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Abstract 

We present a quick and straightfoward way of input 
selection for  neuro-fuzzy modeling using ANFIS. The 
method is tested on two real-world problems: the non- 
linear regression problem of automobile MPG (miles 
per gallon) prediction, and the nonlinear system identi- 
fication using the Box and Jenkins gas furnace data [I]. 

1. Introduction 

For a real-world modeling problem, it is not uncom- 
mon to have tens of potential inputs to the model under 
construction. An excessive number of inputs not only 
impair the transparency of the underlying model, but 
also increase the complexity of computation necessary 
for building the model. Therefore, it is necessary to 
do input selection that finds the priority of each can- 
didate inputs and uses them accordingly. Specifically, 
the purposes of input selection include: 

0 Remove noise/irrelevant inputs. 

0 Remove inputs that depends on other inputs. 

0 Make the underlying model more concise and 
transparent. 

Reduce the time for model construction. 

In this paper, we present a quick and staightfor- 
ward way of input selection for neuro-fuzzy modeling 
using ANFIS (Adaptive Neuro-Fuzzy Inference Sys- 
tems) [2,3],  a previously proposed neuro-fuzzy network 
structure. The input selection method is tested on two 
real-world problems: the nonlinear regression problem 
of automobile MPG (miles per gallon) prediction, and 
the nonlinear system identification using the Box and 
Jenkins gas furnace data [l]. 

In the 
next section, the basics of ANFIS are introduced. Sec- 
tion 3 explains how to proceed input selection for AN- 

This paper is organized into six sections. 
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FIS modeling. Application to the problems of automo- 
bile MPG prediction and gas furnace identification are 
demonstrated in section 4 and 5 ,  respectively. Section 
5 gives concluding remarks. 

2. ANFIS 

This section introduces the basics of ANFIS network 
architecture and its hybrid learning rule. A detailed 
coverage of ANFIS can be found in [a, 3, 61. 

The Sugeno fuzzy model was proposed by Talcagi, 
Sugeno, and Kang [16, 151 in an effort to formalize a 
systematic approach to generating fuzzy rules from an 
input-output data set. A typical fuzzy rule in a Sugeno 
fuzzy model has the format 

I f  x zs A and y zs 13 then x = f(x,y), 

where A and B are fuzzy sets in the antecedent; z = 
f ( x ,  y )  is a crisp function in the consequent. Usually 
f ( z , y )  is a polynomial in {,he input variables 2 and 
y ,  but it can be any other functions that can appro- 
priately describe the output of the system within the 
fuzzy region specified by the antecedent of the rule. 
When f (2, y) is a first-order polynomial, we have the 
first-order Sugeno fuzzy model, which was originally 
proposed in [le, 151. When f is a constant, we then 
have the zero-order Sugeno fuzzy model, which can 
be viewed either as a special case of the Mamdani 
fuzzy inference system [9] where each rule’s consequent 
is specified by a fuzzy singleton, or a special case of 
Tsukamoto’s fuzzy model [17] where each rule’s conse- 
quent is specified by a membership function of a step 
function centered at the constant. Moreover, a zero- 
order Sugeno fuzzy model is functionally equivalent to 
a radial basis function network under certain minor 
constraints [5]. 

Consider a first-order Sugeno fuzzy inference system 
which contains two rules: 

Rule 1: If X is AI and Y is B1, then 

Rule 2: If X is A 2  and Y is Ba, then 
f l  = PlZ + Q l Y  + T l r  

f 2  = P 2 X  + Q 2 Y  + 7-2. 
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Figure 1. (a) First-order Sugeno fuzzy model; ( b )  
corresponding ANFIS architecture. 

Figure 1 (a) illustrates graphically the fuzzy reasoning 
mechanism to derive an output f from a given input 
vector [x, y]. The firing strengths w1 and w2 are usu- 
ally obtained as the product of the membership grades 
in the premise part, and the output f is the weighted 
average of each rule's output. 

To facilitate the learning (or adaptation) of the 
Sugeno fuzzy model, it is convenient to put the fuzzy 
model into the framework of adaptive networks that 
can compute gradient vectors systematically. The re- 
sultant network architecture, called ANFIS (Adaptive 
Neuro-Fuzzy Inference System), is shown in Figure 1 
(b), where node within the same layer perform func- 
tions of the same type, as detailed below. (Note that 
0; denotes the output of the i-th node in j-th layer.) 

