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Abstruct- This paper presents a gain scheduling 
based approach to the design of fuzzy controllers. We 
demonstrate that the Sugeno fuzzy controller is in fact 
a special case of gain scheduling where the feedback 
gains are adjusted (“scheduled”) via membership func- 
tions in fuzzy if-then rules. When the desired gains at 
various operating points are available, we can apply 
the ANFIS learning algorithm [4] proposed earlier to 
construct a Sugeno fuzzy controller that can generated 
interpolated control actions. The validity of the pro- 
posed method is confirmed through simulation of two 
well-known control tasks: the cart-pole system and the 
ball-beam system. 

I. INTRODUCTION 
The Mamdani [7] and the Sugeno [ll, 101 fuzzy controllers 
have been used extensively in the fuzzy control community. 
The objective of the Mamdani fuzzy controller is to mimic a 
successful human operator who can express his/her expertise 
in terms of a set of fuzzy if-then rules. As a result, the under- 
lying design method is often application-specific and not easily 
formalized. Moreover, the plant model is not required explic- 
itly; the human operator is supposed have an implicit model 
in mind in order to  guide the formulation of the fuzzy if-then 
rules. Therefore, design of a Mamdani fuzzy controller is simi- 
lar to that of an expert system: it is more of a art and less of an 
engineering approach. This also accounts partly for the fact 
that fuzzy control is not quite accepted by the conventional 
control community. 

In contrast, the Sugeno fuzzy controller is more efficient 
both in computation and adaptation [4]. More importantly, 
the Sugeno fuzzy controller can be viewed as a special case 
of gain scheduling where the feedback gains vary according to 
the membership function on the premise part of the fuzzy rule 
set. Based on this observation, we can easily incorporate some 
of the linear control design methods (such as linear quadratic 
optimal control and robust control) as an integrated part of 
our fuzzy control design procedure. If the plant under control 
is severely nonlinear the proposed fuzzy controller can outper- 
form any of its constituent linear counterparts since nonlinear 
aspects of the plant have been taken into consideration. 

This paper is organized into five sections. The next section 
introduces the Sugeno fuzzy controller and its learning algo- 
rithm. Section 3 explains the resemblance between the Sugeno 
fuzzy controller and gain scheduling, which leads to a new de- 
sign method for the Sugeno fuzzy controller. We apply this 
method to  control the cart-pole and the ball-beam systems; 

the simulation results are presented in Section 4. Section 5 
gives a concluding remark and possible future directions. 

11. SUGENO FUZZY CONTROLLER AND ITS 
LEARNING ALGORITHM 

We will use the terms fuzzy controller, fuzzy model, and 
fuzzy inference systems interchangeably since they are all 
synonyms which are commonly used to refer to a fuzzy rule- 
based system. 

A. Sugeno Fuzzy Model 
The Sugeno fuzzy model was proposed by Takagi, Sugeno, 
and Kang [ll, 101 in an effort to formalize a systematic ap- 
proach to generating fuzzy rules from an input-output data 
set. A typical fuzzy rule in a Sugeno fuzzy model has the 
format 

If x is A and y is B then z = f(x, y), 

where A and B are fuzzy sets in the antecedent; z = f(z, y) is 
a crisp function in the consequent. Usually f ( z ,  y) is a poly- 
nomial in the input variables z and y, but it can be any other 
functions as long as it can appropriately describe the output of 
the system within the fuzzy region specified by the antecedent 
of the rule. When f ( z ,  y) is a first-order polynomial, we have 
the first-order Sugeno fuzzy model, which was originally pro- 
posed in [ll, 101. When f is a constant, we then have the 
zero-order Sugeno fuzzy model, which can be viewed either 
as a special case of the Mamdani fuzzy inference system [7] 
in which each rule’s consequent is specified by a fuzzy sin- 
gleton (or a pre-defuzzified consequent), or a special case of 
Tsukamoto’s fuzzy model [12] in which each rule’s consequent 
is specified by a membership function equal to  a step func- 
tion centered at the constant. Moreover, a zero-order Sugeno 
fuzzy model is functionally equivalent to a radial basis function 
network under certain minor constraints [5]. 

Consider a first-order Sugeno fuzzy inference system which 
contains two rules: 

Rule 1: I f X i s A 1  a n d Y i s B l , t h e n f i = p l z + q l y + T i ,  
Rule 2: If X is A2 and Y is B2, then f2 = p 2 z  + 9231 + r2.  

