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Abstract
Speech change is a biometric marker for Parkinson’s disease (PD). However, evaluating speech variability across diverse 
languages is challenging. We aimed to develop a cross-language algorithm differentiating between PD patients and healthy 
controls using a Taiwanese and Korean speech data set. We recruited 299 healthy controls and 347 patients with PD from 
Taiwan and Korea. Participants with PD underwent smartphone-based speech recordings during the “on” phase. Each Korean 
participant performed various speech texts, while the Taiwanese participant read a standardized, fixed-length article. Korean 
short-speech (≦15 syllables) and long-speech (> 15 syllables) recordings were combined with the Taiwanese speech dataset. 
The merged dataset was split into a training set (controls vs. early-stage PD) and a validation set (controls vs. advanced-stage 
PD) to evaluate the model's effectiveness in differentiating PD patients from controls across languages based on speech 
length. Numerous acoustic and linguistic speech features were extracted and combined with machine learning algorithms 
to distinguish PD patients from controls. The area under the receiver operating characteristic (AUROC) curve was calcu-
lated to assess diagnostic performance. Random forest and AdaBoost classifiers showed an AUROC 0.82 for distinguishing 
patients with early-stage PD from controls. In the validation cohort, the random forest algorithm maintained this value (0.90) 
for discriminating advanced-stage PD patients. The model showed superior performance in the combined language cohort 
(AUROC 0.90) than either the Korean (AUROC 0.87) or Taiwanese (AUROC 0.88) cohorts individually. However, with 
another merged speech data set of short-speech recordings < 25 characters, the diagnostic performance to identify early-stage 
PD patients from controls dropped to 0.72 and showed a further limited ability to discriminate advanced-stage patients. 
Leveraging multifaceted speech features, including both acoustic and linguistic characteristics, could aid in distinguishing 
PD patients from healthy individuals, even across different languages.
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Introduction

With the advancement of technology and artificial intelli-
gence, an increasing number of studies is being performed 
on digital biomarkers for early detection of disease or 
assistance in diagnosis. In Parkinson’s disease (PD), digi-
tal biomarkers are being developed for motor symptoms, 
cognition, mood, sleep, speech, and autonomic functions 
(Alfalahi et al. 2023). Among them, speech is one of the 
most studied biometric markers. Speech in patients with 
PD is characterized by breathy phonation, hoarseness, low 
speech volume, inaccurate articulation, and monotonous 
speech, which occurs in 70–90% of patients with PD at 
some point during the course of the disease and even in 
the early and prodromal stages (Ho et al. 1998; Jeancolas 
et al. 2022; Rusz et al. 2021).

Studies of speech algorithms to differentiate patients 
with PD from healthy controls (HCs) have been devel-
oped in more than 30 languages, and the results show 
accuracy ranging from 0.67 to 1.0 (Idrisoglu et al. 2023). 
This wide discrepancy stems from the difference in demo-
graphic characteristics, disease severity, recording task, 
and speech analysis methods. In addition, it is also likely 
that the unique features of each language, including vari-
ations in pronunciation (articulation and clarity) and pho-
netics (acoustic properties such as pitch, rhythm, and tonal 
structure), affect the performance of the algorithm used in 
each study.

This study focuses on speech analysis, which includes 
both acoustic features (e.g., pitch variability, intensity) 
and linguistic features (e.g., speech rate, articulation 
errors). Speech in patients with PD is often characterized 
by changes in both phonation and articulation, which can 
manifest as reduced fundamental frequency variability, 
slower speech rate, and higher pause percentage. The 
pattern of speech changes in Parkinson's disease (PD) 
has been studied in different language groups, includ-
ing Mandarin, Japanese, and Thai (Idrisoglu et al. 2023; 
Favaro et al. 2023; Laganas et al. 2021). However, a cross-
language algorithm that can differentiate PD from con-
trols independently of language has not been thoroughly 
explored across diverse linguistic settings. To date, few 
studies have investigated whether a single algorithm can 
differentiate patients with PD from HCs in multiple lan-
guages (Favaro et al. 2023; Laganas et al. 2021). In one 
study on a mixed population of PD patients speaking Eng-
lish, Greek, German, and Portuguese, the language-una-
ware classification process showed a diagnostic accuracy 
of 0.7 in the differentiation of speech from patients with 
PD from HCs, which was lower than the language-aware 
method for each language (Laganas et al. 2021). Another 
study analyzed acoustic features of American English, 