Layer 1 Each node in this layer generates a member- 
ship grades of a linguistic label. For instance, the 
node function of the i-th liode may be a general- 
ized bell membership function: 

(1) 
1 

0; = P A % ( % )  26, ' 
1 + / y I  

where x is the input to node i; A, is the linguis- 
tic label ( smal l  , Iurge, etc.) associated with this 
node; and {a, ,  b, ,  e,} is the parameter set that 
changes the shapes of the membership function. 
Parameters in this layer are referred to as the 
premise parameters. 

Layer 2 Each node in this layer calculates the firing 
strength of a rule via multiplication: 

0: wz = P A z ( x ) p B , ( y ) ~  i = 1 , 2 .  (2) 

Layer 3 Node i in this layer calculates the ratio of the 
i-th rule's firing strength to the total of all firing 
strengths: 

Layer 4 Node i in this layer compute the contribution 
of i-th rule toward the overall output, with the 
following node function: 

where Gi is the output of layer 3, and {p i ,  q i ,  ~ i }  
is the parameter set. Parameters in this layer are 
referred to as the consequent parameters. 

Layer 5 The single node in this layer computes the 
overall output as the summation of contribution 
from each rule: 

The constructed adaptive network in Figure l (b)  
is functionally equivalent to a fuzzy inference system 
in Figure l (a) .  The basic learning rule of ANFIS is 
the backpropagation gradient descent [18], which cal- 
culates error signals (the derivative of the squared error 
with respect to each node's output) recursively from 
the output layer backward to the input nodes. This 
learning rule is exactly the same as the backpropaga- 
tion learning rule used in the common feedforward neu- 
ral networks [13]. 

From the ANFIS architecture in Figure 1, it is ob- 
served that given the values of premise parameters, the 
overall output f can be expressed as a linear combina- 
tions of the consequent parameters: 

f = ~ l f 1 + 5 5 Z f 2  

(6) - 
- ( " l ) P l  + (ElY)41+ (W1)Tl 

+ ( w z z ) p 2  + (Gay)q:! + (W2)TZ. 

Based on this observation, we have proposed a hybrid 
learning algorithm [a, 31 which combines the gradient 
descent and the least-squares method for an effective 
search of optimal parameters; both on-line and off-line 
learning paradigms were developed and reported in [3]. 
Moreover , other advanced techniques in nonlinear re- 
gression and optimization. such as the Gauss-Newton 
method, the Levenberg-Marquardt method [8, 101, and 
the extended Kalman filter algorithm [14, 121 can also 
be applied here directly. 

The original ANFIS C: codes and several examples 
can be retrieved via anony- 
mous ftp in user/ai/areas/f uzzy/systems/anf is at 
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f t p  . cs . cmu . edu (CMU Artificial Intelligence Reposi- 
tory). For MATLAB users, ANFIS is also available in 
the Fuzzy Logic Toolbox used with MATLAB [4]. 

Following the concept of ANFIS, we have also pro- 
posed the CANFIS (Coactive ANFIS) architecture [11, 
71 that has multiple outputs and nonlinear output 
equations. Details of ANFIS/CANFIS and their ap- 
plications can be found in [7]. 

3. Input Selection 

As mentioned earlier, a real-world modeling prob- 
lem usually involves tens (or even hundreds) of poten- 
tial inputs to the model under construction. Therefore 
we need to have a heuristic way to quicltly determine 
the priorities of these potential inputs and use them 
accordingly. In this section, we propose a quick and 
straightfoward way to do input selection for ANFIS 
modeling. 

As described in the previous section, ANFIS is a 
network structure that facilitates systematical compu- 
tation of gradient vectors, the derivative of the output 
error with respective to each modifiable parameters. In 
particular, ANFIS employs an efficient hybrid learning 
method that combines gradient descent and the least- 
squares method. The least-squares method is, actually, 
the major driving force that leads to fast training, while 
the gradient descent serves to slowly change the under- 
lying membership functions that generates the basis 
functions for the least-squares method. As a result, 
ANFIS can usually generate satisfactory results right 
after the first epoch of training, that is, only after the 
first application of the least-squares method. Since the 
least-squares method is computationally efficient, we 
can construct ANFIS models for various combinations 
of inputs, train them with a single application of the 
least-squares method, and then choose the one with the 
best performance and proceed for further training. 

