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ABSTRACT This study applies machine learning to side-channel attacks and proposes an iterative transfer
learning method for deep learning models. This study leverages the similarity in training patterns across
bytes by first training on a single byte and then using the resulting model as a pretrained foundation for
the remaining bytes. This approach enables effective model training with smaller amounts of data while
reducing the measurement-to-disclosure (MTD, i.e., the minimum number of traces needed for successful
key recovery) in the attack phase. With sufficient data, iterative transfer learning reduces MTD from 55 to 54
using MLP and from 125 to 83 using CNN. Even under limited data conditions, it successfully breaks AES-
128 while reducing training samples from 13,600 to 2,000, achieving an average MTD of 635, whereas
traditional methods fail. Experimental results demonstrate that the iterative transfer learning approach
addresses the persistent data scarcity challenge in deep learning, significantly expanding the applicability of
deep learning methods in side-channel attack scenarios.

INDEX TERMS Side-channel Attack, Iterative Transfer Learning, Deep Learning, Thermal Map Image,
Power Consumption Map Image

I. INTRODUCTION
A. RESEARCH MOTIVATION
As technology advances, people rely more on electronic de-
vices in daily life. However, as semiconductor manufacturing
improves, security concerns also increase. Hackers can cause
serious consequences by attacking everything from personal
accounts to military systems. Therefore, it is important to
identify vulnerabilities in integrated circuit (IC) design.

Side-channel attacks (SCA) are among the most promi-
nent threats, as they can efficiently extract encryption-related
information from ICs. During encryption operations, physi-
cal data leakage—such as electromagnetic emissions, power
consumption, or temperature variations—can be observed.
These physical signals are closely related to the underlying
algorithm, hardware, and processed data. By analyzing these
signals, attackers can potentially retrieve encryption keys and
other confidential information.

Machine learning is a technique that learns from data to
identify underlying patterns, enabling efficient feature se-
lection to accomplish specific tasks. Due to this capability,
machine learning has been widely applied in various fields,
such as speech recognition and image classification. In recent
years, it has also been utilized in side-channel attacks, where
the attack process can be framed as a classification problem.
By analyzing physical leakage data, machine learning models
predict key-related information. For instance, in this study’s
attack on AES-128 (Advanced Encryption Standard-128), the
input consists of observed physical signals, and the model
aims to predict the output values of each byte after passing
through the substitution box (S-box).

Recent deep learning models, including multilayer per-
ceptrons (MLP) and convolutional neural networks (CNN),
have become focal points in side-channel attack research.
Their complex architectures allow for more effective feature
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extraction, enhancing attack performance. Most studies aim
to improve key recovery efficiency, assuming that enough
training data is available. However, in practice, collecting
enough data is often challenging. Without sufficient data,
deep learning models may not generalize well, which reduces
attack performance. Simulating data also requires a lot of time
and computing resources. If side-channel attacks could work
well with limited data, it would increase their real-world and
research value.

Most existing studies train separate models for each byte
without considering inter-byte correlations. This paper intro-
duces an iterative transfer learning approach to deep learning-
based side-channel attacks, aiming to reduce training data
requirements while improving attack efficiency. We com-
pare conventional machine learning models, deep learning
models, and the proposed method in terms of attack perfor-
mance. Furthermore, while power-based side-channel attacks
and countermeasures have been extensively studied, research
on temperature-based side-channel analysis remains limited.
Therefore, this study also explores the performance differ-
ences of models trained on different datasets.

B. RESEARCH CONTRIBUTIONS
The contributions of this paper are as follows:

1) Proposed iterative transfer learning to reduce data re-
quirements and accelerate training for deep learning
models like multilayer perceptron (MLP) and convo-
lutional neural network (CNN).

2) Proposed a Progressive Feature Selection method to
balance efficiency and selection quality through staged
feature reduction.

3) Compared different models and loss functions in side-
channel attacks to provide a reliable benchmark for
future research.

4) Explored various feature selection strategies to identify
optimal machine learning features for improving attack
accuracy.

5) Analyzed different physical leakage channels by apply-
ing side-channel attack models to power and tempera-
ture data for chip security insights.

C. SECTION OVERVIEW
This paper is divided into six sections:

• Section 1: Introduction. Provides an overview of the
research topic, research motivation, and contributions of
this study.

• Section 2: Related Work. Introduces various machine
learning classification models used in side-channel at-
tack research.

• Section 3: Dataset. Describes the datasets used in this
study, including power consumption and temperature
datasets.

• Section 4: Research Methodology. Details the methods
and relevant knowledge applied in this study.

• Section 5: Experimental Design and Results Discussion.
Presents the experimental setup, parameter configura-

tions, model architectures, and a comparative analysis
of the results.

• Section 6: Conclusion and Future Work. Summarizes
the findings of this study and suggests potential future
improvements.

II. RELATED WORK
This section introduces the fundamentals of side-channel at-
tacks, relevant research on deep learning in side-channel anal-
ysis, the commonly used correlation power analysis method,
optimized transfer learning approaches for deep learning ap-
plications, and the various loss functions used in the experi-
ments.

A. SIDE-CHANNEL ATTACKS
Side-channel attacks can be categorized into profiling attacks
and non-profiling attacks. Profiling attacks assume that the
attacker possesses an identical device to the target and has
full control over it. By adjusting various parameters, the
attacker can collect a large amount of physical information
to accurately break the target device. Template attacks (TA)
[1] are a well-known example of this type of attack.
Non-profiling attacks, on the other hand, assume that the

attacker can only collect physical leakage data without di-
rect control over the target device. These attacks rely on
statistical analysis to compute the correlation between hy-
pothetical leakages and actual leakages. Differential power
analysis (DPA) [2] and correlation power analysis (CPA) [3]
are common examples of such attacks.
Since Paul Kocher first introduced side-channel attacks [4],

they have been recognized as a powerful and practical method
for breaking encryption. These attacks are non-invasive and
do not require brute-force computation. Research on side-
channel attacks has evolved from traditional techniques such
as DPA, CPA, and template attacks to modern deep learning-
based approaches. In recent years, deep learning has demon-
strated outstanding performance in fields like speech and
image recognition, leading to its application in side-channel
attacks as well. This section provides a literature review on
related research in this domain.

B. SIDE-CHANNEL ATTACKS USING MULTILAYER
PERCEPTRONS
The multilayer perceptron (MLP) is one of the most common
architectures in deep learning models. As shown in Figure 1,
it consists of three main layers: the input layer, hidden layers,
and the output layer. The input layer receives physical data,
while the output layer predicts the probability of class labels.
The neurons in the hidden layers update their weights based
on the model’s predictions and the actual labels, allowing the
model to improve its accuracy over time.
In the context of side-channel attacks, MLPs require the

selection of points of interest (POIs). POI selection is a pre-
processing step that removes noise from the data, improving
model performancewhile reducing input dimensionality. This
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FIGURE 1. Multilayer Perceptron (MLP) Architecture for Side-Channel
Analysis [5]

process also shortens the training time, making the attack
more efficient.

[6] pioneered the application of multilayer perceptrons
(MLP) in side-channel attacks through a regression-based
approach to predict S-box byte outputs. This methodology
supersedes the conventional Hamming weight metric in Cor-
relation Power Analysis (CPA) frameworks by employing
MLP-generated predictions as refined power consumption es-
timators. The enhanced predictive capability ofMLPs demon-
strates superior alignment with actual physical leakage char-
acteristics compared to traditional CPA implementations. [7]
introduced the seminal classification-basedMLP architecture
for S-box analysis in side-channel contexts, implementing
256-class categorical labeling of byte values - an approach
that has become paradigmatic in contemporary research.

