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ABSTRACT

Music source separation aims to separate polyphonic music
into different types of sources. Most existing methods focus
on enhancing the quality of separated results by using a larger
model structure, rendering them unsuitable for deployment
on edge devices. Moreover, these methods may produce low-
quality output when the input duration is short, making them
impractical for real-time applications. This challenge is akin
to those in speech processing models and systems, where
isolating and analyzing specific audio components is critical.
Therefore, the goal of this paper is to enhance a lightweight
model, MMDenstNet, to strike a balance between separa-
tion quality and latency for real-time applications. Different
directions of improvement are explored or proposed in this
paper, including complex ideal ratio mask, self-attention,
band-merge-split method, and feature look back. Source-
to-distortion ratio, real-time factor, and optimal latency are
employed to evaluate the performance. To align with our
application requirements, the evaluation process in this paper
focuses on the separation performance of the accompaniment
part. Experimental results demonstrate that our improve-
ments achieve a low real-time factor and optimal latency
while maintaining a comparable source-to-distortion ratio.

Index Terms— MMDenseNet, complex ideal ratio mask,
self-attention, band-split method, feature look back

1. INTRODUCTION

Music source separation aims to separate polyphonic music
into different types of sources, such as vocals, drums, piano,
or other instruments. Voice separation is not only a research
topic in itself, but achieving good separation results can also
benefit downstream music or speech-related applications, in-
cluding voice conversion [1], lyrics alignment [2], and accom-
paniment for karaoke [3]. Moreover, the techniques used in
music source separation are closely related to those in speech
processing models and systems, where isolating specific au-
dio components is essential. In this paper, we aim to extract
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the accompaniment part in real-time with low latency for a
karaoke application.

With the rapid development of deep learning, the effec-
tiveness of singing voice separation has significantly im-
proved. HT Demucs [4] is the state-of-the-art model (among
those with official implementation before mid-2024), which
employs two U-Nets that respectively process waveform and
spectrogram. It combines the information from both U-Nets
using a Transformer and cross-attention at the bottleneck
layer. Despite the high separation quality of HT Demucs, its
larger number of parameters and high latency on CPU make
it challenging for real-time applications on edge devices. On
the other hand, the Multi-scale multi-band DenseNet (MM-
DenseNet) [5] is one of the relatively lightweight source
separation models. Despite MMDenseNet’s slightly lower
separation quality, its fast speed makes it more suitable for
real-time applications.

To further reduce the latency while still maintaining com-
parable separation quality, we propose or invoke various
methods for improving the raw version of MMDenseNet,
including the complex ideal ratio mask (cIRM) [6], self-
attention, the band-merge-split method inspired by [7], and
feature look back. Note that the above methods are possible
for benefiting other separation model structures, we choose
MMDenseNet for this paper because our preliminary experi-
ments show that MMDenseNet achieves the best trade-off for
both quality and speed for our application requirements.

The rest of this paper is organized as follows. Section 2
describes our methods for improving MMDenstNet, Section 3
shows the experimental results, and Section 4 concludes this
paper and addresses possible future work.

2. METHODS

In this Section, brief description of MMDenseNet [5] is first
given, followed by the four invoked or proposed methods,
complex ideal ratio mask (cIRM) [6], self-attention, the band-
merge-split method inspired by [7], and feature look back, for
improving MMDenseNet. While the first three methods aim
to improve the separated audio quality, the goal of the feature
look back method is to reduce the latency with little degrada-
tion of the separated audio quality.
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2.1. The Original MMDenseNet

MMDenseNet [5] was proposed by Takahashi and Mitsu-
fuji, which won the signal separation evaluation campaign in
2016 [8] with less number of parameters and faster training
speed than other models in the evaluation campaign. The
basic component of MMDenseNet is DenseNet [9] or dense
block, which is mainly used to comprise the multi-scale
DenseNet (MDenseNet). The MDenseNet is a U-Net like
structure, where the encoder part is composed of DenseNets
and down-sampling layers, and the decoder part is composed
of DenseNets and up-sampling layers. The input spectrogram
is splitted into N subbands, and N MDenseNets are used for
processing the N subbands, and 1 MDenseNet is used for
processing the full band (i.e. all frequency bands). Finally,
1 DenseNet is used to combine the outputs of the N + 1
MDenseNets for obtaining the spectrogram of the separated
signal. For the structure of MMDenseNet, please refer to the
original paper [5].