Italian, Castilian Spanish, Colombian Spanish, German, 
and Czech speech to differentiate PD from HCs independ-
ent of language (Favaro et al. 2023). Various models were 
used, and the accuracy ranged from 0.56 to 0.92. All the 
languages included in the above studies are Indo-European 
languages. Recent machine learning studies focusing on 
Asian languages, including Korean (Jeong et al. 2024), 
Thai (Bhidayasiri et  al. 2024), Japanese (Yokoi et  al. 
2023), and Mandarin (Zhang et al. 2023) have demon-
strated promising results for speech-based diagnostics, fur-
ther highlighting the potential of cross-lingual approaches. 
However, to our knowledge, no study has established an 
algorithm for identifying PD in a multilingual setting in 
Asia, particularly between languages belonging to differ-
ent language families that are phonetically distinct. In this 
study, we developed a cross-language algorithm to dif-
ferentiate between patients with PD and HCs using Tai-
wanese speech, which belongs to the Sino-Tibetan family, 
and Korean speech, which belongs to the Altaic family. 
Korean and Taiwanese Mandarin differ significantly in 
their phonetics and linguistic structure. Korean, an Altaic 
language, has a syllable-timed rhythm and uses Hangul 
characters, where each syllable corresponds to one char-
acter. In contrast, Taiwanese Mandarin, a Sino-Tibetan 
language, employs logograms, with intonation playing a 
critical role in meaning. Despite these differences, both 
languages share speech characteristics relevant to PD, such 
as changes in pitch and pauses, which could be adopted 
for cross-lingual studies. Herein, we developed a cross-
language algorithm differentiating between patients with 
PD and HCs using Taiwanese speech, which belongs to the 
Sino-Tibetan family, and Korean speech, which belongs to 
the Altaic family.

Materials and methods

Study participants

A total of 646 participants, including 299 healthy controls 
and 347 patients with PD, were recruited from movement 
disorder clinics of Seoul National University Hospital (125 
controls and 161 patients with PD) and National Taiwan 
University Hospital (174 controls and 186 patients with PD). 
PD was diagnosed according to the United Kingdom PD 
Society Brain Bank Clinical Diagnostic Criteria (Hughes 
et al. 1992). The controls were neurologically unaffected 
participants who were spouses or friends accompanying 
the patients with PD. We excluded participants who were 
illiterate, as well as those with hearing impairments or 
other non-neurological disorders that could affect the vocal 
cords. All participants underwent otolaryngologic evalua-
tions. All Korean and Taiwanese participants had received 
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at least 9 years of education, which is the compulsory edu-
cation requirement in these regions. Among PD patients, 
early-stage PD was defined as Hoehn–Yahr stage < 2.5 and 
advanced-stage PD was defined as a Hoehn–Yahr stage ≥ 2.5. 
All participants provided written informed consent, and the 
institutional ethics boards of Seoul National University Hos-
pital and National Taiwan University Hospital approved the 
study.

Speech datasets

Multidisciplinary approach to dataset and task selection

The selection of speech datasets and tasks was guided by a 
multidisciplinary team comprising movement disorder spe-
cialists, machine learning specialists, and a speech analysis 
expert. This collaborative approach ensured that the tasks 
were linguistically and clinically appropriate for identifying 
PD-related speech changes. Task selection, such as reading 
speech in Korean and Mandarin, was informed by language-
specific methodologies, ensuring the inclusion of tailored 
tasks critical for capturing distinct linguistic features rel-
evant to PD and the respective languages. Different stimuli 
were used for Korean and Taiwanese datasets because the 
two languages belong to different language families (Altaic 
and Sino-Tibetan, respectively) and exhibit distinct phonetic 
and linguistic characteristics. Using stimuli that align with 
each language's natural phonetic structure ensures robust 

analysis of PD-related speech changes while maintaining 
linguistic validity.