The proposed input selection method is based on 
the assumption that the ANFIS model with the small- 
est RMSE (root mean squared error) after one epoch 
of training, has a greater potential of achieving a lower 
RMSE when given more epochs of training. This as- 
sumption is not absolutely true, but it is heuristically 
reasonable. 

For instance, if we have a modeling problem with 10 
candidate inputs and we want to find the most influen- 
tial 3 inputs as the inputs to ANFIS, we can construct 
Cia = 120 ANFIS models (each with different combi- 
nation of 3 inputs), and train them with a single pass of 
the least-squares method. The ANFIS model with the 
smallest training error is then selected for further train- 
ing using the hybrid learning rule to tune the member- 

ship functions as well. Note that one-epoch training 
of 120 ANFIS models in fact involves less computa- 
tion than 120-epoch training of a single ANFIS model, 
therefore the input selection procedure is not really as 
computation intensive as it looks. 

Another reason for input selection is to  facilitate the 
input-space grid partitioning for ANFIS; this is further 
explained in Section 4, where ANFIS is used for auto- 
mobile MPG (miles per gallon) prediction. 

For certain types of problems, the candidate inputs 
are divided into groups and, due to  physical proper- 
ties of the target system, one or several members of 
each group has to be in the set of final inputs to  the 
model under consideration. These physical properties 
allow us to build less potentila1 ANFIS models initially. 
One such example is the non linear system identification 
problem discussed in Section 5. 

4. Automobile MPG Prediction 

This section describes the use of the proposed input 
selection method for ANFIS modeling, with application 
to nonlinear regression. We shall use automobile MPG 
(miles per gallon) prediction as a case study, in which 
an automobile’s fuel consumption in terms of MPG is 
predicted by ANFE based on several given characteris- 
tics, such as number of cylinders, weight, model years, 
and so on. 

The automobile MPG prediction problem is a typ- 
ical nonlinear regression problem where several at- 
tributes (input variables) are used to  predict another 
continuous attribute (output variable). In this case, 
the six input attributes includes profile information 
about the automobiles: 

No. of cylinders: multi-valued discrete 
Displacement: continuous 
Horsepower: continuous 
Weight: continuous 
Acceleration: continuous 
Model year: multi-valued discrete 

The attribute to be predicted in terms of the above 
six (6) input attributes is the fuel consumption in 
MPG. Table 1 is a list of seven instances selected at 
random from the data set. After removing instances 
with missing values, the data set was reduced to 392 
entries. Our task was then to use this data set and AN- 
FIS to construct a fuzzy inference system that could 
best predict the MPG of an automobile given its six 
profile attributes. 

Before tra.ining a fuzzy inference system, we divide 
the data set into training and test sets. The training set 
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Table 1. Samples of the MPG traanang data set. (The last column zs used for reference only and not for 
predzctzon.) The data set as avazlable from the UCI Reposztory of Machane Learnang Databases and Do- 
inaan Theorzes ( F T P  address: ftp : //ics . uci . edu/pub/machine-learning-databases/auto-mpg). More 
hzstorzcal znformatzon about the data set can be found there. 

I No. of Cylinders I Displacement I Horse Power (HP) I Weight I Acceleration I Year I MPG 1 Car name I 

3 

Training (solid line) and test (dashed line) errors ,. * , @  
,... . . .  :. , . , ,  ' .~.......""' . . . Q'.'  . .. 

Figure 2. Fifteen two-input fuzzy models for au- 
tomobile MPG prediction. 

is used to train (or tune) a fuzzy model, while the test 
set is used to determine when training should be ter- 
minated. to prevent overfitting. The 392 instances are 
randomly divided into training and test sets of equal 
size (196). 

Grid partitioning is the most frequently used input 
partitioning method for ANFIS. However, for a prob- 
lem with six inputs, grid partitioning leads to at least 
26 = 64 rules, which results in (6 + 1) x 64 = 448 linear 
parameters if we want to stick to the first-order Sugeno 
fuzzy model. This implies that we have too many fit- 
ting parameters and the resultant model is not reliable 
for unforeseen inputs. To deal with this, we can either 
select certain inputs that have more prediction power 
instead of using all the inputs, or choose tree or scatter 
partitioning [6, 71 instead. Here we consider only in- 
put dimension reduction and apply the input selection 
method described in Section 3.  

