
Input Selection for ANFIS Learning

J yh-S hing Roger Jang (j ang Qcs . nt hu. edu . t w)
Department of Computer Science, National Tsing Hua University EIsinchu, Taiwan

Abstract

We present a quick and straightfoward way of input
selection for neuro-fuzzy modeling using ANFIS. The
method is tested on two real-world problems: the non-
linear regression problem of automobile MPG (miles
per gallon) prediction, and the nonlinear system identi-
fication using the Box and Jenkins gas furnace data [I].

1. Introduction

For a real-world modeling problem, it is not uncom-
mon to have tens of potential inputs to the model under
construction. An excessive number of inputs not only
impair the transparency of the underlying model, but
also increase the complexity of computation necessary
for building the model. Therefore, it is necessary to
do input selection that finds the priority of each can-
didate inputs and uses them accordingly. Specifically,
the purposes of input selection include:

0 Remove noise/irrelevant inputs.

0 Remove inputs that depends on other inputs.

0 Make the underlying model more concise and
transparent.

Reduce the time for model construction.

In this paper, we present a quick and staightfor-
ward way of input selection for neuro-fuzzy modeling
using ANFIS (Adaptive Neuro-Fuzzy Inference Sys-
tems) [2,3], a previously proposed neuro-fuzzy network
structure. The input selection method is tested on two
real-world problems: the nonlinear regression problem
of automobile MPG (miles per gallon) prediction, and
the nonlinear system identification using the Box and
Jenkins gas furnace data [l].

In the
next section, the basics of ANFIS are introduced. Sec-
tion 3 explains how to proceed input selection for AN-

This paper is organized into six sections.

0-7803-3645-3/96 $5.0001996 IEEE

FIS modeling. Application to the problems of automo-
bile MPG prediction and gas furnace identification are
demonstrated in section 4 and 5 , respectively. Section
5 gives concluding remarks.

2. ANFIS

This section introduces the basics of ANFIS network
architecture and its hybrid learning rule. A detailed
coverage of ANFIS can be found in [a, 3, 61.

The Sugeno fuzzy model was proposed by Talcagi,
Sugeno, and Kang [16, 151 in an effort to formalize a
systematic approach to generating fuzzy rules from an
input-output data set. A typical fuzzy rule in a Sugeno
fuzzy model has the format

I f x zs A and y zs 13 then x = f(x,y),

where A and B are fuzzy sets in the antecedent; z =
f (x , y) is a crisp function in the consequent. Usually
f (z , y) is a polynomial in {,he input variables 2 and
y , but it can be any other functions that can appro-
priately describe the output of the system within the
fuzzy region specified by the antecedent of the rule.
When f (2, y) is a first-order polynomial, we have the
first-order Sugeno fuzzy model, which was originally
proposed in [le, 151. When f is a constant, we then
have the zero-order Sugeno fuzzy model, which can
be viewed either as a special case of the Mamdani
fuzzy inference system [9] where each rule’s consequent
is specified by a fuzzy singleton, or a special case of
Tsukamoto’s fuzzy model [17] where each rule’s conse-
quent is specified by a membership function of a step
function centered at the constant. Moreover, a zero-
order Sugeno fuzzy model is functionally equivalent to
a radial basis function network under certain minor
constraints [5].

Consider a first-order Sugeno fuzzy inference system
which contains two rules:

Rule 1: If X is AI and Y is B1, then

Rule 2: If X is A 2 and Y is Ba, then
f l = PlZ + Q l Y + T l r

f 2 = P 2 X + Q 2 Y + 7-2.

1493
Authorized licensed use limited to: National Taiwan University. Downloaded on June 29,2025 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

(a)

layer 1 layer 4 A l a y r 2 layer3 4 4 x y layer5

X

Y

+ f

Figure 1. (a) First-order Sugeno fuzzy model; (b)
corresponding ANFIS architecture.

Figure 1 (a) illustrates graphically the fuzzy reasoning
mechanism to derive an output f from a given input
vector [x, y]. The firing strengths w1 and w2 are usu-
ally obtained as the product of the membership grades
in the premise part, and the output f is the weighted
average of each rule's output.