Korean dataset

The Korean dataset included both short and long sentences 
designed to capture a wide range of phonetic and linguistic 
contexts. These stimuli were carefully selected to incorpo-
rate variations in vowels, consonants, and sentence struc-
tures reflective of the Korean language. Additionally, the 
sentences were chosen to capture natural prosody and syn-
tactic diversity. The Korean speech recordings were gath-
ered from 291 Korean participants, including 125 control 
individuals and 161 patients with PD. Each participant was 
asked to perform 12 distinct Korean speech texts (detailed 
description were shown in Supplementary Data) or speech 
tasks, including sustained vowel phonation (Naranjo et al. 
2017), syllable repetition tasks (Skodda et al. 2013), sen-
tence repetition tasks (Bandini et al. 2016), and reading tasks 
(Galaz et al. 2016), on the same day during the “on” phase of 
medication, resulting in a total of 2,068 Korean audio clips. 
Among the 2,068 Korean audio clips, 1420 clips contained 
reading text lengths of less than 40 characters (short-speech 
recordings) and 648 clips contained reading text length 
exceeding 40 characters (long-speech recordings) (Fig. 1 
and Supplementary Table 1). Audio features were extracted 
from multiple clips, and the average values were calculated 
for each participant.

Fig. 1   Study design flowchart with two cohorts. In the Korean cohort, 
participants performed various speech texts, while the Taiwanese par-
ticipant read a standardized, fixed-length article. Korean short-speech 
(≦15 syllables) and long-speech (> 15 syllables) recordings were 
combined with the Taiwanese speech dataset. The merged dataset 

was then divided into a training set (controls vs. early-stage PD) and a 
validation set (controls vs. advanced-stage PD) to evaluate the effec-
tiveness of a speech length-based model in distinguishing PD patients 
from unaffected controls across languages

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



	 W. S. Lim et al.

Taiwanese dataset

The Taiwanese dataset consisted of a single, standardized 
passage that represents key linguistic features of Taiwanese 
Mandarin, such as tonal variations and frequent phonemes 
characteristic of the language. This passage was selected 
for its linguistic richness, incorporating all major tones and 
a diverse set of vowels and consonants. It facilitates the 
analysis of tonal dynamics, which are particularly relevant 
to Taiwanese Mandarin and are influenced by PD. Taiwanese 
speech recordings were derived from a published speech 
dataset of 360 Taiwanese participants, including 174 con-
trols and 186 patients with PD, who were requested to read 
a standardized article with a fixed-length text consisting of 
500 characters (Lim et al. 2022). The 360 Taiwanese audio 
clips contained standardized long text readings derived from 
each participant. Among the Taiwanese speech dataset of 
patients with PD, only speech files recorded during the “on” 
medication phase were used in the current study.

Recording process

All recordings were conducted in a quiet indoor clinic envi-
ronment to minimize background noise. While the environ-
ment was not a professional soundproof studio, care was 
taken to minimize external disturbances, with the recording 
setup kept consistent across participants. Participants were 
instructed to speak naturally and maintain a steady tone and 
volume during the tasks. Trained research assistants super-
vised all recordings, and the same model of smartphone was 
used for consistency in each dataset. The smartphone micro-
phone was positioned at a consistent distance of 5–35 cm 
from the participant’s mouth, and this setup was verified 
before each recording session. Speech data were initially 
captured in linear PCM format (.wav) with a sampling rate 
of 44.1 kHz and a 24-bit sample size, then down sampled to 
44.1 kHz and 16-bit for uniform processing. These record-
ings were categorized according to the length of their speech 
content. Long-speech recordings were characterized by a 
lack of repetitive words and a minimum of 40 Hangul char-
acters, whereas short-speech recordings were defined by a 
length of fewer than 40 characters. In Korean, as in Taiwan-
ese, one character represents one syllable.

