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Abstract

We present the results of applying the Levenberg-
Marquardt method, a popular nonlinear least-squares
method, to the ANFIS (Adaptive Neuro Fuzzy In-
ference System) architecture [2] proposed earlier.
Through empirical studies, we discuss the strengths
and weaknesses of using such an efficient nonlinear re-
gression techniques for neuro-fuzzy modeling, and ex-
plain the trade-offs between mapping precision and MF
wnterpretability.

1 Introduction

The Levenberg-Marquardt (LM) method is an ef-
fective nonlinear least-squares approach to nonlinear
regression problems, including neural networks and
fuzzy modeling. By changing the value of a control
parameter A, the Levenberg-Marquardt method can
vary smoothly between the stable but slow gradient
descent {or steepest descent) method and the greedy
but less stable Gauss-Newton method.

In this paper, we present empirical studies of ap-
plying the LM method to the ANFIS (Adaptive Neuro
Fuzzy Inference System) architecture [1, 2, 4] proposed
earlier. We discuss the strengths and weaknesses of us-
ing such an advanced nonlinear regression techniques
for neuro-fuzzy modeling, compare the results to those
of the previously proposed hybrid learning method,
and explain the trade-offs between mapping precision
and membership function (MTF) interpretability.

This paper is organized into five sections. In the
next section, the basics of ANFIS are introduced. Sec-
tion 3 explains the rationale behind the Levenberg-
Marquardt method. Simulation results are demon-
strated in section 4. Section 5 gives concluding re-
marks.

2 ANFIS

This section introduces the basics of ANFIS net-
work architecture and its hybrid learning rule. A de-
tailed coverage of ANFIS can be found in [1, 2. 4].

The Sugeno fuzzy model was proposed by Tak-
agi, Sugeno, and Kang {14, 13] in an effort to formalize
a systematic approach to generating fuzzy rules from
an input-output data set. A typical fuzzy rule in a
Sugeno fuzzy model has the format

Ifz 1s A and y is B then z = [{x.y),

0-7803-3225-3-6/96 $5.00 © 1996 IEEE

Eiji Mizutani

ME Department
Univ. of California at Berkeley
Berkeley, CA 94720

Ar H Br

f\/f\\m fy=px +quy +1;
v foe W,

A 1 B
| - =
oo f\ Wy fr=pX QY 4 =Wt
X Y
X
(@)
layer 1 layer 4
J’ layer 2 layer 3 l

Figure 1: (a) First-order Sugeno fuzzy model; (b) cor-
responding ANFIS architecture.

where A and B are fuzzy sets in the antecedent;
z = f(z,y) is a crisp function in the consequent. Usu-
ally f(z,y) is a polynomial in the input variables  and
y, but it can be any other functions that can appro-
priately describe the output of the system within the
fuzzy region specified by the antecedent of the rule.
When f(z,y) 1s a first-order polynomial, we have the
first-order Sugeno fuzzy model, which was originally
proposed in {14, 13]. When f is a constant, we then
have the zero-order Sugeno fuzzy model, which can
be viewed either as a special case of the Mamdani
fuzzy inference system [7] where each rule’s consequent
is specified by a fuzzy singleton, or a special case of
Tsukamoto’s fuzzy model [15] where each rule’s conse-
quent is specified by a membership function of a step
function centered at the constant. Moreover, a zero-
order Sugeno fuzzy model is functionally equivalent
to a radial basis function network under certain minor
constraints [3].

Consider a first-order Sugeno fuzzy inference sys-
tem which contains two rules:

Rule 1: If X is Ay and Y i1s By, then
fir=me+ qytr,

Rule 2: If X 1s As and Y 1s B, then
fo = pox + g2y + 2.

Figure 1 (a) illustrates graphically the fuzzy reasoning
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mechanism to derive an output f from a given input
vector [z,y]. The firing strengths w, and w» are
usually obtained as the product of the membership
grades in the premise part, and the output f is the
weighted average of each rule’s output.

To facilitate the learning (or adaptation) of the
Sugeno fuzzy model, it 1s convenient to put the fuzzy
model into the framework of adaptive networks that
can compute gradient vectors systematically. The re-
sultant network architecture, called ANFIS (Adap-
tive Neuro-Fuzzy Inference System), is shown in Fig-
ure 1 (b), where node within the same layer perform
functions of the same type, as detailed helow. {Note

that O{ denotes the output of the 7~th node in j-th
layer.)

Layer 1 Each node in this layer generates a member-
ship grades of a linguistic label. For instance, the
node function of the i-th node may be a general-
ized bell membership function:

1
Ozl :HA,(J:): b, (l)

] 4 \ :xr;’c,'

where z is the input to node 4; A; is the linguis-
tic label (small , large, etc.) associated with this
node; and {a;, b;, ¢;} is the parameter set that
changes the shapes of the membership function.
Parameters in this layer are referred to as the
premise parameters.