To facilitate the learning (or adaptation) of the
Sugeno fuzzy model, it is convenient to put the fuzzy
model into the framework of adaptive networks that
can compute gradient vectors systematically. The re-
sultant network architecture, called ANFIS (Adaptive
Neuro-Fuzzy Inference System), is shown in Figure 1
(b), where node within the same layer perform func-
tions of the same type, as detailed below. (Note that
0; denotes the output of the i-th node in j-th layer.)

Layer 1 Each node in this layer generates a member-
ship grades of a linguistic label. For instance, the
node function of the i-th liode may be a general-
ized bell membership function:

(1)
1

0; = P A % (%) 26, '
1 + / y I

where x is the input to node i; A, is the linguis-
tic label (smal l , Iurge, etc.) associated with this
node; and {a, , b, , e,} is the parameter set that
changes the shapes of the membership function.
Parameters in this layer are referred to as the
premise parameters.

Layer 2 Each node in this layer calculates the firing
strength of a rule via multiplication:

0: wz = P A z (x) p B , (y) ~ i = 1 , 2 . (2)

Layer 3 Node i in this layer calculates the ratio of the
i-th rule's firing strength to the total of all firing
strengths:

Layer 4 Node i in this layer compute the contribution
of i-th rule toward the overall output, with the
following node function:

where Gi is the output of layer 3, and {p i , q i , ~ i }
is the parameter set. Parameters in this layer are
referred to as the consequent parameters.

Layer 5 The single node in this layer computes the
overall output as the summation of contribution
from each rule:

The constructed adaptive network in Figure l (b)
is functionally equivalent to a fuzzy inference system
in Figure l (a) . The basic learning rule of ANFIS is
the backpropagation gradient descent [18], which cal-
culates error signals (the derivative of the squared error
with respect to each node's output) recursively from
the output layer backward to the input nodes. This
learning rule is exactly the same as the backpropaga-
tion learning rule used in the common feedforward neu-
ral networks [13].

From the ANFIS architecture in Figure 1, it is ob-
served that given the values of premise parameters, the
overall output f can be expressed as a linear combina-
tions of the consequent parameters:

f = ~ l f 1 + 5 5 Z f 2

(6) -
- (" l) P l + (ElY)41+ (W1)Tl

+ (w z z) p 2 + (Gay)q:! + (W2)TZ.

Based on this observation, we have proposed a hybrid
learning algorithm [a, 31 which combines the gradient
descent and the least-squares method for an effective
search of optimal parameters; both on-line and off-line
learning paradigms were developed and reported in [3].
Moreover , other advanced techniques in nonlinear re-
gression and optimization. such as the Gauss-Newton
method, the Levenberg-Marquardt method [8, 101, and
the extended Kalman filter algorithm [14, 121 can also
be applied here directly.

The original ANFIS C: codes and several examples
can be retrieved via anony-
mous ftp in user/ai/areas/f uzzy/systems/anf is at

1494
Authorized licensed use limited to: National Taiwan University. Downloaded on June 29,2025 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

f t p . cs . cmu . edu (CMU Artificial Intelligence Reposi-
tory). For MATLAB users, ANFIS is also available in
the Fuzzy Logic Toolbox used with MATLAB [4].

Following the concept of ANFIS, we have also pro-
posed the CANFIS (Coactive ANFIS) architecture [11,
71 that has multiple outputs and nonlinear output
equations. Details of ANFIS/CANFIS and their ap-
plications can be found in [7].

3. Input Selection

As mentioned earlier, a real-world modeling prob-
lem usually involves tens (or even hundreds) of poten-
tial inputs to the model under construction. Therefore
we need to have a heuristic way to quicltly determine
the priorities of these potential inputs and use them
accordingly. In this section, we propose a quick and
straightfoward way to do input selection for ANFIS
modeling.

As described in the previous section, ANFIS is a
network structure that facilitates systematical compu-
tation of gradient vectors, the derivative of the output
error with respective to each modifiable parameters. In
particular, ANFIS employs an efficient hybrid learning
method that combines gradient descent and the least-
squares method. The least-squares method is, actually,
the major driving force that leads to fast training, while
the gradient descent serves to slowly change the under-
lying membership functions that generates the basis
functions for the least-squares method. As a result,
ANFIS can usually generate satisfactory results right
after the first epoch of training, that is, only after the
first application of the least-squares method. Since the
least-squares method is computationally efficient, we
can construct ANFIS models for various combinations
of inputs, train them with a single application of the
least-squares method, and then choose the one with the
best performance and proceed for further training.