Current MLP-based side-channel analyses predominantly
utilize power radiation traces as primary datasets. However,
[8] innovatively employed localized thermal variation data
represented as two-dimensional thermal images correspond-
ing to physical chip layouts. The study proposed advanced
preprocessing techniques combining Laplacian filters and
standard deviation metrics for feature selection, effectively
reducing dimensionality from 40,000 pixels to 200 optimized
input features. Furthermore, the research conducted com-
parative analyses of various operational points of interest
(POIs) identification methods - critical vulnerabilities where
information leakage manifests most significantly. Figure 2
illustrates the experimental workflow. Building upon this
foundation, our current investigation extends the methodol-
ogy through localized power consumption and thermal varia-
tion analysis, introducing novel training data reduction tech-
niques.

C. SIDE-CHANNEL ATTACKS USING CONVOLUTIONAL
NEURAL NETWORKS
Convolutional Neural Networks (CNNs) are a common ma-
chine learning model in the field of image processing. Un-
like multilayer perceptrons (MLPs), which process one-

FIGURE 2. Experimental Workflow for Side-Channel Attack Using
Machine Learning [8]

FIGURE 3. Convolutional Neural Network (CNN) Architecture for
Image-Based Side-Channel Analysis [9]

dimensional data, CNNs can handle two-dimensional data,
enabling them to capture spatial information. This capability
allows CNNs to perform well in image-related tasks. The
structure of a CNN, as shown in Figure 3, consists of an
input layer, convolutional layers, pooling layers, and fully
connected layers. The input layer processes raw physical data,
while convolutional layers are composed of multiple kernels.
The purpose of these kernels is to learn different features, with
each kernel represented as a matrix that performs convolution
operations on the input data to extract feature maps, such as
horizontal, vertical, or diagonal patterns.
The pooling layer serves to reduce computational complex-

ity while preserving crucial information. Common pooling
methods include max pooling and average pooling. The max
pooling layer iterates over the feature map with a defined
window size and retains only the maximum value within
the window, whereas the average pooling layer retains the
average value within the window. If the pooling layer operates
with a 2*2 window and no overlap between iterations, the
feature map size is reduced to half of its original dimensions,
significantly decreasing computational cost. The fully con-
nected layer is similar to that in MLPs, where it connects all
neurons to predict the probability of each class label.
Since CNNs demonstrate strong performance in image-

related tasks, and the dataset used in this paper is also image-
based, CNNs will be employed for side-channel attacks.
The study in [10] is one of the early works that applied

CNNs to side-channel attacks. It compared CNNs with other
commonly used machine learning classifiers, including ran-
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FIGURE 4. Example Power Trace from the ASCAD Public Dataset [11]

FIGURE 5. CNN Model Architecture Used for ASCAD Dataset Evaluation
[11]

dom forests, autoencoders, and MLPs. In [11], CNNs were
also used for side-channel attacks, and the authors introduced
the publicly available ASCAD dataset, which provides a
benchmark for side-channel attack research. The CNN-based
benchmark model used in [11] is illustrated in Figure 5, while
Figure 4 presents an example of the ASCAD dataset. Unlike
the localized dataset used in this paper, ASCAD consists of
time-frequency data.

The study in [12] introduced an innovation in CNN-based
side-channel attacks by converting plaintext into a one-hot
representation and concatenating it with the first layer of
the fully connected network, as shown in Figure 6. In this
approach, plaintext is treated as domain knowledge that aids
CNNs in improving performance. Furthermore, unlike tradi-
tional side-channel attacks that use S-box outputs as labels,
this study directly predicts the encryption key and success-
fully breaks the target system.

D. LOSS FUNCTIONS APPLIED TO SIDE-CHANNEL
ATTACKS
In machine learning, the loss function is crucial as it measures
the gap between the predicted probabilities and the actual
labels. In other words, whether the model can successfully

FIGURE 6. Model Structure Combining Domain Knowledge and CNN [12]

learn is highly dependent on the loss function. The following
section will introduce the loss functions applied to side-
channel attack classification problems in recent years.

1) Cross entropy (CE)
Cross entropy is one of the most commonly used loss func-
tions in machine learning classification problems. Its com-
putation is given by the formula in equation 1, where p(x)
represents the true label distribution, and q(x) is the predicted
probability distribution by the model. During training, the
goal is to minimize cross entropy so that the distributions of
p(x) and q(x) become as close as possible.

Cross entropy = −
∑
z

p(x) log(q(x)) (1)

2) Cross Entropy Ratio (CER)
Cross Entropy Ratio (CER) is an improvement of cross en-
tropy that separates the computation of the positive labels
(true labels) and negative labels (false labels). It places the
cross entropy of negative labels in the denominator and the
cross entropy of positive labels in the numerator, as shown in
equation 2. The aim is for the positive label and its predicted
probability to be as close as possible, while the negative
label and its predicted probability should differ as much as
possible.
In [13], the authors proposed the Cross Entropy Ratio

(CER) loss function and provided comprehensive experi-
ments showing that CER can significantly improve model
performance under conditions of imbalanced training data.
However, in our study, since the label distribution is relatively
uniform due to dataset generation design, we did not ob-
serve the same degree of improvement when applying CER.
This suggests that the benefits of CER highlighted in [13]
are highly dependent on the data distribution, and that for
balanced datasets, conventional cross-entropy or ranking loss
may remain preferable.

Loss(y, ŷ) =
CE(k∗)

1
n

∑n
i=1 CE(k)

(2)
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3) Ranking Loss
The two loss functions mentioned above both calculate the
error between the true labels and the predicted probabilities.
However, [14] proposes the ranking loss, which is computed
as shown in equation 3. Here, s(k∗) represents the model’s
predicted probability for the correct label, and s(k) represents
the predicted probability for the incorrect labels. In side-
channel attacks, it is difficult to predict the correct label
from a single data point. Typically, multiple data points are
used, and their predicted probabilities are aggregated before
ranking. Therefore, the concept of ranking loss is to compare
the rankings of the true label and other labels, with the goal
of ensuring that the true label has a higher ranking than the
other labels.

Loss(s) =
∑
k∈K
k ̸=k∗

log2 (1 + exp (−α(s(k∗)− s(k)))) (3)

E. CORRELATION POWER ANALYSIS ATTACK
Correlation Power Analysis (CPA) is a type of non-invasive
side-channel attack. It calculates the correlation between hy-
pothetical leakages (predicted data) and actual leakage data
to identify the most probable key values. The hypothesis in
CPA assumes that the Hamming weight of the S-box byte
output is correlated with the actual physical leakage data. The
Hamming weight is computed as the number of "1"s in a byte.
For example, the Hamming weight of 10010001 is 3, and for
11110001, it is 5.

To attack byte-0 using CPA in side-channel attacks, the
steps are as follows:

1) Using a plaintext byte-0 and all possible keys (0-255),
perform AddRoundKey and SubBytes operations, then
calculate the Hamming weight of the S-box output.

2) Compute the Pearson product-moment correlation co-
efficient between all Hamming weights and every piece
of physical data from the trace, as shown in Equation 4.

3) Repeat the above steps with more data samples.
4) The key with the highest correlation coefficient is the

predicted key.

While the time required to compute the correlation coef-
ficients in CPA is longer than for machine learning models,
the advantage of CPA lies in its not requiring additional
training data, thus saving time that would otherwise be spent
on training. Although the MTD (Mean Time Delay) value
for CPA is generally larger than that of machine learning
models, CPA remains a stable and commonly used method
for performing side-channel attacks.

