlinear model and then employs the ordi- 
iiar,~. least,-scjuares method to  estimate the parameters. 
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Specifically, let t,he current paranict8ers be tleiiot,etl liy 
On,,; then we can expailcl t,he noiiliiiex i~iiotlel in 
Equation ( 7 )  in a. Taylor series arouiid H = H,,,],,, and 
retain only the linear terms: 

Y = .f(x,Onow) 

\ . I  

Inspection of t3he above equatjion rewa.ls t-lia t, t,lie 
translated output  y-  S(x, H,,,,,) is a linear fiinc%ioii ol 
the translated parameters Bi - Q T l O L L , , i .  WP ca.n there- 
fore obtain a better estima.tor H n r r t  by inieaiis of tllie 
well-known pseudo-inverse formula : 

00) 

where Ay is the error vector of which t~lie ptli elenlent, 
is equal to t ,  - f ( x p , O n o r u ) ,  AH is (ATA)-'ATAy, 
and the element a t  row p and column j of matrix A is 

one& = H1,,ow + (ATA-~. - lTAy 
= ono,, +AH, 

8.f (Xf , 0) I 
OVJ lO=H,,,, 

A potential problem with the (;auss-Ncwtoii 
method is tha t  (ATA)-' might not, al\va.ys exist,, r w -  
dering this method practically unusable. S~icli a, sitmu- 
atioii is handled by Leveiiberg-Marcliia1.dt proce- 
dure. which defines AO as 

At3 = (ATA + X1)-'ATAy, 

where I is the identity matrix and X is usually a sinall 
positive constant. Depending on t#he niagnitu.de of A, 
the  method transits smoothly het,weeii t,wo extremes: 
the Gauss-Newton method (A  -+ 0) and the gra.dient. 
descent method (A -+ CO). Usually the Gauss-Newton 
method is more efficient but less stsable; t,he gracli- 
ent descent method is more stable Ihit less c+ficient. 
By properly setting the value of A,  t,lie J,evenlierg- 
Marquardt method can be efficient, 3s \vel1 as  st,ahle. 
More details ca.n be found in [ 8 ] .  

4 Siiiiulatioii Results 
This section presents the siinula.tion resnltss of AN- 

FIS training using both the hybrid learning method [2] 
and the Levenberg-Marquardt method. For siniplicit.y, 
we use a single-input single-out,put training d a t a  set, 
defined by the equation: 

y = 0 . 6 s i n ( ~ z )  + 0.3siii(3?iz) + O.lsiii(57rx)~ 

where 2 is a set of 51 1inea.rly spa(:ed d i i t . 3  point~s Ikx- 
tween -1 a.nd 1. Since we 01113; want, t,o c.oiiipare t81ie 
mapping precision of two training niet.liotls, there \ 

not test d a t a  involved in our siniulation. 
By using tlie hybrid 1ca.rniiig iiiet,liocl. an  ANFIS 

system with 3 rules can ma.t,ch t,he t,rii.iiiiiig t lat,a sat.- 
isfactorily after 100 epochs, as showii i i i  Figurc 2 ( a ) .  
The upper sub-plots in (a) illiist,rat 
functions before and aftcr trainiii 
demonstrate the tra.ining da ta  point 

ANF1S inpntm/outmput8 curve. Since tlie MF pararneters 
are tjiiiietl by t,lie gradient descent, the final MFs do 
not, vary tjoo much froin the initial MFs. T h e  final 
RMSE (root-mean-scluared error) is 0.1184. 