The proposed input selection method is based on
the assumption that the ANFIS model with the small-
est RMSE (root mean squared error) after one epoch
of training, has a greater potential of achieving a lower
RMSE when given more epochs of training. This as-
sumption is not absolutely true, but it is heuristically
reasonable.

For instance, if we have a modeling problem with 10
candidate inputs and we want to find the most influen-
tial 3 inputs as the inputs to ANFIS, we can construct
Cia = 120 ANFIS models (each with different combi-
nation of 3 inputs), and train them with a single pass of
the least-squares method. The ANFIS model with the
smallest training error is then selected for further train-
ing using the hybrid learning rule to tune the member-

ship functions as well. Note that one-epoch training
of 120 ANFIS models in fact involves less computa-
tion than 120-epoch training of a single ANFIS model,
therefore the input selection procedure is not really as
computation intensive as it looks.

Another reason for input selection is to facilitate the
input-space grid partitioning for ANFIS; this is further
explained in Section 4, where ANFIS is used for auto-
mobile MPG (miles per gallon) prediction.

For certain types of problems, the candidate inputs
are divided into groups and, due to physical proper-
ties of the target system, one or several members of
each group has to be in the set of final inputs to the
model under consideration. These physical properties
allow us to build less potentila1 ANFIS models initially.
One such example is the non linear system identification
problem discussed in Section 5.

4. Automobile MPG Prediction

This section describes the use of the proposed input
selection method for ANFIS modeling, with application
to nonlinear regression. We shall use automobile MPG
(miles per gallon) prediction as a case study, in which
an automobile’s fuel consumption in terms of MPG is
predicted by ANFE based on several given characteris-
tics, such as number of cylinders, weight, model years,
and so on.

The automobile MPG prediction problem is a typ-
ical nonlinear regression problem where several at-
tributes (input variables) are used to predict another
continuous attribute (output variable). In this case,
the six input attributes includes profile information
about the automobiles:

No. of cylinders: multi-valued discrete
Displacement: continuous
Horsepower: continuous
Weight: continuous
Acceleration: continuous
Model year: multi-valued discrete

The attribute to be predicted in terms of the above
six (6) input attributes is the fuel consumption in
MPG. Table 1 is a list of seven instances selected at
random from the data set. After removing instances
with missing values, the data set was reduced to 392
entries. Our task was then to use this data set and AN-
FIS to construct a fuzzy inference system that could
best predict the MPG of an automobile given its six
profile attributes.

Before tra.ining a fuzzy inference system, we divide
the data set into training and test sets. The training set

1495
Authorized licensed use limited to: National Taiwan University. Downloaded on June 29,2025 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

Table 1. Samples of the MPG traanang data set. (The last column zs used for reference only and not for
predzctzon.) The data set as avazlable from the UCI Reposztory of Machane Learnang Databases and Do-
inaan Theorzes (F T P address: ftp : //ics . uci . edu/pub/machine-learning-databases/auto-mpg). More
hzstorzcal znformatzon about the data set can be found there.

I No. of Cylinders I Displacement I Horse Power (HP) I Weight I Acceleration I Year I MPG 1 Car name I

3

Training (solid line) and test (dashed line) errors ,. * , @
,... . . . :. , . , , ' .~.......""' . . . Q'.' . ..

Figure 2. Fifteen two-input fuzzy models for au-
tomobile MPG prediction.

is used to train (or tune) a fuzzy model, while the test
set is used to determine when training should be ter-
minated. to prevent overfitting. The 392 instances are
randomly divided into training and test sets of equal
size (196).

Grid partitioning is the most frequently used input
partitioning method for ANFIS. However, for a prob-
lem with six inputs, grid partitioning leads to at least
26 = 64 rules, which results in (6 + 1) x 64 = 448 linear
parameters if we want to stick to the first-order Sugeno
fuzzy model. This implies that we have too many fit-
ting parameters and the resultant model is not reliable
for unforeseen inputs. To deal with this, we can either
select certain inputs that have more prediction power
instead of using all the inputs, or choose tree or scatter
partitioning [6, 71 instead. Here we consider only in-
put dimension reduction and apply the input selection
method described in Section 3.