Layer 2 Each node in this layer calculates the firing
strength of a rule via multiplication:

O} = wi = pa, (@)pp, (W), i=1.2.  (2)

Layer 3 Node ¢ in this layer calculates the ratio of
the i-th rule’s firing strength to the total of all
firing strengths:

O3=mw; = ——"— i=12 (3)

W+ wo

Layer 4 Node ¢ in this layer compute the contribu-
tion of 7-th rule toward the overall output, with
the following node function:

Of = Wi f; = Wi(piw + qiy -+ 7i), (4)

where ; is the output of layer 3, and {p;, ¢;, r;}
is the parameter set. Parameters in this layer are
referred to as the comsequent parameters.

Layer 5 The single node in this layer computes the
overall output as the summation of contribution
from each rule:

0% = overall output = Zﬁif,- = Z—Z"f% (5)

1

The constructed adaptive network in Figure 1(b) is
functionally equivalent to a fuzzy inference system in
Figure 1(a). The basic learning rule of ANFIS is the
backpropagation gradient descent [16], which calcu-
lates error signals (the derivative of the squared error
with respect to each node’s output) recursively from
the output layer backward to the input nodes. This
learning rule is exactly the same as the backpropa-
gation learning rule used in the common feedforward
neural networks [11].

From the ANFIS architecture in Figure 1, it is ob-
served that given the values of premise parameters,
the overall output f can be expressed as a linear com-
binations of the consequent parameters:

f W f1 +Wa fo
(yx)pr + (Wy) g + (W1)m (6)
+ (W2a)p2 + (Way)qe + (Wa)r2.

Based on this observation, we have proposed a hybrid
learning algorithm [1, 2] which combines the gradi-
ent descent and the least-squares method for an effec-
tive search of optimal parameters; both on-line and
off-line learning paradigms were developed and re-
ported in [2]. Following the concept of ANFIS, we
have also proposed the CANFIS (Coactive ANFIS)
architecture [9, 5] that has multiple outputs and non-
linear output equations. Details of ANFIS/CANFIS
and their applications can be found in [5].

3 Levenberg-Marquardt Method

ANFIS is a network architecture that allows sys-
tematic calculation of gradient vectors (derivatives of
output error with respect to modifiable parameters),
so we are not limited to the backpropagation or hy-
brid learning method only. In fact, we can apply any
gradient-based techniques in nonlinear regression and
optimization, such as the Gauss-Newton method, the
Levenberg-Marquardt method [6, 8], and the extended
Kalman filter algorithm [12, 10]. This section presents
the Levenberg-Marquardt (LM) method.

A nonlinear neuro-fuzzy model can be generally ex-

pressed as
y = f(x,6), (M)

where x is the input vector, 8 = [y, ...,8,] is the pa-
rameter vector and y is the model’s (scalar) output.
(The extension to multiple-output systems is straight-
forward.) Given a set of training data {(xp;%,),p =
1,....m}, a squared error measure takes the form

m

E(B) = Z[tp - f(xp|6)]27 (8)

p=1

which 1s the objective function we want to mini-
mize. Before introducing the Levenberg-Marquardt
method for minimizing Equation (8), we shall review
the closely related Gauss-Newton method.

The Gauss-INewton method, also known as the
linearization method, uses a Taylor series expan-
sion to obtain a linear model that approximates the
original nonlinear model and then employs the ordi-
nary least-squares method to estimate the parameters.
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Specifically, let the current parameters be denoted by
0,00; then we can expand the nonlinear model in
Equation (7) in a Taylor series around 8 = 6,,,, and
retain only the linear terms:

y = f(x6n0
Of(x,8
Y, —’%a—)iee> o et

(9)
Inspection of the above equation reveals that the
translated output y— f(x, @) is a linear function of
the translated parameters 8; — 0,,,, ;. We can there-
fore obtain a better estimator 6,..; by means of the
well-known pseudo-inverse formula:

enert = 9’!7.011} + (14T14)_1ATAY 10
= gnow + AG, ( )

where Ay is the error vector of which the pth element
is equal to ¢, — f(xp, Onow), AO is (AT AT AT Ay,
and the element at row p and column j of matrix A is
af(x,,6)

50—

J 6=6...