Figure 1 (a) illustrates graphically the fuzzy reasoning mech- 
anism to derive an output f from a given input vector [z,y].  
The firing strengths w1 and w2 are usually obtained as the 
product of the membership grades in the premise part, and the 
output f is the weighted average of each rule’s output. More 
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Figure 1: (a) First-order Sugeno fuzzy model; (6)  correspond- 
ing ANFIS architecture. 

explicitly, the output f can be expressed as 

The Sugeno fuzzy model is well-suited for adaptive network 
based learning introduced below. 

E. ANFIS 
To facilitate the learning (or adaptation) of the Sugeno fuzzy 
model, it is convenient to put the fuzzy model into the frame- 
work of adaptive networks that can compute gradient vectors 
systematically. The resultant network architecture, as shown 
in Figure 1 (b), is called ANFIS (Adaptive Network based 
Fuzzy Inference System). Nodes within a layer of ANFIS per- 
form similar tasks that are specified by their node functions, 
as described below. (Note that 0: denotes the output of the 
i-th node in layer j.) 

Layer 1 Each node in this layer generates a membership 
grades of a linguistic label. For instance, the node func- 
tion of the i-th node might be 

where z is the input to node i; A, is the linguistic label 
(small ,  large, etc.) associated with this node; and {al, 
b , ,  c,} is the parameter set that changes the shapes of 
the membership function. Parameters in this layer are 
referred to as the premise parameters. 

Layer 2 Each node in this layer calculates the firing strength 
of each rule via multiplication: 

Layer 3 The i-th node of this layer calculates the ratio of the 
i-th rule's firing strength to the sum of all rules' firing 

strengths: 

Layer 4 Node i in this layer has the following node function 

(5) o? I - -E.f. i I --.( - Wr p t Z + q i y + T i ) ,  

where G; is the output of layer 3, and {pi, q,, T , }  is the 
parameter set. Parameters in this layer will be referred 
to as the consequent parameters. 

Layer 5 The single node in this layer computes the overall 
output as the summation of all incoming signals: 

Thus we have constructed an adaptive network in Fig- 
ure l(b) which is functionally equivalent to a fuzzy inference 
system in Figure l(a). The basic learning rule of ANFIS is the 
back-propagation gradient descent [13], which calculates error 
signals (the derivative of the squared error with respect to each 
node's output) recursively from the output layer backward to 
the input nodes. This learning rule is exactly the same as the 
back-propagation learning rule used in the common feedfor- 
ward neural networks [9]. 

From the ANFIS architecture in Figure 1, it is observed that 
given the values of premise parameters, the overall output f 
can be expressed as a linear combinations of the consequent 
parameters: 

f = Elf1 +E2fi  

(7) = (EiZ)pi + (Wiy)ql + ( E i ) T i  + (E2Z)PZ + (E2y)q2 + (E2)FZ.  

Based on this observation, we have proposed a hybrid learning 
algorithm [3, 41 which combines the gradient descent and the 
least-squares method for effective search of a set of optimal 
parameters. Both on-line and off-line learning paradigms were 
developed and reported in [4]. 

111. FROM GAIN SCHEDULING TO FUZZY 
CONTROL 

The overall output f in equation (7) can be rewritten as 

If we assume both T I  and TZ are zero, then the above equa- 
tions actually represent a state feedback controller with gain 
scheduling [I, 81, where the dependency of the gain vector k 
on the operating point [z, y] is expressed explicitly as 

This allows us to employ the common technique of lineariz- 
ing a plant at certain operating points and then finding the 
corresponding gains via linear control methods such as robust 
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and/or optimal design. These gains are then blended via mem- 
bership functions to form a complete first-order Sugeno fuzzy 
controller (without constant terms). 

Figure 2 demonstrates a simple example, where tb state 
space of a second-order system is divided into nine regions, 
each of which corresponds to a fuzzy if-then rule. Basically, 
there are two ways of using gain scheduling in fuzzy control, 
as discussed below. 

0 If the number of operating points is small (Figure 2 (a)), 
then these operating points are usually located where 
the membership functions achieve unity and the number 
of operating points are equal to the number of rules. 
Usually the gains at each of these points are taken as the 
coefficients of the output equation of the corresponding 
fuzzy rule. In other words, the fuzzy if-then rules are 
constructed directly from each of the operating point 
and corresponding gains, such that the controller can 
generate an exact desired control action at each point 
and an interpolated control action between points. 
We would like the fuzzy controller to reproduce the exact 
gains at each of the operating points. 