Dataset merging and model training

To evaluate the sensitivity of a cross-lingual speech model 
in distinguishing patients with Parkinson’s disease (PD) 
from healthy controls, we combined the Korean and Tai-
wanese speech datasets. Considering the uneven number 
of speech datasets derived from each participant in the two 
cohorts, they were merged in two distinct ways First, the 
Korean long-speech recordings (≥ 40 Hangul characters) 

were combined with the Taiwanese dataset (500 characters). 
Second, the Korean short-speech recordings (< 40 Hangul 
characters) were merged with the same Taiwanese dataset. 
Furthermore, the merged datasets were then split into train-
ing and testing (validation) sets based on disease stage. The 
training set included early-stage PD patients (Hoehn–Yahr 
stage ≤ 2) and healthy controls, while the testing/validation 
set comprised advanced-stage PD patients (Hoehn–Yahr 
stage > 2) and an independent group of controls (Fig. 1). The 
testing data included participants from both cohorts to assess 
the model's cross-lingual generalizability. This approach 
provided a unique opportunity to evaluate the model’s effec-
tiveness in distinguishing PD patients from controls across 
varying speech lengths and linguistic contexts (Fig. 1). By 
dividing the speech recordings into training (early-stage PD 
patients and controls) and validation (advanced-stage PD 
patients and another control group) datasets for each merged 
configuration, we ensured robust testing of the model’s 
performance.

All PD patients were receiving levodopa therapy, and the 
speech was recorded during the “on” phase, such that the 
motor function and speech of patients with early-stage PD 
would be similar to those observed in healthy older individu-
als. Therefore, patients with early-stage PD should be more 
difficult to differentiate from controls than patients with 
advanced-stage PD. For this reason, we trained the model 
with speech features derived from patients with early-stage 
PD to differentiate them from healthy controls. We reasoned 
that a model that could discriminate patients with early-stage 
PD from healthy controls might show optimal diagnostic 
performance for identifying drug-naïve patients with PD or 
advanced-stage PD among healthy older individuals.

Speech feature selection

Several speech features were used to distinguish patients 
with PD from healthy controls. Because patients with PD 
present with hypovolemic and monotonous speech (Lim 
et al. 2022), speech volume and fundamental frequency 
(pitch) features were adopted as features that could discrimi-
nate patients with PD from controls. Volume represents the 
vocal intensity of an audio signal, which correlates with the 
amplitude of the signal. Therefore, we adopted volume vari-
ance, pause percentage, fundamental frequency variability, 
and average fundamental frequency as speech features in our 
model. Vocal intensity variance was calculated by analyzing 
variations in the volume of audio frames across the speech 
sample, while fundamental frequency variance was extracted 
frame-by-frame using Python’s pysptk library. Pause per-
centage was derived as the proportion of silent frames to 
total recording length, with silent frames identified based 
on a dynamically set threshold. Average fundamental fre-
quency was computed as the mean F0 across voiced frames 
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after pitch tracking. All stimuli were fully analyzed for con-
sistency, using Python-based signal processing tools. While 
other vocal parameters (e.g., jitter, shimmer, and HNR) are 
affected by PD, cross-lingual applicability challenges led to 
their exclusion. The inclusion of speech-related measures 
aimed to complement acoustic features by capturing linguis-
tic and articulatory characteristics of PD.