2.2. Complex Ideal Ratio Mask

While the final results of a source separation task should be
spectrograms or signals, the raw output of the neural network
in this task can be in different forms, and post-processing
techniques can be applied for the output of the network. One
of the popular methods is to use the magnitude mask as the
output of the separation model, and the output mask is then
element-wise multiplied with the input spectrogram to obtain
the final output. Besides, for some source separation mod-
els, Wiener filter [10] is used for post-processing to obtain
a better final separated results. However, since Wiener filter
utilizes all the separated sources for computation, requires a
larger amount of computational resources and is unsuitable
for this paper (details are shown in Section 3.3).

In this paper, we investigate the performance of using both
magnitude and phase estimation, where their effectiveness has
been shown in [6], as the new output form for MMDenseNet.
The modified network structure is shown in Fig. 1, where
M̂mag , Q̂, P̂r and P̂i are respectively magnitude mask esti-
mation, magnitude estimation, phase estimation of real part,
and phase estimation of imaginary part. M̂mag and Q̂ are used
to estimate the magnitude spectrogram, P̂r and P̂i are used to
estimate the phase spectrogram, and the final separated result
is obtained using estimated magnitude and phase spectrogram
and inverse short-time Fourier transform. F and N in Fig. 1
are respectively 1,025 and 2, and T varies in different experi-
ments.

2.3. Self-Attention

Due to the great success of using self-attention (SA) in var-
ious scenarios [3], we propose adjusted self-attention struc-
tures and apply it to MMDenseNet. The adjusted structure
of the self-attention along the time axis is shown in Fig. 2,

Fig. 1. The modified MMDenseNet which uses cIRM as the
new output form.

where different channels are viewed as different attention
heads, and pointwise (PW) convolution layers are used to
reduce the computational cost by decreasing the number of
channels. The adjusted structure of the self-attention along
frequency axis is similar to that of the self-attention along
time axis, but chunkwise self-attention is applied, and the
residual connection between module input and output is not
used. In our setting for chunkwise self-attention, the input
spectrogram with length T of the time axis is split into T/t
chunks, where t is set to 16 in this paper. Note that our at-
tention structures are similar to that of TF-GridNet [11], with
the following differences: 1) we use layer normalization, 2)
normalization is applied only at the beginning of the attention
structures, and 3) PReLU is not used.

To apply self attention to the MMDenseNet, we attach
the self-attention modules after each dense block of a full-
band or subband MDenseNet except the first block. The
self-attention along time axis is used for both fullband and
subband MDenseNets, but the self-attention along frequency
axis is only used for fullband MDenseNet. When using both
the self-attention along time and frequency axis for fullband
MDenseNet, the self-attention along frequency axis is used
before the self-attention along time axis.

2.4. Band-Merge-Split Method

The structures of MMDenseNet and band-split RNN [7]
(BSRNN) are similar in some way since both of them split the
input spectrogram into subbands. However, a module similar
to the band and sequence modeling module of BSRNN which
captures information across time and frequency bands does
not exists in MMDenseNet. Therefore, inspired by BSRNN,
we use the band-merge-split method for MMDenseNet, and
the modified structure is shown in Fig. 3, where DS and US
are respectively Down Sampling and Up Sampling.

The band-merge-split method connects two subband
MDenseNets and includes three modules: band-merge, cross-
band attention, and band-split. The band-merge module con-
catenates features from the middle of different MDenseNets
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Fig. 2. The adjusted structure of the self-attention along time
axis. E and C ′ are respectively set to 20 and 5 in this paper.

along the frequency axis. Due to the fact that the features
from different MDenseNets have different number of chan-
nels, pointwise convolution [12] is applied to adjust the num-
ber of channels in one of the features before concatenation.
The cross-band attention module is used to share informa-
tion across frequency bands. In order to let each feature
be concentrated on its corresponding important frequency
bands and time periods, self attention is applied to both the
frequency and time axes. The band-split module splits the
feature along the frequency axis, and pointwise convolution
is applied again to adjust the number of channels back to its
original number for further processing.