If we only want to select the two most relevant in- 

20 40 60 80 100 
Epochs 

Figure 3. Error curves obtained by training a 
fuzzy inference system to predict MPG. 

puts as predictors, we can cycle through all the inputs 
and build Cg = 15 ANFIS models. As described in 
Section 3 ,  the performance of an ANFIS model after 
the first epoch is usually a good index of how well 
the model will perform after further training. Based 
on this heuristic observation, we built 15 fuzzy mod- 
els each with a single epoch of ANFIS training; it 
took about 16 seconds on a 486-DX100 PC with 16 
MB RAM. The results are shown in Figure 2 with 
two curves representing training and test RMSE (root- 
mean-squared errors). We reordered these 15 models 
according to their training errors. Obviously, the best 
model takes "weight" and "model year" as the input 
variables, which is quite reasonable. In this case, both 
error curves are more or less consistent; this implies 
that the training and test data were evenly distributed 
across the original data set. In particular, we will end 
up with the same model if we pick the one with the 
smallest test error. Note that Figure 2 is based only 
on one epoch of training; more reliable results can be 
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Figure 4. Membershap functaons an chaotac tame 
seraes predactaon: (a )  ANFIS surface for MPG 
predactaon; (b) traanang and checkang datu dastra- 
butaon. 

obtained if more training epochs are allotted to each of 
the 15 models. 

Once we have selected the model with "weight" and 
"model year" as inputs, we can refine its performance 
via extended ANFIS training. Figure 3 shows the error 
curves for 100 epochs of training. The training error 
decreases all the way, but the test error, after decreas- 
ing initially, reaches a plateau, oscillates a little bit, 
and then increases. Usually we use the test error as a 
true measure of the model's performance; therefore the 
best model we can achieve occurs when the test error 
is minimal. This corresponds to  the circle in Figure 3; 
though further training beyond this point decreases the 
training error, it will degrade the performance of the 
fuzzy inference system on unforeseen inputs. 

As a comparison, we now look at  the result of linear 
regression, where the model is expressed as 

M P G  = uo + a1 * cy1 + u2 * disp + a3 * lip 
+a4 * weight + a5 * accel + a6 * year, 

with ao, a l ,  . . ., U 6  being seven modifiable h e a r  pa- 
rameters. The optimum values of these linear pa- 
rameters were obtained directly by the least-squares 
method; the training and test errors are 3.45 and 3.44, 
respectively. In contract, after 100 epochs of training, 
the minimal test error is 2.98, at which the training 
error is 2.61. It is worth noting that the linear model 
takes all six inputs into consideration, but the error 
measures are still high since MPG prediction is nonlin- 
ear. On the other hand, our input selection technique 
of choosing the two most relevant inputs can result in 
a nonlinear mapping with lower error measures. 

Figure 4 (a) is a thrce-dimensional surface of the 
fuzzy model with the smallest test error. This is a 
smooth nonlinear surface, but it raises a legitimate 

question: why does the surface increase toward the 
right upper corner? This ist an apparently spurious re- 
sult that states that heavy old cars have higher MPG 
ratings. The anomaly can be explained by the scatter 
plot of the data distribution in Figure 4 (b), in which it 
is obvious that the lack of dlata (due to  the tendency of 
automobile manufacturers t80 begin building small com- 
pact cars instead of big heavy ones during mid 70s) is 
responsible. In other words, our trained fuzzy inference 
system is good at interpolation, but not at  extrapola- 
tion. Without input selection, it is hard to visualize the 
data qualify the scope of its validity before interpreting 
ANFIS output correctly. 

5 .  Nonlinear System Identification 

This section applies AIVFIS to nonlinear system 
identification, using the well-known Box and Jenkins 
gas furnace data [l] as the training data set. This is 
a time-series data set for a gas furnace process with 
gas flow rate u( t )  as the furnace input and CO:! con- 
centration y ( t )  as the furnace output. We want to 
extract a dynamic process model to predict y ( t )  us- 
ing ten candidate inputs to ANFIS: y( t  - 1), y(t - a),  

u(t - 5), and u(t - 6). The original data set contains 
296 [u ( t ) ,  y ( t ) ]  data pairs; converting the data so that 
each training data point consists of [y(t  - l), . . . y(t - 
4),u(t-1),...,u(t-6);y(t)] (thelast oneis thedesired 
output) reduces the number of effective data points to 
290. We use the first 145 data points as the training 
set, the remaining 145 as the test set. 