ρX ,Y =
cov(X ,Y )
σXσY

=
E [(X − µX )(Y − µY )]

σXσY
(4)

F. TRANSFER LEARNING
Neural network training for side-channel analysis often de-
mands a substantial amount of labeled data to achieve high

accuracy and generalization. However, collecting such exten-
sive datasets can be impractical due to constraints such as
hardware variations, limited measurement capabilities, and
data privacy concerns. To address this issue, transfer learning
has been explored as a technique to enhance data efficiency
by leveraging knowledge from related domains or pre-trained
models.
Several studies have demonstrated the applicability of

transfer learning in mitigating the data requirements for side-
channel analysis. Thapar, Alam, and Mukhopadhyay [15],
as well as Yu et al. [16], investigated the use of pretraining
models with data acquired from different devices before fine-
tuning them on target device-specific datasets. Their approach
demonstrated improvements in cross-device generalization,
showing that shared representations can be learned from
diverse hardware sources. Meanwhile, Garg and Karimian
[17] explored the potential of leveraging pretrained models
originally designed for general image recognition tasks, such
as InceptionV3 and VGG16, as feature extractors for side-
channel attack analysis. This approach capitalized on the
ability of deep convolutional networks to learn hierarchi-
cal feature representations, thus reducing the dependence on
large-scale domain-specific labeled data.
However, other studies have highlighted certain limita-

tions associated with transfer learning in this domain. For
instance, Hettwer et al. [18] pointed out that the effectiveness
of transfer learning can be inconsistent, particularly when
the feature distributions of the source and target datasets
exhibit significant discrepancies. Such differences may lead
to negative transfer, where the pre-trained model fails to gen-
eralize effectively, potentially degrading performance rather
than improving it.
Unlike these existing methods, our proposed Iterative

Transfer Learning (ITL) addresses these limitations by focus-
ing on intra-task and intra-device model reuse. Rather than
relying on external datasets or domain-agnostic pretraining,
ITL captures inter-byte similarities within the same crypto-
graphic operation. The byte-wise sequential reuse of weights
allows ITL to significantly reduce training data while main-
taining performance, especially in data-scarce conditions.
This progressive and adaptive fine-tuning strategy distin-
guishes ITL as a lightweight and domain-specific alternative
to traditional TL techniques.

III. DATASET INTRODUCTION
This section introduces the training datasets used in side-
channel attacks, including the temperature dataset and the
power consumption dataset.

A. DATASET GENERATION
In this study, we generated chip powermaps and thermalmaps
using ANSYS RedHawk-SC simulation software. We then
used these maps as datasets for machine learning–based side-
channel attacks. Simulation software lets us create training
data more quickly and efficiently.
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FIGURE 7. Flowchart of Temperature Generation [20]

FIGURE 8. Chip Temperature and Power Consumption Map [20]

The process of generating physical data involves executing
an AES encryption chip design, where the power consump-
tion of each region is calculated based on the integrated circuit
parameters, initial plaintext, and initial key. After generating
the power map, [19] mentions that the generation of thermal
maps needs to consider both near-field heating effects (NFE)
and far-field heating effects (FFE). The far-field heating effect
is handled using scaling with multi-dimensional interpolation
and remapping (SSMR), while the near-field heating effect is
modeled through a pre-trained decay model.

The predicted temperature is given by Equation 5, where T
represents the final generated temperature, DTNFE represents
the temperature increase due to near-field heating effects, and
DTFFE (also referred to asDTSSMR) represents the temperature
increase due to far-field heating effects. TAMB denotes the
ambient temperature. Figure 8 illustrates the correspondence
between power and temperature in the actual chip layout.

T = DTNFE + DTFFE + TAMB (5)

B. DATA DISTRIBUTION
The dataset used in this study consists of power data and tem-
perature data, each containing 20,000 samples. Each sample
includes a 128-bit plaintext, with the key also being 128-bit
and kept consistent as follows:

key = [′00′,′ 11′,′ 22′,′ 33′,′ 44′,′ 55′,′ 66′,′ 77′,
′88′,′ 99′,′ AA′,′ BB′,′ CC ′,′DD′,′ EE ′,′ FF ′]

(6)

FIGURE 9. Label distribution of AES S-box Byte-0 output. Train/Val/Test
= 5:1:1.

FIGURE 10. Label distribution of AES S-box Byte-1 output.
Train/Val/Test = 5:1:1.

In this study, the training labels correspond to the output of
the S-box, which consists of 128 bits. These bits are divided
into 16 bytes, labeled fromByte-0 to Byte-15. Therefore, each
plaintext is associated with 16 labels. Figures 9–24 illustrate
the label distributions for the first 8 bytes and the last 8 bytes,
respectively. The vertical axis represents the quantity, while
the horizontal axis represents the labels. In the figures, the
green section represents the training data, the red section
represents the validation data, and the blue section represents
the test data, which is also used during the attack phase. It can
be observed that the label distribution for Byte-0 is relatively
uniform.
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FIGURE 11. Label distribution of AES S-box Byte-2 output.
Train/Val/Test = 5:1:1.

FIGURE 12. Label distribution of AES S-box Byte-3 output.
Train/Val/Test = 5:1:1.

FIGURE 13. Label distribution of AES S-box Byte-4 output.
Train/Val/Test = 5:1:1.

C. POWER CONSUMPTION MAP
Figure 25 is an example of a power consumption map. The
image size is 201x201, with each pixel representing the power
consumption (in watts) of a 100 square micron area. The

FIGURE 14. Label distribution of AES S-box Byte-5 output.
Train/Val/Test = 5:1:1.

FIGURE 15. Label distribution of AES S-box Byte-6 output.
Train/Val/Test = 5:1:1.

FIGURE 16. Label distribution of AES S-box Byte-7 output.
Train/Val/Test = 5:1:1.

power consumption values range from 0 to 0.0000402. In
the image, many areas are yellow, indicating that the power
consumption in those areas is 0, meaning no current flows
through them and no power is consumed. On the other hand,
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FIGURE 17. Label distribution of AES S-box Byte-8 output.
Train/Val/Test = 5:1:1.

FIGURE 18. Label distribution of AES S-box Byte-9 output.
Train/Val/Test = 5:1:1.

FIGURE 19. Label distribution of AES S-box Byte-10 output.
Train/Val/Test = 5:1:1.

areas with darker colors represent regions with higher power
consumption. The power consumption map allows for the
rapid identification of important features (such as regions
with power consumption greater than 0). In general, using

FIGURE 20. Label distribution of AES S-box Byte-11 output.
Train/Val/Test = 5:1:1.

FIGURE 21. Label distribution of AES S-box Byte-12 output.
Train/Val/Test = 5:1:1.

FIGURE 22. Label distribution of AES S-box Byte-13 output.
Train/Val/Test = 5:1:1.

power consumption map data for side-channel attacks is eas-
ier compared to using temperature datasets.
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FIGURE 23. Label distribution of AES S-box Byte-14 output.
Train/Val/Test = 5:1:1.

FIGURE 24. Label distribution of AES S-box Byte-15 output.
Train/Val/Test = 5:1:1.

FIGURE 25. Sample Chip Power Consumption Map During AES
Encryption (201*201 Pixels, Watts per 100 square micron Region)

D. TEMPERATURE MAP
Figure 26 is an example of a temperature map. The image
size is also 201x201, with each pixel representing the average
temperature (in degrees Celsius) of a 100 square micron area
during AES encryption. Similar to the power map, the tem-
perature range is from 27.15 degrees Celsius to 27.26 degrees
Celsius. When compared to the power map, a significant dif-

FIGURE 26. Sample Chip Temperature Map During AES Encryption
(201*201 Pixels, degrees per 100 square micron Region)

TABLE 1. Coordinate Positions of the 16 Byte-Level Operating Points of
Interest (POIs) on the 201*201 Temperature Map During AES-128
Encryption

Byte 0 1 2 3
Coordinate (94,161) (65,171) (70,179) (93,166)

Byte 4 5 6 7
Coordinate (92,173) (81,175) (65,166) (65,174)

Byte 8 9 10 11
Coordinate (70,175) (88,171) (81,170) (59,166)

Byte 12 13 14 15
Coordinate (66,160) (64,182) (88,178) (89,177)

ference in color distribution can be observed. The temperature
map exhibits a coupling effect, where thermal energy diffuses
outward through the medium, and regions with zero power
consumption still show relatively high average temperatures.
The temperature of each pixel is actually influenced by its
neighboring areas.