If we only want to select the two most relevant in-

20 40 60 80 100
Epochs

Figure 3. Error curves obtained by training a
fuzzy inference system to predict MPG.

puts as predictors, we can cycle through all the inputs
and build Cg = 15 ANFIS models. As described in
Section 3 , the performance of an ANFIS model after
the first epoch is usually a good index of how well
the model will perform after further training. Based
on this heuristic observation, we built 15 fuzzy mod-
els each with a single epoch of ANFIS training; it
took about 16 seconds on a 486-DX100 PC with 16
MB RAM. The results are shown in Figure 2 with
two curves representing training and test RMSE (root-
mean-squared errors). We reordered these 15 models
according to their training errors. Obviously, the best
model takes "weight" and "model year" as the input
variables, which is quite reasonable. In this case, both
error curves are more or less consistent; this implies
that the training and test data were evenly distributed
across the original data set. In particular, we will end
up with the same model if we pick the one with the
smallest test error. Note that Figure 2 is based only
on one epoch of training; more reliable results can be

1496

Authorized licensed use limited to: National Taiwan University. Downloaded on June 29,2025 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Membershap functaons an chaotac tame
seraes predactaon: (a) ANFIS surface for MPG
predactaon; (b) traanang and checkang datu dastra-
butaon.

obtained if more training epochs are allotted to each of
the 15 models.

Once we have selected the model with "weight" and
"model year" as inputs, we can refine its performance
via extended ANFIS training. Figure 3 shows the error
curves for 100 epochs of training. The training error
decreases all the way, but the test error, after decreas-
ing initially, reaches a plateau, oscillates a little bit,
and then increases. Usually we use the test error as a
true measure of the model's performance; therefore the
best model we can achieve occurs when the test error
is minimal. This corresponds to the circle in Figure 3;
though further training beyond this point decreases the
training error, it will degrade the performance of the
fuzzy inference system on unforeseen inputs.

As a comparison, we now look at the result of linear
regression, where the model is expressed as

M P G = uo + a1 * cy1 + u2 * disp + a3 * lip
+a4 * weight + a5 * accel + a6 * year,

with ao, a l , . . ., U 6 being seven modifiable h e a r pa-
rameters. The optimum values of these linear pa-
rameters were obtained directly by the least-squares
method; the training and test errors are 3.45 and 3.44,
respectively. In contract, after 100 epochs of training,
the minimal test error is 2.98, at which the training
error is 2.61. It is worth noting that the linear model
takes all six inputs into consideration, but the error
measures are still high since MPG prediction is nonlin-
ear. On the other hand, our input selection technique
of choosing the two most relevant inputs can result in
a nonlinear mapping with lower error measures.

Figure 4 (a) is a thrce-dimensional surface of the
fuzzy model with the smallest test error. This is a
smooth nonlinear surface, but it raises a legitimate

question: why does the surface increase toward the
right upper corner? This ist an apparently spurious re-
sult that states that heavy old cars have higher MPG
ratings. The anomaly can be explained by the scatter
plot of the data distribution in Figure 4 (b), in which it
is obvious that the lack of dlata (due to the tendency of
automobile manufacturers t80 begin building small com-
pact cars instead of big heavy ones during mid 70s) is
responsible. In other words, our trained fuzzy inference
system is good at interpolation, but not at extrapola-
tion. Without input selection, it is hard to visualize the
data qualify the scope of its validity before interpreting
ANFIS output correctly.

5 . Nonlinear System Identification

This section applies AIVFIS to nonlinear system
identification, using the well-known Box and Jenkins
gas furnace data [l] as the training data set. This is
a time-series data set for a gas furnace process with
gas flow rate u(t) as the furnace input and CO:! con-
centration y (t) as the furnace output. We want to
extract a dynamic process model to predict y (t) us-
ing ten candidate inputs to ANFIS: y(t - 1), y(t - a),

u(t - 5), and u(t - 6). The original data set contains
296 [u (t) , y (t)] data pairs; converting the data so that
each training data point consists of [y(t - l), . . . y(t -
4),u(t-1),...,u(t-6);y(t)] (thelast oneis thedesired
output) reduces the number of effective data points to
290. We use the first 145 data points as the training
set, the remaining 145 as the test set.