2.5. Feature Look Back

Intuitively, source separation models favors longer input and
produce low quality separation results when the input dura-
tion is short. To maintain the separation quality when the in-
put duration is short, feature look back (FLB) is used to com-
bine past and current information for obtaining the separation
output for the current input. To precisely describe feature look
back, following terms should be defined:

• Training segment: model input at the training stage,
consists of one or multiple training chunks. The size
of a training segment is denoted by Ntr-s frames.

• Training chunk: model input (consists of multiple

Fig. 3. Our band-merge-split method and its connections to
the two subband MDenseNets. Skip connections between
DenstNets are omitted in this figure.

frames) at each time at the training stage. The size of
a training chunk is denoted by Ntr-c frames. Note that
Ntr-c should divide Ntr-s.

• Training look back chunk: corresponding model input
of look back information at each time at the training
stage. The size of a training look back chunk is denoted
by Ntr-lbc frames.

• Test chunk: model input at each time at the test stage.
The size of a test segment is denoted by Nte-s frames.

• Test look back chunk: corresponding model input of
look back information at each time at the test stage.
The size of a test look back chunk is denoted by Nte-lbc
frames.

The latency is reduced by shorten the model input from Ntr-s
frames to Ntr-c frames at each time, and the separation quality
is possible to be maintained by looking back of past features.

At the training stage, a training segment is split into train-
ing chunks, the chunks are feed into the network one by one,
and the loss is calculated once all the chunks of a segment
are processed by the network. If feature look back is enabled,
the hidden representation of the past Ntr-lbc frames are consid-
ered together with a current training chunk when processing
a current training chunk. The process of the test stage when
feature look back is enabled is similar. Test chunks are feed
into the network one by one, and past Nte-lbc frames are con-
sidered together with a current test chunk when processing a
current test chunk.

The network structure for each MDenseNet when feature
look back is enabled is shown in Fig. 4, where A, B, and C
are different possible look back connections. For simplicity,
we only show the case when Ntr-c or Nte-c is equal to Ntr-lbc
or Nte-lbc (i.e. look back only for one previous training or
test chunk). In the experimental Section, we show the results
of using only connection A, using both connections A and B
(denoted as A+B), and using connections A, B, and C (de-
noted as A+B+C). Note that our feature look back is different
from memory transformers [13,14] since the output size is not
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Fig. 4. Network structure for each MDenseNet when feature
look back is enabled. The input at one timestamp is a training
or test chunk. Skip connections between DenstNets are omit-
ted in this figure. A, B, and C are different possible look back
connections.

Fig. 5. The relationship between the duration of a test chunk,
RTF, and latency. Different colors indicate test chunks at dif-
ferent timestamps.

changed (because the output of the SA blocks after DenseNets
are cropped).

3. EXPERIMENTAL RESULTS

3.1. Evaluation Metrics

Source-to-distortion ratio (SDR) [15], real-time factor (RTF),
and optimal latency are used to evaluate the model perfor-
mance. SDR is used as the primary evaluation metric in many
previous studies [4,5]. For a song track, the SDR for each one
second segment is first calculated using Museval [16], and
the song track’s SDR is calculated as the median of all one-
second segments’ SDR. A higher SDR indicates the better
separation results. The RTF is defined as the total processing
time of a song track divided by the total duration of the song
track, and the optimal latency could be therefore calculated
as the RTF multiply by the duration of a test chunk multiply
by two. The lower RTF and optimal latency indicate that the
model runs faster.