In addition to volume and fundamental frequency, into-
nation, pronunciation, and syllable length vary between the 
two languages; therefore, we used the ground-truth speech 
text provided to the participants at recording and the Google 
Speech-to-Text API, which is versatile and can be applied 
to all supported languages (Google 2023a, b). We utilized 
the Google Speech-to-Text API for transcribing the Korean 
speech dataset into Korean text and Taiwanese Mandarin 
speech to traditional Mandarin text. After transcription, we 
measured the following features. (1) Speech Rate: Calculated 
as the ratio of reading duration to text character length, this 
measure assesses spoken language efficiency by focusing on 
the pace of speech, not the overall clip length. A lower ratio 
indicates faster speech, allowing for accurate comparison 
across both short and long audio clips. (2) Speech-to-Text 
Google API Confidence Score: This score reflects the API’s 
confidence in the accuracy of its transcription. A higher con-
fidence score suggests that the transcribed text is a more 
accurate representation of the original speech, which is cru-
cial for assessing transcription reliability. (3) Speech-to-Text 
Word Error Rate (WER): The WER is a standard metric 
for evaluating speech recognition accuracy. This involves 
comparing the API-generated transcription with a ground-
truth text to quantify discrepancies. A lower WER signifies 
higher accuracy, indicating the system's effectiveness in 
converting spoken language into written form. This metric 
is particularly valuable for evaluating the effects of factors 
such as background noise, accents, and linguistic variations 
on transcription accuracy.

Machine learning algorithms and analyses

We used sequential forward feature selection with base 
classifiers such as Random Forest (Breiman 2001), Support 
Vector Machine (SVM) (Pisner and Schnyer 2020), and 
AdaBoost (Freund and Schapire 1997) to train our model. 
The source code for all classifiers is available in the python 
science-kit learning library (Buitinck et al. 2013). We imple-
mented the leave-one-out cross-validation (LOOCV) method 
to reduce both bias and variance in the machine learning 
models by providing an objective estimate of the model's 
performance on new data. In LOOCV, the model is trained 
on all data points except one, and this process is repeated 
for each data point, ensuring that every observation is used 
for both training and validation. We compared the perfor-
mances of these training classifiers based on several key 

performance metrics. These metrics included the accuracy, 
precision, recall, F1-score, and area under the receiver oper-
ating characteristic curve (AUROC) for binary classifica-
tion. This comprehensive evaluation approach allowed us 
to assess the effectiveness of each classifier in the context 
of our study, ensuring a robust and reliable machine learn-
ing model.

Statistical analysis

Continuous variables are expressed as mean ± standard 
deviation. For variables where appropriate, we have also 
included the median and interquartile range in addition to 
the mean. Categorical variables are expressed as number and 
percentage. We tested the homogeneity of variances using 
Levene’s tests. Variables were compared using two-tailed t 
tests or analysis of variance (ANOVA) when normally dis-
tributed, or with the non-parametric t-test when assump-
tions of normality or homoscedasticity were violated. The 
diagnostic performance of the models is expressed as the 
AUROC and 95% confidence interval (95% CI). All statisti-
cal analyses were performed using SAS (version 9.4; Cary, 
NC, USA) and GraphPad Prism (version 9.0.0; San Diego, 
California, USA). P values < 0 0.05 were considered statisti-
cally significant.

Results

The demographic data of all enrolled participants from the 
Korean and Taiwanese cohorts are shown in Table 1. In both 
cohorts, patients with PD were older than controls. In addi-
tion, the PD group had a higher percentage of men than the 
control group.