0 If the number of operating points are large (Figure 2 
(b)), then these points (and corresponding control ac- 
tions) are taken as the training data for identifying a 
fuzzy logic controller to approximate the input-output 
mapping. 

Simply speaking, the first situation is an interpolation 
problem while the second one is an approximation prob- 
lem. This is an effective method of designing a fuzzy con- 
troller, though we need to identify a model for the plant first. 
If the overall model of the plant is not available, a shortcut is 
to perturb the plant at these operating points and numerically 
derive the linearized models. 

Y 
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X 

I l l  
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1 

Figure 2: Applying gain scheduling to find Q fuzzy controller: 
(a) interpolation if the number of operating points is small; (b)  
approximation if the number of operating points is large . 

In summary, the proposed gain scheduling based design ap- 
proach can be described as follows. 

1.  

2 .  

Define domain of interest in the state space and set op- 
erating points within the domain of interest. 
For each of the operating points, find the linearized 
model of the plant and then identify the feedback gains 
and corresponding control action via linear control tech- 
niques, such as linear quadratic optimal control or ro- 
bust control. 

3. Use ANFIS to identify a set of parameters that  can best 
reproduce the control action at each operating point. 

This design method is used in the following section to find 
fuzzy controllers for the cart-pole and the ball-beam systems. 

IV. A P P L I C A T I O N  E X A M P L E S  
A. The Cart-Pole Sys tem 
Figure 3 shows the schematic diagram of the cart-pole system 
(also known as the inverted pendulum), where a rigid pole is 
hinged to a cart through a free joint with only one degree of 
freedom, and the cart slides on a smooth surface to its right 
or left depending on the force (shown as an arrow in Figure 3) 
exerted on it. The control goal is to move the cart to a target 
position (shown as a triangle in Figure 3) while keeping the 
pole balanced. 

Figure 3: The cart-pole system with the target position shown 
on the right hand side. 

animp 

(Fuzzy Logic Controller) 

Figure 4: SIMULINII' block diagram for  simulation and ani- 
mation of the cart-pole system. 

The inverted pendulum system is characterized by four state 
variables: 6' (angle of the pole with respect to the vertical axis), 
s (angular velocity of the pole), z (position of the cart on the 
track) and i (velocity of the cart). These four state variables 
are related via the following dynamical equations [a ,  61: 

Mtm , 
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where g (acceleration due to  gravity) is 9.8 meter/sec2, M 
(mass of cart) is 1.0 kg, m (mass of pole) is 0.1 kg, 1 (half 
length of pole) is 0.5 m, and U is the applied force in Newtons. 

The domain of interest is selected as a hypercube 
[-0.3,0.3] x [-I, 11 x [-3,3] x [-3,3] in the four-dimensional 
state space x = (e, 8, I, i). By choosing 5 equidistant points 
within the range of each of the four state variable, we can 
obtain 625 (= 54) grid points, which are used as the represen- 
tative operating points for this problem. 

For each operating point at x = XO, we can derive a lin- 
earized model using the MATLAB command linmod. If we 
adopt the design method for linear quadratic optimal control, 
the MATLAB command Iqr can be used to find the optimal 
gain vector k such that the feedback law U = -kx minimizes 
the quadratic cost function 

0 -  

-1 

subject to the constraint of the linearized model 

2 = AX+ Bu. 

obtained at  the operating point x = XO. Here we set both Q 
and R equal to  identity matrices in our simulation. 

After obtaining 625 training data  pairs, the next step is to 
find a fuzzy controller that  can hopefully reproduce these data. 
This is done by using ANFIS with 16 rules (104 parameters), 
where each input is assigned two membership functions. For 
simplicity, we perform only a single epoch of ANFIS learning, 
yielding a root mean squared error of 0.030. Further reduc- 
tion of approximation error is very likely if learning epochs are 
increased. 

Figure 3 is the SIMULINK block diagram of our simulation 
and animation environment for the cart-pole system. (The an- 
imcp block is for animation using handle graphics.) Figure 5 
(a) plots the tracking performance when the desired cart posi- 
tion (shown as a dotted line) varies as a sinusoidal wave (when 
t 5 33), a square wave (when 33 < t 5 66), and a tooth 
wave (when t > 66). The diagram shows that the actual cart 
position (shown as a solid line) can follow the desired signal 
satisfactorily while keeping the pole balanced. Figure 5 (b) is 
the pole angle and angular velocity; (c) is the control force on 
the cart. 