Since we have ten candidlate input variables for AN-
FIS, it is reasonable to do input selection first to rate
variable priorities and reduce the input dimension. For
dynamic system modeling, the inputs selected for AN-
FIS must contain elements from both the set of histori-
cal furnace outputs { y (t - l) , y (t - 2) , ~ (t - 3) ~ y (t -4) }
and the set of historical furnace inputs {u(t - l),
u(t -a) , u(t - 3), u(t -4) , ii(t - 5), u(t - 6)). For sim-
plicity, we assume that there are two inputs for ANFIS,
one is from the historical furnace outputs, the other
from the historical furnace inputs. In other words, we
have to build 24 (= 4 x 6)1 ANFIS models with vari-
ous input combinations, and then choose the one with
the smallest training error for further parameter-level
fine-tuning. We could have chosen the ANFIS with the
smallest test error, but this would have led to "indirect
training on test data". Th: input selection procedure
took about 40 seconds on a 486-DX100 PC with 16
MB RAM. Figure 5 shows {,he performance of these 24
ANFIS models, they are listed according to their train-
ing errors. Note that each ANFIS has four rules, and

y (t - 3) , y(t - 4) , u(t - l) , u(t - a) , u(t - 3), u(t - 4) ,

1497
Authorized licensed use limited to: National Taiwan University. Downloaded on June 29,2025 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

Training (solid line) and test (dashed line) errors

the training took only one epoch each to identify linear
parameters. If computing power is not a problem, we
could then assign more training epochs to each ANFIS.

In Figure 5, we can see that the ANFIS with y(t- 1)
and u(t - 3) as inputs has the smallest training error,
so it is reasonable to choose this ANFIS for further
parameter tuning. Figure 6 shows the result of train-
ing this ANFIS for 100 epochs. In particular, Figure 6
(a) displayed the training and test error curves; the
optimal ANFIS parameters were obtained at the time
when the test error reached the minimum indicated by
a small circle. Figure 6 (b) shows the data distribution;
it demonstrates that the training and test data do not
cover the same region. Better performance can be ex-
pected if they cover roughly the same region; this can
be achieved by using other schemes to divide the orig-
inal data set. (For instance, the training and test sets
can be interleaved in the original data set.) Figure 6
(c) displays the desired curve and ANFIS prediction;
the performance for time index from 1 to 145 is better
since this is the domain from which the training data
was extracted. Figure 6 (d) is the ANFIS surface; it is
cut off at the maximum and minimum of the desired
output.

6. Concluding Remarks

In this paper, we present a quick and staightfor-
ward way of input selection for neuro-fuzzy modeling
using ANFIS (Adaptive Neuro-Fuzzy Inference Sys-
tems) [a , 31. The proposed method was tested on two
real-world problems: the nonlinear regression problem
of automobile MPG (miles per gallon) prediction, and
the nonlinear system identification using the Box and
Jenkins gas furnace data [1]. For the automobile MPG
prediction problem, we also compared the ANFIS ap-
proach with input selection to the common linear re-
gression method, and found that a nonlinear ANFIS
model with two inputs performed better than a linear

(a) Error curves (b) Data distribution
0.61 I

0 5 1 I

50 100
0.1

Epochs
ic\ ANFIS orediction

50 55 60
Y(t-1)

id\ ANFIS surface . .
65

60 60
a,

E

;

+

-55 -
%50 2 55

50
60

"E

0 100 200 300 "(t-3) 4 Y(t-1)
Time

Figure 6. A N F I S for Box- J e n k i n s data: (a) train-
ing and checking e r ror curves; (b) training and
checking data distribution; (e) desired s y s t e m re-
sponse and ANFIS predict ion; (d) ANFIS sur-
,face. .

model with six inputs.
In summary, input selection reduces training data

dimension, which in turn allows grid partitioning for
ANFIS modeling and effective data visualization for
qualifying valid scopes of ANFIS. The proposed input
selection method, though heuristic by nature, can pro-
vide an effective means to determining input priorities
for ANFIS modeling.