The derivation from RTF to optimal latency is shown as
follows. Since the case of RTF ≥ 1 does not meet our appli-
cation requirement, we consider only the case of RTF ≤ 1.
Generally, latency is the duration of a test chunk (T ) plus
the model processing time (T + RTF × T ), as illustrated
in the upper part of Fig. 5. However, by padding a blank sig-
nal of duration t at the beginning and feeding a signal of du-
ration T into the model every RTF × T time units (where
t ≥ RTF ×T ), as depicted in the lower part of Fig. 5, the la-
tency can be calculated as follows, and the latency is optimal
when the equality holds:

Optimal Latency = t+RTF × T

≥ RTF × T +RTF × T

= 2×RTF × T

(1)

3.2. Dataset and Experimental Setup

MUSDB18 [17] is used in this study. It contains 150 music
tracks of different genres with 44.1 kHz sampling rate. Each
track is composed of four channels, including vocal, drum,
bass, and the rest of the accompaniment. The goal in this
study, accompaniment separation, is to separate the mixture
of drum, bass, and the rest of the accompaniment. 86 and 14
tracks are respectively used for training and validation, and
50 tracks are used as the test set for calculating SDR. For
RTF calculation, a set of 8 privately collected tracks with an
average duration of about 243 seconds are used.

Experiments are conducted in two different machines.
The first one is a container running on a machine with In-
tel(R) Xeon(R) Gold 6154 CPU, occupying 4 CPU cores,
90 GB of host memory, and a Tesla V100-SXM2 GPU. The
second one has an Intel(R) Xeon(R) Silver 4116 CPU, 328
GB of RAM, an NVIDIA Quadro GV100, and an NVIDIA
TITAN RTX GPU. For training and test, we use one of the
machines simply based on their availability at that time. But
for RTF calculation, we run our implementation on the CPU
of the later one, and the number of used CPU cores is limited
to 1.

The window size and the hop size for short-time Fourier
transform are respectively 2, 048 and 1, 024, and the Hann
function is used for windowing. The size of the training seg-
ment, training chunk, training lookback chunk, test chunk,
and test lookback chunk varies in different experiments due
to application requirements and will be described in the fol-
lowing subsection. The L1 loss and the ADAM optimizer are
used. The initial learning rate is 10−3 and is multiplied by
0.99 every 5 epochs. Due to resource limitations, the batch
size is set to 8 or 16 for different experiments, and we empir-
ically stop the training process when the validation loss is not
significantly decreasing, which is usually no more than 500
epochs. All models are trained from scratch.
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Config Name cIRM SA BS Num of
params (k)

Training Test SDR RTF Optimal
latency (s)Seg Chunk LBC Chunk LBC

Raw MMDenseNet No No No 339 256 256 No 256 No 11.162 0.368 4.38
Raw MMDenseNet
(with Wiener filter) No No No 679 256 256 No 256 No 13.872 0.841 9.99

Raw MMDenseNet
(Mag. mask as output) No No No 339 256 256 No 256 No 13.555 0.394 4.68

cIRM Yes No No 343 256 256 No 256 No 13.951 0.370 4.39
cIRM+SA T Yes T No 574 512 512 No 256 No 14.764 0.402 4.77
cIRM+SA T+F Yes T+F No 578 512 512 No 256 No 15.011 0.723 8.59
cIRM+SA T+BS Yes T Yes 575 512 512 No 256 No 14.859 0.397 4.71
FLB: A (512/64/64) Yes T No 574 512 64 64 64 64 14.048 0.403 1.19
FLB: A (256/32/128) Yes T No 574 256 32 128 32 128 13.689 0.442 0.65
FLB: A (128/8/64) Yes T No 574 128 8 64 8 64 11.322 0.692 0.25
FLB: A+B Yes T No 574 256 32 128 32 128 13.538 0.468 0.69
FLB: A+B+C Yes T No 574 256 32 128 32 128 13.204 0.577 0.85

Table 1. Separation performance of the accompaniment part for different experimental settings. The unit of segment and chunk
size is the number of frames, where 8 frames are about 0.21 seconds in our setting. The three numbers of “FLB: A” are used to
denoted different sizes of training segment, training chunk, and look back chunk. Seg: segment. LBC: look back chunk.