Since we have ten candidlate input variables for AN- 
FIS, it is reasonable to do input selection first to rate 
variable priorities and reduce the input dimension. For 
dynamic system modeling, the inputs selected for AN- 
FIS must contain elements from both the set of histori- 
cal furnace outputs { y ( t - l ) ,  y ( t - 2 ) ,  ~ ( t - 3 ) ~  y ( t -4 ) }  
and the set of historical furnace inputs {u(t  - l), 
u(t -a ) ,  u(t  - 3), u(t -4) ,  ii(t - 5), u(t  - 6)). For sim- 
plicity, we assume that there are two inputs for ANFIS, 
one is from the historical furnace outputs, the other 
from the historical furnace inputs. In other words, we 
have to build 24 (= 4 x 6)1 ANFIS models with vari- 
ous input combinations, and then choose the one with 
the smallest training error for further parameter-level 
fine-tuning. We could have chosen the ANFIS with the 
smallest test error, but this would have led to "indirect 
training on test data". Th: input selection procedure 
took about 40 seconds on a 486-DX100 PC with 16 
MB RAM. Figure 5 shows {,he performance of these 24 
ANFIS models, they are listed according to their train- 
ing errors. Note that each ANFIS has four rules, and 

y ( t  - 3) ,  y(t - 4) ,  u( t  - l ) ,  u(t - a ) ,  u(t - 3), u(t - 4) ,  
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Training (solid line) and test (dashed line) errors 

the training took only one epoch each to  identify linear 
parameters. If computing power is not a problem, we 
could then assign more training epochs to  each ANFIS. 

In Figure 5, we can see that the ANFIS with y(t- 1) 
and u(t - 3 )  as inputs has the smallest training error, 
so it is reasonable to  choose this ANFIS for further 
parameter tuning. Figure 6 shows the result of train- 
ing this ANFIS for 100 epochs. In particular, Figure 6 
(a) displayed the training and test error curves; the 
optimal ANFIS parameters were obtained at  the time 
when the test error reached the minimum indicated by 
a small circle. Figure 6 (b) shows the data distribution; 
it demonstrates that the training and test data do not 
cover the same region. Better performance can be ex- 
pected if they cover roughly the same region; this can 
be achieved by using other schemes to divide the orig- 
inal data set. (For instance, the training and test sets 
can be interleaved in the original data set.) Figure 6 
(c) displays the desired curve and ANFIS prediction; 
the performance for time index from 1 to 145 is better 
since this is the domain from which the training data 
was extracted. Figure 6 (d) is the ANFIS surface; it is 
cut off at the maximum and minimum of the desired 
output. 

6. Concluding Remarks 

In this paper, we present a quick and staightfor- 
ward way of input selection for neuro-fuzzy modeling 
using ANFIS (Adaptive Neuro-Fuzzy Inference Sys- 
tems) [ a ,  31. The proposed method was tested on two 
real-world problems: the nonlinear regression problem 
of automobile MPG (miles per gallon) prediction, and 
the nonlinear system identification using the Box and 
Jenkins gas furnace data [1]. For the automobile MPG 
prediction problem, we also compared the ANFIS ap- 
proach with input selection to the common linear re- 
gression method, and found that a nonlinear ANFIS 
model with two inputs performed better than a linear 

(a) Error curves (b) Data distribution 
0.61 I 
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Figure 6. A N F I S  for Box- J e n k i n s  data: (a )  train-  
ing and  checking e r ror  curves;  (b) training and  
checking data distribution; (e) desired s y s t e m  re- 
sponse and ANFIS predict ion;  (d)  ANFIS sur- 
,face. . 

model with six inputs. 
In summary, input selection reduces training data 

dimension, which in turn allows grid partitioning for 
ANFIS modeling and effective data visualization for 
qualifying valid scopes of ANFIS. The proposed input 
selection method, though heuristic by nature, can pro- 
vide an effective means to determining input priorities 
for ANFIS modeling. 
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