References

G. Box and G. Jenkins. Time Series Analysis, For-
casting and Control, pages 532-533. Holden Day, San
Francisco, 1970.
J . 3 . R. Jang. Fuzzy modeling using generalized neural
networks and Kalman filter algorithm. In Proceedings
of the Ninth National Conference o n Artificial Intelli-
gence (A A A I - Y I) , pages 762-767, July 1991.
J.-S. R. Jang. ANFIS: Adaptive-Network-based Fuzzy
Inference Systems. I E E E Transactions o n Systems,
Man, and Cybernetics, 23(03):665-685, May 1993.
J.-S. R. Jang and N. Gulley. The Fuzzy Logic Toolbox
for use with MATLAB. The Mathworks, Inc., Natick,
Massachusetts, 1995.
J.-S. R. Jang and C.-T. Sun. Functional equivalence
between radial basis function networks and fuzzy infer-
ence systems. I E E E Transactions o n Neural Networks,
4(1):156-159, Jan. 1993.
J . 3 . R. Jang and C.-T. Sun. Neuro-fuzzy modeling
and control. The Proceedings of the IEEE, 83(3):378-
406, Mar. 1995.

1498
Authorized licensed use limited to: National Taiwan University. Downloaded on June 29,2025 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

[7] J.-S. R. Jang, C.-T. Sun, and E. Mizutani. Neuro-
fuzzy and soft computing: a computational approach
to learning and machine intelligence, 1996. To be pub-
lished by Prentice Hall.

[8] K. Levenberg. A method for the solution of certain
problems in least squares. Quart. Apl. Math., 2164-
168, 1944.

[9] E. H. Mamdani and S. Assilian. An experiment in lin-
guistic synthesis with a fuzzy logic controller. Inter-
natzonal Journal of Man-Machzne Studzes, 7(1):1-13,
1975.

[lo] D. W. Marquardt. An algorithm for least squares es-
timation of nonlinear parameters. Journal of the So-
czety of Industrzal und Applzed Mathematzcs, 11:431-
441, 1963.

[Ill E. Mizutani and J.-S. R. Jang. Coactive neural fuzzy
modeling. In Proceedzngs of the Internatzonal Confer-
ence on Neural Networks, pages 760-765, Nov. 1995.

[la] D. W. Ruck, S. K. Rogers, M. Kabrisky, P. S. May-
beck, and M. E. Oxley. Comparative analysis of back-
propagation and the extended Kalman filter for train-
ing multilayer perceptrons. I E E E Transactions on
Pattern Analyszs and Mac;i.ne Intellzgence, 14(6):686-
691, 1992.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propaga-
tion. In D. E. Rumelhart and J. L. McClelland, edi-
tors, Parallel Dzstrzbuted Processzng: Exploratzons an
the Mzcrostructure of Cognztzon, Volume 1, chapter 8,
pages 318-362. MIT Press, 1986.

[14] S. Singhal and L. Wu. Training multilayer perceptrons
with the extended kalman algorithm. In D. S. Touret-
zky, editor, Advances zn neural znformatzon processzng
systems I , pages 133-140. Morgan Kaufmann, 1989.

[15] M. Sugeno and G. T. Kang. Structure identification of
fuzzy model. Fuzzy Sets and Systems, 28:15-33, 1988.

[16] T. Takagi and M. Sugeno. Fuzzy identification of sys-
tems and its applications to modeling and control.
IEEE Transactzons on Systems, Man, and Cybernet-

An approach to fuzzy reasoning
method. In M. M. Gupta, R. E<. Ragade, and R. R.
Yager, editors, Advances zn Fuzzy Set Theory and
Applzcatzons, pages 137-149. North-Holland, Amster-
dam, 1979.

El81 P. Werbos. Beyond regresszon: New tools f o r predzc-
tzon and analyszs zn the behavzoral sczences. PhD the-
sis, Harvard University, 1974.

Z C S , 15~116-132, 1985.
[17] Y. Tsukamoto.

1499

Authorized licensed use limited to: National Taiwan University. Downloaded on June 29,2025 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