3.3. Results

Separation performance of the accompaniment part for differ-
ent experimental settings is shown in Table 1, where the seg-
ment and chunk sizes are presented in the number of frames.
The first four rows of Table 1 show the settings and evalua-
tion results for the raw MMDenseNet, the MMDenseNet with
Wiener filter, the MMDenseNet uses magnitude mask as out-
put, and our improvement using cIRM. After invoking these
improvements mentioned in Section 2.2, SDRs are signifi-
cantly increased (from 11.162 to 13.872, 13.555, or 13.951),
and the model using cIRM achieves highest SDR. On the
other hand, since our modifications only change the output
form (except the one with Wiener filter, which requires larger
computational resources), the RTFs remain similar to the raw
MMDenseNet.

By listening to the separated audio of these models, we
found that outputs of the MMDenseNet uses magnitude mask
as output sounds better than that of the raw MMDenseNet,
and outputs of the MMDenseNet with Wiener filter sounds
better than that of the MMDenseNet uses magnitude mask
as output. Outputs of our improvement using cIRM and the
MMDenseNet with Wiener filter sounds similar, but high fre-
quency noise can be perceived in the output of our improve-
ment using cIRM.

The fifth to seventh rows of Table 1 show that both using
cIRM with self-attention and band-merge-split methods men-
tioned in Section 2.3 and 2.4 can further improve SDR (from
13.951 to 14.764, 15.011, or 14.859). Using self attention
along both time and frequency axes improves SDR the most,
but the RTF and latency are also higher, since the chunkwise
self attention along the frequency axes requires larger compu-

tational resources than the self attention along the time axes.
We also notice that the residual vocal sounds less after adding
self attention. Two of these configurations, cIRM+SA T and
cIRM+SA T+BS, achieve similar SDRs and RTFs. Despite
the fact that the SDR of the cIRM+SA T+BS is slightly better
than that of cIRM+SA T, we choose cIRM+SA T for follow-
ing experiments for the sake of implementation convenience.
Besides, we test cIRM+SA T using a shorter test chunk of
64 frames, and the SDR decreases from 14.764 to 12.776,
showing that we cannot reduce the latency while still main-
taining comparable separation quality by only shortening the
test chunk.

Last five rows represent different settings and evaluation
results for feature look back mentioned in Section 2.5. The
three numbers of “FLB: A” are used to denoted different sizes
of training segment, training chunk, and look back chunk. For
the three settings of “FLB: A”, the results show that when
the sizes of training segments and chunks decrease, the SDRs
also decrease, verifying out intuition in Section 2.5. How-
ever, these three SDRs (14.048, 13.689, and 11.322) are still
higher than that of the raw MMDenseNet, showing that us-
ing feature look back is possible to reduce that latency while
maintaining separation quality. Besides, with fixed sizes of
training segments and chunks (256 and 32), and as more look
back connections are used, the SDRs show a slight downward
trend (13.689, 13.538, and 13.204), while the RTFs exhibit a
rising trend. These results are caused by the fact that using
more look back connections leads to increased computation
in the network, and indicate that using shallow information
together with deep information may not help increasing the
separation quality. Finally, compared to the previous settings,
all these FLB settings (except “FLB: A (128/8/64)”) achieve
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similar SDRs and listening perspective while significantly de-
creasing latencies, verifying the effectiveness of our proposed
feature look back.

4. CONCLUSIONS AND FUTURE WORK

This paper uses the complex ideal ratio mask, self-attention,
band-merge-split method, and feature look back to improve
MMDenseNet for real-time application. Experimental results
show that our method can significantly decrease the RTF and
optimal latency while achieving similar SDRs compared to
previous study.

Several directions for immediate future work are under-
way. Currently, the input spectrogram is cut into two sub-
bands, but since the importance of subbands may be differ-
ent [5], we could cut the input spectrogram into more sub-
bands and investigate different ways of merging them. More-
over, although this study focuses on accompaniment separa-
tion due to application requirements, we could also investi-
gate the performance of our model for different source types.
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