As a comparison. we apply tlie Levenberg- 
kfarquardt inetho~cl to  t,he sa.me three-rule ANFIS. 
Figure 2 (b)  is tShe results after a similar amount of 
c-oiiiputoa.tioii time. The fina.1 RMSE is 0.0565, which 
is bet8ter t,lian that  a.chieved by t,he hybrid learning. 
However, the final RlFs va.ry a lot from their initial 
set.t,ings and it is 111a.rtl t80 a.ssign a.ppropria.t,e linguistic 
li.lbc.ls to  t,liese MFs.  In particular, the MFs shrank 
during t,raining, which leaves some input domain not 
covered by MFs of sufficient heights. This exempli- 
fies tlie dilemma. between precision and inter- 
pretability: the I L M  met,liod i s  more effective and it 
can achieve a lower RMSE a.nd t,lius higher mapping 
precisioii, hut it does not conserve good properties of 
initial MFs such as moderate overlaps and approxi- 
mate  orthogonalit8:y. 

Similar observahons ca.n he made when a four- 
rule ANFIS is used. Figure 3 (a) is the results of 
using the hybrid learning method; the final R.MSE 
is 0.0079. Figure 3 ( I ) )  i s  t,he counterpart of using 
the Leveiiberg-Ma.rqua.rdt, method; the final RMSE is 
sma.ller (0.0015) but. the final MFs do not lend them- 
selves to good liiiguistic int,erpretation. 

5 Coiiclusioiis and Future Work 
We lime discussed the Levenberg-Marquardt 

inethod for ANFIS training. The  Levenberg- 
Marquardt methold is an efficient approach to non- 
linear least-squares problems. When applied to AN- 
FIS training, the LM method wa,s able to reduce the 
root mean squared error further than the previously 
proposed hybrid learning method. Although the LM 
inethod ca,n achieve a better mapping precision, it, 
also evolves the MFs to ail ext,eiit such that  the lin- 
guistic iiit,erpretability of t,lie final MFs beconies quite 
weak. We refer to the situation as the dilemma be- 
tween precision and interpretability [SI. The  hy- 
brid learning method achieved a lower precision, and 
t.lie resultant MFs are usually interpretable. On the 
other haad, the L.M method a.tt,ained a higher preci- 
sioii, but, it. adso generated not-so-interpretable MFs. 

Ada.ptive neuro--fuzzy models like ANFIS/CANFIS 
transit smoothly between the two ends of neuro-fuzzy 
spectrum: a linguistically understaridable fuzzy infer- 
ence system and a black-box neural network in par- 
t,iciila,r, Iiackpropagatioii inult,ilayer perceptron 'I . Thls 
is bett,er explained by the iiitjerpretability-precision 
plane shown in Figure 4. Ideally we would like tlie 
t,raiiiiiig of a. iieuro-fuzzy model takes t,he vertical route 
t o  t.lie top, sucli that  t,he inappiiig precision is im- 
j,ro\.ecl while t,he interpretmability is ma,int,ained. In 
pract,ire, however, t.he tra.ining usually takes t,lie diag- 
onal rorite to  improve limpping precision wit8h det,eri- 
orat,iiig interpretability. The horizontal route demon- 
st.rat,es t,he nenro-fi.izzy spect,ruiii ranging between two 
estrcmes: ail understandable fuzzy inference system 
; i i i c l  a Iila.ck-box nr:iiral network. 

If  liiiguistic int,erpret,nliility is not a concern, then 
we are ent,itled t,o choose the most efficient learning 
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Figure 2:  Three-rule ANFIS truzried by (a) hybrid lenr-nzng, the final RMSE as 0 1184; (b)  the LM method; the 
f ina l  RMSE zs 0.0565. 

algorithm in the literature. However, if liiigriistic ill- 

terpretability is a concern, then we need to be careful 
about how to  update MF parameters. The Iiybricl 
learning rule generally gives iiit,erpretable results, but, 
this is not always guaranteed. (Even if we use the 
simple backpropagation gradient descent,. we caiiiiot. 
guarantee the resultant interpret,ability, as cliscussed 
in [9].) 

Our future work should iiivolve colisiderations on 
achieving better interpreta.bilit,y by putting proper 
constraints on neighboring MFs, or by  reforiiiulatiiig 
the error measure to be minimized. One possible ~i‘ay 
of reformulating the error measure is t,o iiicorporat,e 
a term similar to Shannon’s information ciit roliy. as 
suggested in [a ] .  
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