E. OPERATING POIS
The above mentioned side-channel attack involves 16 labels,
corresponding to byte-0 to byte-15. In the chip design, it
was found that each byte has one most important position,
called the operating POI. If, duringmachine learning training,
the operating POI has a large weight or is regarded as an
important feature, it is often possible to successfully break
that byte. Table 1 shows the positions of the 16 operating POIs
in this study. Figure 27 shows the corresponding positions of
the 16 operating POIs on the temperature map.

F. DISCUSSION ON DATA REALISM AND SIMULATION
FIDELITY
Although this study utilizes simulation-generated power and
thermal maps for side-channel analysis, it is important to
discuss the fidelity of these simulated datasets compared to
real-world measurements. Simulations, such as those per-
formed by ANSYS RedHawk-SC, allow for controlled data
generation and rapid experimentation, which are essential for
developing and testing new methodologies. However, simu-
lated traces may not fully capture all sources of noise, pro-
cess variation, or unexpected leakages observed in practical
hardware environments.
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FIGURE 27. Spatial Distribution of 16 Operating Points of Interest
(POIs) on the Temperature Map During AES-128 Encryption

As a result, models trained solely on simulated data may
achieve higher performance during evaluation but could be
less robust when applied to real measurement data. Therefore,
while simulation fidelity has been improved by considering
both near-field and far-field thermal effects, and by using
high-resolution power estimations, validating new techniques
on real hardware measurements remains an important direc-
tion for future research. This also underlines the necessity for
the development of public real-world side-channel datasets
to further bridge the gap between simulation and practical
deployment.

IV. RESEARCH METHODOLOGY
This section will introduce the iterative transfer learning and
progressive feature selection proposed in this study, and pro-
vide a comprehensive overview of the preprocessing used in
the side-channel attack experiments.

A. OVERVIEW
This study proposes an iterative transfer learning method
applied to deep learning models, convolutional neural net-
works, and multilayer perceptrons for side-channel attacks.
This method effectively reduces the amount of data required
for training and accelerates the convergence time. Figure 28
shows the flowchart for performing a side-channel attack in
this research. First, the Laplacian filter and standard deviation
are used to quickly identify the important features in the
initial phase. Then, feature selection is applied to reduce the
number of features. Finally, iterative transfer learning is used
to perform the side-channel attack.

B. DATA PREPROCESSING
In section III, the dataset used in this research is intro-
duced. The dataset consists of 201*201 pixel images. If all
pixels are used as features for classifiers like MLP, SVM,
random forest, or logistic regression, the training time be-
comes very long. Having too many features also makes it
difficult for the model to classify effectively. Based on the
chip design, the features that leak encryption (i.e., high-
importance features) are concentrated in a small number of

FIGURE 28. Flowchart of Side-Channel Attack

FIGURE 29. Original Temperature Map

pixels. Therefore, preprocessing is necessary before using the
aforementioned classifiers to reduce the number of features.
[8] used a Laplacian filter and standard deviation for data
preprocessing. The temperature variation data, compared to
power consumption data, exhibits thermal junction coupling
effects, meaning heat energy diffuses through themedium. As
a result, for the temperature variation data, the Laplacian filter
is applied to perform edge detection, which eliminates the
influence of thermal junction coupling effects and preserves
important features. Figure 30 demonstrates that after applying
the Laplacian filter, the thermal junction coupling effect is
removed, leaving behind the critical features. In [8], different
filters were compared, including Sobel filter, Prewitt filter,
and Laplacian filter, with the Laplacian filter performing the
best.
The second step of data preprocessing is to calculate the

standard deviation of each pixel in the training data. In sta-
tistical terms, the standard deviation represents the degree
of dispersion of the values. A higher degree of dispersion
indicates that the operations performed on that pixel are more
diverse, making it more likely to be an important feature
point. In this study, the top 200 pixels with the highest stan-
dard deviations are selected as the initial features. As shown
in Figure 31, most of the top 200 pixels are concentrated
in the upper right part of the chip, and the blue box in the
figure overlaps with the operating POIs, which contain the
most leakage information.
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FIGURE 30. Laplacian Filter Applied Processing Effect

FIGURE 31. Standard Deviation Mapping Diagram [8]

Through the use of the Laplacian filter and standard devia-
tion, the input features can be quickly reduced from 400,000
to 200, making it possible for subsequent feature selection to
proceed within a reasonable range. The data preprocessing
described above applies only to the temperature variation
dataset and classifiers like multilayer perceptron, support
vector machine, random forest, and logistic regression. The
power consumption dataset does not apply the Laplacian filter
because the purpose of the filter is to eliminate the coupling
effect, which is not present in the power consumption data.
For convolutional neural networks (CNNs), no data prepro-
cessing is applied, and the original data is used as input.

This design choice reflects the differing strengths of tra-
ditional machine learning models and CNNs. Models like
MLP and SVM are not well suited for capturing spatial
dependencies in high-dimensional image data; directly using
raw pixel inputs can lead to high computational cost, over-
fitting, and reduced accuracy. Preprocessing steps such as

FIGURE 32. Progressive feature selection schematic diagram

Laplacian filtering and feature ranking are therefore essential
to reduce dimensionality and retain only the most informative
attributes.
In contrast, CNNs are inherently capable of learning local

and hierarchical features from raw data through convolutional
layers. Preprocessing techniques like edge detection or pixel
selection may disrupt important spatial patterns, undermining
CNN performance. Using raw inputs allows CNNs to fully
exploit spatial structure, albeit with increased computational
demands and potential sensitivity to noise. Each approach is
thus aligned with the model’s architecture and the character-
istics of the input data.

C. PROGRESSIVE FEATURE SELECTION
This paper explores a novel approach that combines three
feature selection methods, referred to as progressive feature
selection, as illustrated in Figure 32. Initially, STD and the
Laplacian filter are applied for preprocessing, enabling rapid
feature selection. Subsequently, one-pass ranking, Sequential
Forward Selection (SFS), and exhaustive search are used in
sequence to gradually reduce the number of features from
40,401 to 10. Since SFS and exhaustive search typically yield
better feature selection results but require longer computation
time, this method first employs fast feature selection when
dealing with a large number of features, followed by the more
effective SFS and exhaustive search, achieving a balance
between computational efficiency and selection quality.

D. ITERATIVE TRANSFER LEARNING
Currently, most studies on machine learning-based AES-128
attacks typically model the S-box output. Specifically, each
byte is trained as an independent model without considering
correlations between different bytes. The main issue with this
approach is that, although the training process for each byte is
similar, the critical features for different bytes are not entirely
the same. As a result, training separate models for each byte
independently may lead to inefficient resource utilization and
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fail to exploit the potential inter-byte relationships.
To enhance training efficiency and reduce the computa-

tional cost of model training, this study introduces Transfer
Learning. Transfer learning is a widely used technique in
machine learning, based on the idea that when a new task
shares a similar data distribution with a pre-trained model,
the learned model weights can be leveraged to achieve faster
convergence on the new task. Typically, transfer learning
involves pre-training a model on a large dataset and then fine-
tuning it on a smaller dataset. However, in the context of AES-
128 attacks, relying solely on traditional transfer learning
with limited pre-training data may still fail to successfully
break the encryption.