A potential problem with the Gau
method is that (AT A)~! might not always exist, ren-
dering this method practically unusable. Such a situ-
ation is handled by Levenberg-Marquardt proce-
dure, which defines A8 as

A8 = (ATA+ A1)~ 1 AT Ay,

where 7 is the identity matrix and A is usually a small
positive constant. Depending on the magnitude of A,
the method transits smoothly between two extremes:
the Gauss-Newton method (A — 0) and the gradient
descent method (A — 0o0). Usually the Gauss-Newton
method is more efficient but less stable; the gradi-
ent descent method is more stable but less efficient.
By properly setting the value of A, the Levenberg-
Marquardt method can be efficient as well as stable.
More details can be found in [8].

4 Simulation Results

This section presents the simulation results of AN-
FIS training using both the hybrid learning method [2]
and the Levenberg-Marquardt method. For simplicity,
we use a single-input single-output training data set
defined by the equation:

y = 0.6sin(nz) + 0.3sin(37z) + 0.1sin(5rz),

where 2 is a set of 51 linearly spaced data points be-
tween -1 and 1. Since we only want to compare the
mapping precision of two training methods, there was
not test data involved in our simulation.

By using the hybrid learning method, an ANFIS
system with 3 rules can match the training data sat-
isfactorily after 100 epochs, as shown in IFigure 2 (a).
The upper sub-plots in (a) illustrate the membership
functions before and after training; the lower plot
demonstrate the training data points and the resulting

ANFIS input/output curve. Since the MF parameters
are tuned by the gradient descent, the final MFs do
not vary too much from the initial MFs. The final
RMSE (root-mean-squared error) is 0.1184.

As a comparison, we apply the Levenberg-
Marquardt method to the same three-rule ANFIS.
Figure 2 (b) is the results after a similar amount of
computation time. The final RMSE is 0.0565, which
is better than that achieved by the hybrid learning.
However, the final MFs vary a lot from their initial
settings and it is hard to assign appropriate linguistic
labels to these MTs. In particular, the MFs shrank
during training, which leaves some input domain not
covered by MFs of sufficient heights. This exempli-
fies the dilemia between precision and inter-
pretability: the LM method is more effective and it
can achieve a Jower RMSE and thus higher mapping
precision, but it does not conserve good properties of
initial MFs such as moderate overlaps and approxi-
mate orthogonality.

Similar observations can be made when a four-
rule ANFIS is used. Figure 3 (a) is the results of
using the hybrid learning method; the final RMSE
is 0.0079. Figure 3 (b) is the counterpart of using
the Levenberg-Marquardt method; the final RMSE is
smaller (0.0015) but the final MFs do not lend them-
selves to good linguistic interpretation.

5 Conclusions and Future Work

We have discussed the Levenberg-Marquardt
method for ANFIS training. The Levenberg-
Marquardt method is an efficient approach to non-
linear least-squares problems. When applied to AN-
FIS training, the LM method was able to reduce the
root mean squared error further than the previously
proposed hybrid learning method. Although the LM
method can achieve a better mapping precision, it
also evolves the MFs to an extent such that the lin-
guistic interpretability of the final MFs becomes quite
weak. We refer to the situation as the dilemma be-
tween precision and interpretability [5]. The hy-
brid learning method achieved a lower precision, and
the resultant MFs are usually interpretable. On the
other hand, the LM method attained a higher preci-
sion, but it also generated not-so-interpretable MFs.

Adaptive neuro-fuzzy models like ANFIS/CANFIS
transit smoothly between the two ends of neuro-fuzzy
spectrum: a linguistically understandable fuzzy infer-
ence system and a black-box neural network (in par-
ticular, backpropagation multilayer perceptron). This
1s better explained by the interpretability-precision
plane shown in Figure 4. Ideally we would like the
training of a neuro-fuzzy model takes the vertical route
to the top, such that the mapping precision is im-
proved while the interpretability is maintained. In
practice, however, the training usually takes the diag-
onal route to improve mapping precision with deteri-
orating interpretability. The horizontal route demon-
strates the neuro-fuzzy spectrum ranging between two
extremes: an understandable fuzzy inference system
and a black-box neural network.

If linguistic interpretability is not a concern, then
we are entitled to choose the most efficient learning
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Figure 2: Three-rule ANFIS trained by (a) hybrid learning, the final RMSE is 0.1184; (b) the LM method; the

final RMSE s 0.0565.

algorithm in the literature. However, if linguistic in-
terpretability is a concern, then we need to be careful
about how to update MF parameters. The hybrid
learning rule generally gives interpretable results, but
this is not always guaranteed. (Even if we use the
simple backpropagation gradient descent, we cannot
gu?r]au)ltee the resultant interpretability, as discussed
in [9].

Our future work should involve considerations on
achieving better interpretability by putting proper
constraints on neighboring MFs, or by reformulating
the error measure to be minimized. One possible way
of reformulating the error measure is to incorporate
a term similar to Shannon’s information entropy. as
suggested in [2].
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