E. The Ball-Beam System 
Figure 6 shows the schematic diagram of the ball-beam system, 
where a ball is rolling frictionlessly on a beam and a motor is 
used to  tilt the beam in order to send the ball to a desired 
location (shown as a small hollow triangle in Figure 6). The 
ball-beam system is also characterized by four state variables: 
z (position of the ball), i (velocity of the ball), e.(angle of 
the beam with respect to  the horizontal axis), and 0 (angular 
velocity of the beam). These four state variables are related 
via the following second-order differential equations: 

. :. . . . . . .  . . .  
h .. 

' ,  .. . ;  
I . .  

i = O.7143(zi2 - 9.81sin@), 
e = U, 

where U is the torque applied at the beam. (Note that this sys- 
tem is feedback linearizable, but we do not exploit this property 
in the following discussion.) 

@) Pole angle and angular velocity 
1, I I , ,  , . ,  , I , ,  , 

. .  .", . . . . . 

0 -  h 

Figure 5: Simulation results for the cart-pole system: (a) de- 
sired (dotted line) and actual (solid line) cart positions; (b) 
pole angle (solid line) and angular velocity (dotted line); (c) 
control force. 

Figure 6: The ball-beam system. 

The domain of interest is selected as a hypercube 
[-1.5,1.5] x [-1.5,1.5] x [-0.2,0.2] x [-0.4,0.4] in the four- 
dimensional state space x = ( z ,  i ,  8, e). Again, we choose 625 
grid points within the domain of interest as the representa- 
tive operating points; a similar approach which minimizes the 
same objective function (equation (9)) subjected to linearized 
constraints is used to find the gains and the control action at 
each point. After a single epoch of batch learning, a 16 rules 
ANFIS is able to reproduce the training data with a root mean 
squared error of 0.029. 

Figure 6 is the SIMULINK block diagram of our simulation 
and animation environment for the ball-beam system. Figure 8 
(a) shows the tracking test where the desired signal (shown as 
a dotted line) is the same as the one used for the cart-pole 
system. Our fuzzy controller can drive the ball to  follow the 
desired signal satisfactorily. Figure 8 (b) is the corresponding 
beam angle and angular velocity; (c) is the exerted torque on 
the beam. 
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Figure 7: SIMULINK block diagram for simulation and ani- 
mation of the ball-beam system. 
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Figure 8: Simulation results for the ball-beam system: (a) de- 
sired (dotted line) and actual (solid line) ball positions; (b) 
beam angle (solid line) and angular velocity (dotted line); (c) 
control torque. 

V. CONCLUSION AND FUTURE DIRECTIONS 

Based on the resemblance between gain scheduling and the 
Sugeno fuzzy controller, we have proposed a design method 
for fuzzy controllers of Sugeno's type that can take advantage 
of a number of linear control techniques. The feasibility of this 
method is confirmed via simulations of the cart-pole and the 
ball-beam systems. 

Unlike design methods for the Mamdani fuzzy controller, 
our method does need an exact model of the plant. If the 
model is nonlinear, then the proposed method constructs a 
fuzzy controller that performs the desired gain scheduling. On 
the other hand, if the model is linear, then the constructed 
fuzzy controller reduces to a simple linear controller. Concep 
tually speaking, becasue of the extra consideration of nonlin- 
earity a t  different operating points, the proposed fuzzy con- 
troller can outperform the corresponding linear controller in 
minimizing the same quadratic objective function if the plant 

under control is severely nonlinear. However, this is achieved 
at the cost of extra computational complexity both in design 
and application of the fuzzy controller. 

Besides gain scheduling, we believe that various nonlinear 
control design techniques can be embedded into the design 
process of the Sugeno fuzzy controller. For example, to de- 
sign a fuzzy controller that can deal with plant uncertainty or 
time-varying characteristics, we can employ adaptive control, 
sliding mode, or H-m techniques. This kind of integration will 
further blur the boundary between fuzzy (Sugeno's type) and 
conventional control. On the other hand, the Mamdani fuzzy 
inference system will still be better suited for fuzzy decision 
making or fuzzy expert systems which do not require a plant 
model explicitly. 
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