To address this issue, this study adopts a Progressive Train-
ing approach to enhance the attack performance. Specifically,
during training, the models for different bytes are not trained
independently. Instead, the trained model from the previous
byte is used as the pre-trained model for the next byte. This
approach follows a recursive training flow, where each byte
benefits from the learning experience of the preceding byte,
further optimizing the training process. By iterating this pro-
cess, the training follows a cyclic pattern, as illustrated in
Figure 33.

One key advantage of this training method is that even with
a limited dataset, deep learning models can still converge and
successfully break AES-128. According to the experimental
results, after two rounds of progressive training, theMinimum
Trace Delay (MTD) for each byte stabilizes, indicating that
the model has reached a steady state. Furthermore, although
the order in which bytes are trained may have a slight impact
on the final results, this progressive training strategy effec-
tively improves model performance and reduces reliance on
large-scale training datasets.

In this study, the byte-wise training sequence was fixed
from Byte-0 to Byte-15. This order follows the natural layout
of AES S-box processing and assumes relative independence
among byte operations. While we did not conduct experi-
ments on alternative orders, the observed convergence sta-
bility and consistent MTD results across different data sizes
suggest that the proposed ITL method is not highly sensitive
to training sequence.

V. EXPERIMENTAL DESIGN AND RESULTS DISCUSSION
A. EXPERIMENTAL ENVIRONMENT
The training and testing environment for this experiment is
Ubuntu 18.04, equipped with one GPU (NVIDIA GeForce
RTX 2070 SUPER) and one CPU (Intel Core i5-9400F). The
program is written in Python 3.8, and the machine learning
and deep learning models are implemented using PyTorch.

B. EXPERIMENTAL PROCESS
The experiments in this study are divided into three parts.
The first part explores the impact of different models, loss
functions, and preprocessing methods on AES-128 attack
results under the condition of sufficient training data. The
second part investigates the performance of models trained

FIGURE 33. Iterative transfer learning illustration

with different amounts of training data using the same set-
tings. The third part examines the performance of models
trained with different types of data. For the first two parts,
temperature variation data are used as the training data. The
training process is shown in Figure 28 from the previous
Section, and the experimental design is as follows.

• Experiment 1: Comparison of AES-128 attack results
with different model settings. This experiment includes
the following details:
-- Experiment 1.1: Comparison of AES-128 attack

results with different classification models.
-- Experiment 1.2: Impact of different loss functions

on Multi-Layer Perceptron (MLP) and Convolu-
tional Neural Networks (CNNs).

-- Experiment 1.3: Comparison of AES-128 attack
results with different feature selection and feature
extraction methods in classification models.

• Experiment 2: Investigating the performance of different
models trained with various methods in attacking AES-
128 under reduced training data conditions, comparing
results using 2,000, 5,000, 8,000, and 13,600 training
samples.

• Experiment 3: Compare the performance of various
models trained on different datasets using different
methods, including the temperature variation dataset and
the power consumption dataset.

C. CLASSIFIER PARAMETER SETTINGS
1) Random Forest
In the Random Forest study, the experiment is conducted
using sklearn [21]. A total of 100 decision trees are used,
with entropy as the criterion for evaluating the splits. There
is no limitation on the depth of the trees, and the branching
continues until the number of samples in each node is less
than 2.

2) Logistic Regression
In the logistic regression study, the experiment was as-
sisted by sklearn [21]. To prevent overfitting during train-
ing, an L2 penalty was used, and early stopping was em-
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TABLE 2. Multilayer Perceptron Architecture

Type Output Shape Param #
Linear bs * 20 4020

BatchNorm1d bs * 20 40
Mish bs * 20 0

Dropout bs * 20 0
Linear bs * 20 420

BatchNorm1d bs * 20 40
Mish bs * 20 0

Dropout bs * 20 0
Linear bs * 256 5376

ployed. The solver parameter was set to limited-memory
Broyden–Fletcher–Goldfarb–Shanno (lbfgs).

3) Support Vector Machine
In the support vector machine (SVM) study, the experiment
was assisted by sklearn [21]. The regularization parameter
was set to 1, and a linear kernel function was used to project
the plane.

4) Multi-Layer Perceptron (MLP)
The architecture of the Multi-Layer Perceptron (MLP) is
shown in Table 2, consisting of two hidden layers, each with
20 neurons. The activation function used isMish, and dropout
is applied to prevent overfitting, with a dropout rate of 0.5,
meaning half of the neuron weights are randomly discarded
during training. The batch size during training is 256, and the
model is trained for 500 epochs using the Ranger optimizer.
The parameters β1 = 0.95, β2 = 0.999 are used, and weight
decay is set to 0.1. The loss function is set to cross-entropy.
The training will stop based on changes in the loss function.
If the loss function does not decrease after 200 epochs, the
training will be stopped early, even if the maximum number
of epochs has not been reached.

5) Convolutional Neural Network (CNN)
The architecture of the Convolutional Neural Network (CNN)
is shown in Table 3. It consists of three convolutional layers
with a kernel size of 3 and a stride of 2, using the Mish
activation function. The pooling layer uses average pooling
(AvgPooling). Dropout is also used to prevent overfitting, but
only in the fully connected layers, with a dropout rate of 0.5.
During training, the batch size is set to 128, and training is
carried out for 500 epochs. The optimizer used is Ranger, with
β1 = 0.95 and β2 = 0.999, and weight decay is set to 0.1.
The loss function is cross-entropy. The criteria for stopping
training are the same as for the multilayer perceptron.

D. EVALUATION METHOD
1) Ranking Function
In machine learning, accuracy is commonly used to eval-
uate classification problems. However, in side-channel at-
tacks, due to the large number of classification categories,
the predicted probability values are not very prominent, and
the accuracy is usually low, making it difficult to assess the

TABLE 3. Convolutional Neural Network Architecture

Type Output Shape Param #
Conv2d bs * 64 * 101 * 101 640

BatchNorm2d bs * 64 * 101 * 101 128
Mish bs * 64 * 101 * 101 0

Avgpool bs * 64 * 50 * 50 0
Conv2d bs * 32 * 25 * 25 18464

BatchNorm2d bs * 32 * 25 * 25 64
Mish bs * 32 * 25 * 25 0

Avgpool bs * 32 * 12 * 12 0
Conv2d bs * 16 * 6 * 6 4624

BatchNorm2d bs * 16 * 6 * 6 32
Mish bs * 16 * 6 * 6 0

Avgpool bs * 16 * 3 * 3 0
Linear bs * 20 9280

BatchNorm1d bs * 20 128
Mish bs * 64 0

Dropout bs * 64 0
Linear bs * 64 4160

BatchNorm1d bs * 64 128
Mish bs * 64 0

Dropout bs * 20 0
Linear bs * 256 16640

model’s performance with a single data point. Therefore, the
evaluation is done by aggregating the probabilities.
First, the S-box predicted label (0-255) is reverse-

engineered using the plaintext of this data to predict the
key. The probability of the predicted key corresponds to
the probability of the S-box prediction. The key prediction
probabilities are then log-sum and ranked. The rank of the
real key is the output of the ranking function. The range of
the ranking function is from 0 to 255, where 0 is the best and
indicates the successful decryption of the AES-128 byte. If,
after aggregating all the data, the ranking function is not 0, it
indicates that the byte cannot be successfully decrypted.