In the Taiwanese cohort, in which reading a text was 
used as the source of speech data, we observed that all the 
speech-related features were significantly different between 
PD patients and controls, even those with early-stage PD 
during the “on” phase (Table 1). Patients with PD took 
longer to read the article, paused more during reading, 
had reduced fundamental frequency and volume variabil-
ity, slower speech rate, higher word error rate, and lower 
API confidence scores than control participants. Similar 
patterns of speech features were observed in the Korean 
cohort. Although the Korean speech dataset contained ver-
satile speech recordings from each participant, ranging from 
a single vowel sounds to reading text, the speech features 
of pause percentage and word error rate were comparable 
between patients with early-stage PD and controls. Further-
more, the API confidence score was only slightly different 
between patients with early-stage PD and ethnicity-matched 
controls.
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Therefore, considering the heterogeneous recording 
length and speech tasks in the Korean speech dataset, we 
combined long Korean speech recordings with a minimum 
of 40 Hangul characters with the Taiwanese speech data-
sets. The clinical characteristics and speech features of the 
merged datasets are listed in Table 2. The training speech 
dataset was derived from patients with early-stage PD during 
the “on” phase and mixed-ethnicity controls (Table 2). In 
this merged training dataset, we integrated all speech fea-
tures, including volume parameters and fundamental fre-
quency characteristics, and API-related features, including 
speech rate, word error rate, and confidence score, combined 
with the basic characteristics of age and sex as an integrated 
cross-language model. We used a sequential forward selec-
tion method to select the best features for each classifier. The 
ROC analyses calculated with the random forest and Ada-
Boost classifiers provided the optimal diagnostic values of 
0.82, for distinguishing patients with early-stage PD during 
the “on” phase from controls (Fig. 2A). Given the satisfac-
tory performance of this cross-language model using a long-
speech dataset, we then assessed whether this model might 
also be able to distinguish patients with advanced-staged 
PD during the “on” phase from a mixed language popula-
tion. We found that the random forest classifier achieved 
high diagnostic performance, with an AUROC of 0.90, in 
identifying PD patients from set of mixed-ethnicity con-
trols (Fig. 2B). Furthermore, under this classifier, the per-
formance of the established model was better in the merged 
language cohort than either Korean or Taiwanese language 
datasets alone (Fig. 2B).

We then examined whether speech length affects the diag-
nostic accuracy of identifying patients with PD from con-
trols. Another merged speech dataset that included Korean 
short-speech recordings with a length of less than 25 char-
acters and the Taiwanese speech datasets was prepared. We 
found that the diagnostic performance was marginal for 
the training dataset using speech files from patients with 
early-stage PD during the “on” phase and controls. The 
AdaBoost and random forest classifiers provided the high-
est performance with AUROCs of 0.78 and 0.72, respec-
tively (Fig. 3A). However, while applying the merged model 
built from the short-speech dataset to the validation cohort 
of mixed-language patients with advanced-stage PD and 
another subset of controls, all the classifiers showed limited 
diagnostic performance in discriminating advanced-stage 
PD patients from normal subjects (Fig. 3B). The random 
forest classifier only provided a diagnostic accuracy with an 
AUROC score of 0.56 in the validation dataset.

Furthermore, to assess the impact of sex and age on 
model performance, we conducted subgroup analyses by 
first developing separate models for each biological sex. 
Additionally, we restricted the analysis to participants 
aged 40 and above in both the Taiwanese and Korean 
datasets. These results demonstrated that, among females, 
the integrated voice model using the long-speech data-
set achieved high performance with an AUROC of 0.95 
(Supplementary Fig. 1A). Among males, the model also 
performed satisfactorily, with an AUROC of 0.88 (Sup-
plementary Fig. 1B). In the cohort of participants aged 40 
and older in the merged dataset, the integrated voice model 

Table 2   Clinical characteristics and voice features of a merged cross-language dataset with long Korean speech recording

SD standard deviation, IQR interquartile range

Training dataset Validation dataset

Controls,
n = 174

Early PD,
n = 238

P value Controls,
n = 125

Advanced PD,
n = 109

P value

Male sex, N (%) 43 (32.1) 96 (60.0)  < 0.01** 24 (27.9) 46 (63.0)  < 0.01**
Current age, years 56.3 ± 18.6 65.6 ± 10.2  < 0.01** 44.9 ± 17.9 71.3 ± 5.9  < 0.01**
H-Y stage (on) N.A 1.8 ± 0.7 N.A 3.3 ± 0.8
Pause percentage
mean ± SD (median ± IQR)

10.1 ± 6.6
(12.4 ± 8.1)

16.3 ± 8.4
(17.1 ± 11.0)

 < 0.01** 9.7 ± 5.8
(9.8 ± 8.6)

20.5 ± 12.7
(26.9 ± 18.4)

 < 0.01**

Volume variance
mean ± SD (median ± IQR)

 – 6.2 ± 11.5
(– 3.5 ± 14.0)