2) Measurement-to-disclosure (MTD)
MTD (Minimum Trace Delay) represents the number of data
points required during the attack to stabilize the predicted key
such that the ranking function equals 0. During the attack, the
probability of each data point is log-summed sequentially, and
the ranking function is calculated after each step, until all the
attack data (in this experiment, 3,000 data points) have been
processed. If the ranking function remains at 0 after 500 data
points, then the MTD is 500. If the ranking function remains
at 0 after 2,000 data points, the MTD is 2,000. Figure 34
shows the changes in the ranking function when using Multi-
Layer Perceptron (MLP) and Support VectorMachine (SVM)
on Byte-12. It is found that after 58 data points, the MLP’s
ranking function remains at 0, indicating an MTD of 58. For
the SVM, the ranking function becomes 0 after 2,306 data
points but then fluctuates back to 1, stabilizing at 0 only after
2,523 data points, so the MTD for SVM is 2,523.
In side-channel attacks, there are 16 bytes that need to

be decrypted. AES-128 is considered successfully decrypted
only when theMTD of all 16 bytes is smaller than the number
of data points in the attack phase. Therefore, when evaluating
the model’s performance, the worst MTD is typically used for
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FIGURE 34. Byte-12 Ranking Function Changes

description. In this experiment, both the maximumMTD and
the average MTD are used to assess the attack performance.
If AES-128 cannot be successfully cracked, the averageMTD
will not be displayed.

E. EXPERIMENT 1: AES-128 ATTACK RESULTS WITH
DIFFERENT MODEL SETTINGS
The purpose of this experiment is to compare the results
of various models attacking AES-128, including Correlation
Energy Analysis, Random Forest, Support Vector Machine,
Logistic Regression, Multi-Layer Perceptron, and Convolu-
tional Neural Networks. Additionally, the experiment ob-
serves the impact of different loss functions on the deep
learning models, Multi-Layer Perceptron and Convolutional
Neural Networks, as well as the effect of different feature
selection methods on these models.

1) Experiment 1.1: Comparison of Different Classification
Models Attacking AES-128
a: Experiment Setup
The training data used in this experiment consists of 13,600
temperature change images, which provides sufficient train-
ing data. Classifiers such as multilayer perceptrons (MLP),
logistic regression, random forests, and support vector ma-
chines only undergo preprocessing and do not perform feature
selection, so the number of features is 200. The proposed
MLP and proposed CNN use the iterative transfer learning
training method. In the calculation of MTD, since the order
of the probability data can also affect the MTD results, this
experiment randomly shuffles the order 100 times, and the
average MTD is used as the result.

The parameter settings for the various models used in this
experiment have been detailed in Section V-C.

b: Experimental Results and Analysis
Table 4 presents the experimental results. Most of the attack
models successfully broke AES-128, with the exception of
the random forest, which failed to break the encryption. A
failure to break is defined as having at least one byte that
could not be successfully cracked. The reason for this failure
is that the diffusion of temperature causes the feature values

TABLE 4. Results of Attacking AES-128 with Different Classification
Models

Attack Model Average MTD ↓ Worst MTD ↓ Average Rank ↓
CPA 1402 2750 0
CNN 125 233 0
MLP 55 111 0

Logistic 334 937 0
Random Forest x >3000 46

SVM 647 2990 0
Proposed MLP 54 88 0
Proposed CNN 83 164 0

FIGURE 35. The MTD of different classifiers for byte-0 to byte-7, with
arrows indicating that the MTD did not converge within 3,000

to have insignificant differences, making it more difficult to
judge based on branching alone.
In comparison, deep learning models, such as multi-

layer perceptrons (MLP) and convolutional neural networks
(CNN), showed significant improvement over traditional ma-
chine learning models. Despite their complex architectures
and weights, these deep learning models were still able to
learn important features from the temperature dataset, thereby
improving the model performance.
Figures 35 and 36 show the MTD for each classifier across

every byte. The arrows at the top of the figures represent an
MTD exceeding 3,000, indicating that the byte could not be
successfully cracked. In the case of the random forest, MTD
was only successful for byte-14, while the rest of the bytes
could not be cracked.
The proposed iterative transfer learning applied to MLP

and CNN showed improvements across the results. As seen in
the table and figures, the iterative transfer learning approach
achieved better performance in all classifiers. The MLP
model showed a smaller progression in average MTD, possi-
bly because, under the experimental conditions, the MLP was
already performing sufficiently well, and most bytes showed
limited improvement. However, there was still a noticeable
improvement in the worst-case MTD.

2) Experiment 1.2: Investigating the Impact of Different Loss
Functions on Multi-Layer Perceptrons and Convolutional
Neural Networks
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FIGURE 36. The MTD of different classifiers for byte-8 to byte-15, with
arrows indicating that the MTD did not converge within 3,000

a: Experiment Setup
The loss functions and their settings for this experiment are
described in detail in Section II-D. The model and other
parameter settings for this experiment are the same as those
in Experiment 1.1.

b: Experimental Results and Analysis
Based on Tables 5 and 6, it can be observed that the cross
entropy ratio fails to successfully break AES-128. However,
from Figures 37–40, by examining the MTD for each byte, it
is found that when combined with the multilayer perceptron,
about half of the bytes can still be successfully cracked, such
as byte-0, byte-1, and byte-2, indicating that the cross entropy
ratio is capable of breaking AES-128.

As mentioned in [22], the denominator when training with
cross entropy ratio presents a challenge. This denominator
is the cross entropy between the predicted probability and
the negative labels, which distinguishes the distribution of
negative labels. In classification problems, there might be
data that is easy to classify or difficult to classify. Data that is
easy to classify will significantly improve the calculation of
the denominator, thereby reducing the overall cross entropy
ratio loss.

Furthermore, in [13], it is stated that the cross entropy
ratio shows notable improvement with imbalanced training
data. However, in this experiment, where uniformly labeled
training data is used, the MTD for cross entropy ratio does
not perform exceptionally well.

Ranking loss, which is calculated differently from cross
entropy and cross entropy ratio, takes into account MTD and
calculates the loss based on ranking. This is a loss function
adjusted for side-channel attacks (SCA). However, in this ex-
periment’s dataset, it did not outperform cross entropy. Based
on the current experimental results, no significant difference
between cross entropy and ranking loss can be observed.

In conclusion, for this experiment, comparing different loss
functions combined with multilayer perceptron and convolu-
tional neural networks, cross entropy remains the best loss
function.

TABLE 5. Results of Different Loss Functions in Multi-Layer Perceptron

Loss Function Average MTD ↓ Worst MTD ↓ Average Rank ↓
Cross entropy 54 88 0

Cross entropy ratio x >3000 4
Ranking loss 61 123 0

TABLE 6. Results of Different Loss Functions in Convolutional Neural
Network

Loss Function Average MTD ↓ Worst MTD ↓ Average Rank ↓
Cross entropy 125 233 0

Cross entropy ratio x >3000 89
Ranking loss 195 610 0

FIGURE 37. MTD for Byte-0 to Byte-7 with MLP combined with different
loss functions

FIGURE 38. MTD for Byte-8 to Byte-15 with MLP combined with
different loss functions

3) Experiment 1.3: Exploring the Impact of Different Feature
Selection and Feature Extraction on Different Classifiers
a: Experiment Setup
Table 7 presents the parameter settings for feature selection
and feature extraction. The feature selection process evaluates
features using logistic regression, which is chosen due to its
lower computational cost. All feature selection and feature
extraction methods undergo preprocessing using standard de-
viation normalization, resulting in an initial feature count of
200.
Progressive feature selection employs a series of feature
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FIGURE 39. MTD for Byte-0 to Byte-7 with CNN combined with different
loss functions

FIGURE 40. MTD for Byte-8 to Byte-15 with CNN combined with
different loss functions

TABLE 7. Parameters of Feature Selection and Feature Extraction

Method Feature Selection
Model

Num of
Input

Num of
Output

One-pass ranking Logistic
regression

200 10, 50

Sequential feature
selection (SFS)

Logistic
regression

200 10

Progressive
feature selection

Logistic
regression

40401 10

Principal
component
analysis (PCA)

– 200 10

Linear
discriminant
analysis (LDA)

– 200 4,5,6

selection steps, with the feature count in the table representing
the total initial feature count of the input image. The dimen-
sionality reduction for LDA is determined based on the MTD
of the validation dataset. Specifically, the dimensionality is
set to 4 for logistic regression and support vector machines, 5
for multilayer perceptron (MLP) and the proposed MLP, and
6 for random forest.