 – 3.1 ± 10.2
(0.05 ± 11.9)

 < 0.01**  – 6.4 ± 10.3
(– 2.7 ± 12.0)

 – 0.8 ± 9.6
(1.9 ± 13.2)

 < 0.01**

Pitch variance
mean ± SD (median ± IQR)

15.3 ± 5.2
(16.1 ± 5.6)

11.6 ± 4.2
(12.4 ± 4.9)

 < 0.01** 14.4 ± 4.0
(15.4 ± 5.6)

10.6 ± 4.2
(11.2 ± 4.0)

 < 0.01**

Average pitch
mean ± SD (median ± IQR)

172.4 ± 31.9
(162.0 ± 52.4)

165.0 ± 34.5
(161.5 ± 52.0)

 < 0.01** 179.9 ± 36.2
(167.5 ± 63.5)

158.3 ± 33.5
(151.0 ± 51.1)

 < 0.01**

Word error rate
mean ± SD (median ± IQR)

0.4 ± 0.2
(0.5 ± 0.3)

0.5 ± 0.2
(0.6 ± 0.3)

 < 0.01** 0.4 ± 0.2
(0.5 ± 0.3)

0.6 ± 0.3
(0.8 ± 0.3)

 < 0.01**

API confidence score
mean ± SD (median ± IQR)

0.8 ± 0.1
(0.9 ± 0.1)

0.8 ± 0.2
(0.8 ± 0.4)

 < 0.01** 0.9 ± 0.1
(0.9 ± 0.1)

0.7 ± 0.2
(0.7 ± 0.4)

 < 0.01**

Speech rate 0.2 ± 0.1 0.2 ± 0.1 0.06 0.2 ± 0.1 0.3 ± 0.2  < 0.01**
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achieved an AUROC of 0.83 (Supplementary Fig. 1C). 
Taken together, these observations demonstrate that a 
cross-language model using multifaceted speech features 
with a suitable and long length of speech recordings could 
assist the identification of PD patients from controls. The 
short speech dataset, including simple vowel sounds or 
repetitive wording, may not provide enough information 
to differentiate patients with PD from controls.

Discussion

In this study, we established a speech model that incor-
porates a variety of acoustic and linguistic features that 
can satisfactorily discriminate patients with PD from 
control participants across two different languages. The 
model demonstrated an optimal diagnostic performance 
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Fig. 2   Receiver operating characteristic curves calculated with three 
deep-learning classifier models using long-text speech data. A The 
models were constructed using a training speech dataset sourced from 
early-stage PD patients of mixed ethnicity during the "on" phase and 
healthy controls. B The established model, employing a random for-

est classifier, was subsequently evaluated for its capacity to distin-
guish between patients with advanced PD in the "on" phase and an 
independent control group from a combined language cohort and 
populations exclusively utilizing either Korean or Taiwanese lan-
guages
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for distinguishing between patients with early-stage PD 
and controls using speech data derived from a long length 
of speech recording, whereas the diagnostic performance 
of a model using short speech recordings or vowel sounds 
alone was not as effective. Furthermore, the model using 
the random forest classifier was validated with another 
independent mixed-language cohort that comprised 
patients with advanced-stage PD and another group of con-
trols. Of note, the performance of the established model is 
superior in the merged language cohort compared to either 
the Korean or Taiwanese language cohorts individually.