FIGURE 41. Comparative Analysis of Classification Performance:
Logistic Regression vs. SVM vs. MLP vs. Proposed MLP Across LDA
Dimensions

FIGURE 42. Dimensionality Impact Analysis: Random Forest MTD
Variation on Validation Data with LDA Projection

b: Experimental Results and Analysis
Figure 41 and 42 shows the average MTD results of different
classifiers under various LDA dimensionality reductions on
the validation dataset. It can be observed that the lowest
MTD for Logistic Regression and Support Vector Machine
(SVM) occurs at a dimensionality of 4, while Multi-Layer
Perceptron (MLP) and the proposed MLP achieve the lowest
MTD at a dimensionality of 5. For Random Forest, the lowest
MTD is observed at a dimensionality of 6. Based on these
results, the dimensionality reduction for LDAwill be adjusted
accordingly for each classifier during the attack.
From the experimental results, it is evident that Logistic

Regression and Support Vector Machine (SVM) achieve a
significant reduction in MTD when using one-pass ranking,
SFS, and progressive feature selection. As shown in Ta-
ble 8, Random Forest does not successfully break the encryp-
tion through feature selection. Since Multi-Layer Perceptron
(MLP) and the proposed MLP already have relatively low
MTD, the improvement is limited, and no significant reduc-
tion in MTD is observed after feature selection. However,
feature selection effectively reduces the feature space, which
in turn reduces the time spent on training.
Furthermore, the results of the proposed progressive fea-

ture selection in this paper are consistent with those of SFS.
Since the feature space is reduced to 10 after SFS, the benefit
of exhaustive search is limited. A possible solution could be
to increase the number of features searched by exhaustive
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TABLE 8. Performance Evaluation of Feature Engineering Methods in
Random Forest Classification

Feature Engineering
Method

MTDavg (ms) MTDmax (ms) Rankavg

Raw Features (200D) N/C >3,000 46
Univariate Filter
(200D→10D)

N/C >3,000 7

Sequential Forward Se-
lection (200D→10D)

N/C >3,000 6

Progressive
Feature Selection
(200D→50D→10D)

N/C >3,000 6

PCA Projection
(200D→10D)

N/C >3,000 156

LDA Projection
(200D→6D)

644 1,600 0

search, but this would also increase the computational time.
Regarding feature extraction, applying PCA causes all clas-

sifiers to fail in breaking the encryption. As an unsupervised
method, PCA does not utilize label information during di-
mensionality reduction, which may result in the loss of key-
dependent features critical for successful decryption. In con-
trast, supervised methods like LDA leverage class labels to
optimize class separability, preserving important distinctions
in the data. By projecting the data into a low-dimensional
space while maintaining discriminative structure, LDA en-
ables successful decryption—most notably improving the
performance of RandomForest, which initially failed to break
the encryption.

In summary, LDA is the best method for both feature
selection and feature extraction. It effectively reduces the
feature space, provides faster computation times, and allows
the model to successfully break the encryption.

F. EXPERIMENT 2: EVALUATING THE PERFORMANCE OF
DIFFERENT MODELS IN ITERATIVE TRANSFER LEARNING
ATTACKS ON AES-128 USING LIMITED TRAINING DATA
AND VARIOUS METHODS.
1) Experiment Setup
This experiment employs Multi-Layer Perceptron (MLP) and
Convolutional Neural Network (CNN) deep learning models
to investigate the effectiveness of iterative transfer learn-
ing in attacking AES-128 under limited data conditions and
compare it with non-iterative transfer learning methods. The
training data sizes are 2,000, 5,000, 8,000, and 13,600, with
validation data set at one-fourth of the training data (500,
1,250, 2,000, and 3,400, respectively), and the attack data
fixed at 3,000.

The loss function used is cross-entropy, with no feature
selection or extraction applied. If an attack requires more than
3,000 data points, it is considered unsuccessful, denoted as
">3000" in the table.

2) Experimental Results and Analysis
Figures 43 to 46 illustrate the trends of different classifiers
under varying amounts of training data. It is evident that as
the amount of training data decreases, the requiredMTD con-

FIGURE 43. MTD of MLP for Individual Bytes with Varying Training Data
Sizes, Arrows Indicate MTD Failing to Converge Within 3,000

tinuously increases. Deep learning models without iterative
transfer learning fail to successfully break AES-128 when
trained with only 5,000 samples. Notably, CNN is unable to
crack byte-2 even with 8,000 training samples, highlighting
the critical importance of training data volume.
In contrast, deep learning models utilizing iterative transfer

learning can successfully break AES-128 with only 5,000
training samples, with both MLP and CNN achieving suc-
cessful attacks. Specifically, the proposed MLP maintains an
MTD below 2,000 even with only 2,000 training samples.
Although the proposed CNN fails to crack AES-128 with
2,000 training samples, it succeeds when provided with 5,000
samples. This demonstrates that iterative transfer learning is
beneficial when training data is insufficient.
When training data is sufficient, the performance differ-

ence between MLP and the proposed MLP is minimal, with
MLP even outperforming the proposed MLP in some cases.
However, as the amount of data decreases, the proposed MLP
significantly outperforms the standard MLP.
These results indicate that when the original deep learn-

ing model has a low MTD, the benefits of iterative transfer
learning are limited. However, when theMTD is high or when
certain bytes cannot be cracked, iterative transfer learning can
significantly improve MTD performance. This experiment
validates that the proposed iterative transfer learning method
effectively breaks AES-128 even with reduced training data,
leading to notable improvements in MTD.
Figure 47 illustrates the separately trainedMLP, which cor-

responds to the standard MLP used in this experiment. It can
be observed that the initial values of the loss function for byte-
0, byte-1, and byte-2 are similar, all starting at approximately
5.66 before decreasing.
Figure 48 shows the loss variation when applying iterative

transfer learning to train the MLP. It is evident that the ini-
tial loss values for byte-1 and byte-2 are lower than in the
standard MLP. This is because the model pre-trained on byte-
0 serves as the initialization for subsequent bytes, providing
better initial weights that enhance performance and accelerate
convergence.
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FIGURE 44. MTD of CNN for Individual Bytes with Varying Training Data
Sizes, Arrows Indicate MTD Failing to Converge Within 3,000

FIGURE 45. MTD of Proposed MLP for Individual Bytes with Varying
Training Data Sizes, Arrows Indicate MTD Failing to Converge Within
3,000

FIGURE 46. MTD of Proposed CNN for Individual Bytes with Varying
Training Data Sizes, Arrows Indicate MTD Failing to Converge Within
3,000

Figure 49 presents the changes in MTD across different
rounds. Each round consists of training from byte-0 to byte-15
once. In this figure, training is conducted using 2,000 samples
over four rounds, meaning each byte is trained four times. The
results indicate that as the number of rounds increases, the
MTD gradually converges.

FIGURE 47. Loss Function Variation of MLP Under Separate Training
Strategy

FIGURE 48. Loss Function Variation of MLP Under Iterative Transfer
Learning Strategy

G. EXPERIMENT 3: COMPARE THE PERFORMANCE OF
VARIOUS MODELS TRAINED WITH DIFFERENT METHODS
ON DIFFERENT DATASETS.
1) Experiment Setup
In this experiment, we compared the performance of the mod-
els mentioned earlier across different datasets. The datasets
used were the power dataset and the temperature dataset.
Detailed information about the datasets is provided in section
III. All other settings remained the same as in the previous
experiments.

2) Experimental Results and Analysis
Table 9 presents the average MTD (Minimum Test Data)
of various models across different datasets. All models suc-
cessfully break AES-128 when trained on the power dataset.
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FIGURE 49. MTD Variations Across Training Cycles

Notably, there is a clear improvement in both the correlation
energy analysis and machine learning models. The absence of
the coupling effect in the power data facilitates the model’s
ability to learn the features more effectively.

In particular, the Random Forest model, which fails to
break the temperature dataset, demonstrates a significant de-
crease in average MTD when trained on the power dataset,
with the value dropping below 1037. This suggests that the
coupling effect, which affects temperature data, can compli-
cate the feature extraction process.

Moreover, the experiment reveals that the MTD of the
Convolutional Neural Network (CNN) is higher when trained
on the power dataset compared to the temperature dataset.
This can be attributed to the lack of coupling effect in the
power data, which results in the concentration of significant
features within a single pixel. In contrast, temperature data
involves the surrounding pixels of operating Points of Interest
(POIs), which, influenced by the coupling effect, exhibit simi-
lar features. TheCNN is designed to focus on specific regions,
which makes it more challenging to concentrate on individual
pixels, thereby leading to poorer performance when trained
on power data.

The Multi-Layer Perceptron (MLP) and Iterative Transfer
Learning (ITL) models have similar MTD values for both
power and temperature datasets. However, convergence is
faster with the power dataset. This means that using power
data has advantages, especially when less training data is
available.

Figures 50 and 51 display the MTD for Multi-Layer Per-
ceptron (MLP) and the proposed MLP models on both power
and temperature datasets for byte-4 and byte-12. When the
data volume is reduced, training on the power dataset results
in better MTD performance. However, when only 2,000 data
points remain, the power dataset still fails to successfully
break the byte, whereas Iterative Transfer Learning (ITL)
enables successful cracking. Similar trends are observed for
the other bytes.

Based on the experiment, Iterative Transfer Learning

FIGURE 50. MTD Comparison Between MLP and Proposed MLP Across
Multiple Datasets with Varying Training Data Sizes at Byte-4 (Arrows
Indicate Non-Convergence Within 3,000)

FIGURE 51. MTD Comparison Between MLP and Proposed MLP Across
Multiple Datasets with Varying Training Data Sizes at Byte-12 (Arrows
Indicate Non-Convergence Within 3,000)

proves to be effective across various datasets. The power
dataset generally yields better MTD results compared to the
temperature dataset, but the gap between the datasets is re-
duced when ITL and MLP are applied.

TABLE 9. Average MTD Across Different Datasets

Attack Model Power Thermal
CPA 423 1368
CNN 204 125
MLP 54 59
Logistic Regression 313 334
Random Forest 1037 >3000
SVM 111 261
Proposed MLP 52 53
Proposed CNN 56 82

VI. CONCLUSION AND FUTURE WORK
A. CONCLUSION
This study presents an innovative deep learning model train-
ing method—Iterative Transfer Learning, aimed at enhancing
the interrelationship between different byte models by grad-
ually training models across multiple bytes, thus improving
the overall model performance. In this method, each trained
model serves as the pre-trained model for the next byte,
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forming a continuous iterative training process. Experimental
results demonstrate a clear advantage of traditional machine
learning and deep learning models over correlation-based
energy analysis, with deep learning models outperforming
machine learning models. Furthermore, when sufficient data
is available, combining progressive transfer learning with
multi-layer perceptrons (MLP) further improves decryption
performance.

We tested different loss functions and found that cross-
entropy gave the best results in every case, both in average
and maximum MTD. Feature selection and extraction also
helped improve model performance when the right methods
were chosen.

In the case of insufficient data, progressive transfer learn-
ing demonstrated its critical role in enhancing the perfor-
mance of deep learning models. The experiments revealed
that traditional deep learning models failed to successfully
break the AES-128 encryption with insufficient data, but by
introducing progressive transfer learning, the model’s MTD
significantly improved and successfully decrypted AES-128.
This indicates that progressive transfer learning provides new
initial weights for the bytes, allowing the model to learn
effectively and solve complex problems with limited data.

Through experimental analysis of power consumption and
temperature variation data, it was observed that the leakage of
information from CPA and traditional machine learning mod-
els (such as logistic regression, random forests, and support
vector machines) became more apparent. In deep learning
models, both power consumption and temperature change
data exhibited similar MTD results, further demonstrating
the strong learning capability of deep learning models. Even
when faced with complex data types, they can still extract
valuable information.

The experimental results demonstrate that the implemented
deep learning models and data processing methods perform
exceptionally well across diverse data types. Progressive
transfer learning effectively addresses the common challenge
of data scarcity in deep learning, significantly expanding the
applicability of these methods.

In addition to technical advancements, we acknowledge
the ethical implications of developing more powerful side-
channel attack methodologies. Such techniques, if misused,
could threaten the security of critical infrastructures and per-
sonal data. Therefore, we urge researchers and practitioners
to use these findings solely for defensive purposes, such as
vulnerability assessment and the enhancement of hardware
security. Collaborating closely with industry and regulatory
bodies to ensure responsible application and prompt mitiga-
tion is crucial forminimizing potential ethical risks associated
with this technology.

B. FUTURE WORK
In future work, we aim to extend our proposed iterative
transfer learning (ITL) method to more complex datasets
and diverse physical leakage sources beyond temperature and
power consumption, such as electromagnetic (EM) emissions

and battery radiation leakage. These modalities often involve
stronger coupling effects and higher noise levels, presenting
new challenges for generalization and robustness. We also
plan to validate the methodology on real-world measurement
data, as current simulations do not fully capture hardware
variations or environmental unpredictability. This will help
assess the practical effectiveness of ITL and identify chal-
lenges in transitioning from simulated to physical environ-
ments.
While this study did not include evaluation of cross-device

transferability between thermal and electrical datasets or be-
tween different hardware, existing literature [15] [16] sug-
gests that transfer learning approaches can potentially bridge
some domain gaps. In the future, we will investigate the
applicability and challenges of extending our models across
diverse device types and signal domains.
Additionally, we recognize the increasing difficulty of side-

channel attacks due to the growing use of masking and obfus-
cation techniques. To address these challenges and improve
training efficiency, we plan to explore multitask learning
approaches that can predict all 16 AES-128 bytes simultane-
ously using shared input features. This may reduce the need
for training separate models per byte and shorten the overall
training time.
Another promising direction involves the design of new

loss functions tailored to the unique characteristics of side-
channel analysis. Unlike conventional classification tasks,
side-channel attacks typically involve a large number of
classes, and success is measured using metrics like mini-
mum traces to disclosure (MTD) rather than accuracy. De-
veloping specialized loss functions and appropriate pre-
/postprocessing techniques may lead to improved model per-
formance and better alignment with side-channel attack ob-
jectives.
Finally, we acknowledge the ethical implications of ad-

vancing side-channel attackmethodologies. These techniques
should be applied responsibly, primarily for evaluating vul-
nerabilities and strengthening hardware security. We encour-
age collaboration with industry and regulatory bodies to en-
sure the safe and ethical use of such technologies.
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