Our findings suggest that models trained on datasets 
enriched with multiple languages could provide satisfac-
tory diagnostic capabilities in differentiating patients with 
PD from controls. In contrast to most of the previous stud-
ies that mainly analyzed the performance of these models 
considering one language at a time and a unique speech 
task (e.g., reading task, diadokinetic task) or features 
encoding one type of information only (e.g., acoustic), our 
model used integrated features, including speech volume 
and speech pitch, and adopted the all-language amenable 
Speech-to-Text Google API derived speech rate, Speech-
to-Text Google API Confidence Score, and WER. These 
speech features, therefore, combined the integration of 
acoustic and linguistic approaches that could compensate 
for the variations of intonation, pronunciation, and syl-
lable length among different languages. The speech-to-
text features, such as WER, Confidence Score, and Speech 
Rate, are robust across languages and do not require major 
language-specific adjustments. This makes them more 
suitable for cross-lingual analysis compared to formant 
analysis, depends heavily on vowel structures, which vary 
significantly between languages (Barrientos and Cataldo 
2023), such as Taiwanese Mandarin and Korean in this 
study. These variations necessitate extensive language-
specific tuning, which would complicate cross-lingual 
comparisons. Furthermore, formant analysis is often 
biased by strong harmonics in the signal, shifting meas-
urements away from true vocal tract resonances. (Wha-
len et al. 2022). This issue becomes more pronounced in 
noisy or uncontrolled environments, which are inevitable 
in real-world data collection. Additionally, formant analy-
sis requires high-quality recordings and advanced meth-
ods to reduce errors, which are often not fully automated 
(Zaltz et al. 2020). These requirements limit its scalability 
and practicality for large datasets or remote applications. 
In contrast, STT features can be derived using existing 
technologies, such as the Google Speech-to-Text API, and 
are well-suited for large-scale and real-world applications, 
including remote monitoring. By focusing on STT fea-
tures, our study ensures broader applicability, particularly 
for a cross-language dataset, where formant analysis poses 
significant challenges.

One recent cross-lingual study integrating both acoustic 
and linguistic features of six speech datasets from a rela-
tively limited number of mixed European and American par-
ticipants obtained a variable diagnostic accuracy based on 
mono-lingual (85%), multi-lingual (88%), and cross-lingual 
experiments (79%) (Favaro et al. 2023). A cross-language 
experiment in three different languages, including Spanish, 
German and Czech, using four speech tasks comprising iso-
lated vowel words, rapid repetition of the syllables /pa/-/ta/-/
ka/, sentences, and reading texts, showed accuracies rang-
ing from 85 to 95%, with text reading showing the highest 
performance (Orozco-Arroyave et al. 2016). Another study 
using a running speech dataset from phone calls in a mixed 
population of PD patients speaking English, Greek, German, 
and Portuguese containing dozens of participants in each 
language subset demonstrated a diagnostic accuracy of 0.7 
AUROC in differentiating patients with PD from controls in 
the language-unaware analysis (Laganas et al. 2021). Most 
of the abovementioned published studies enrolled patients 
with PD as a whole without further subdividing them into 
early-stage or advanced-stage PD, which may cause a het-
erogeneous performance of the established speech model. 
The various factors influencing the ability to distinguish 
between patients with PD and controls may stem from 
several sources. These include the sample size utilized in 
the study, whether participants were on or off medication 
during the speech recording, and the specific speech tasks 
employed. Our cross-lingual enhancement model based on 
different speech features obtained higher AUROC scores 
for the merged datasets than those with single-language 
data. Further large-scale studies including more languages, 
especially western and other Asian languages, are needed to 
confirm our findings.

Our results also demonstrated that performance of long-
length speech tasks is better than that of short-length read-
ings or single vowel sound articulations. The comparison 
between Figs. 1B and 2B reveals intriguing insights into 
the impact of text length on the diagnostic performance of 
machine learning algorithms for PD. While Fig. 1B dem-
onstrated strong validation results with a Random Forest 
classifier on long-text datasets, achieving an AUROC of 0.90 
for the merged Korean long text and Taiwanese advanced-
state PD cohort, the outcomes with short-text data in Fig. 2B 
showed a notable reduction in diagnostic performance with 
an AUROC of 0.56. Specifically, the AUROC for the merged 
advanced-stage PD cohort in Fig. 2B, using short-text data, 
is 0.56, which is 34% lower than the AUROC obtained with 
long-text data shown in Fig. 1B. This substantial difference 
suggests that reading short texts may not provide sufficient 
linguistic features for the algorithms to accurately discrimi-
nate between patients with early-stage PD and control sub-
jects, especially when the disease's linguistic markers are 
subtle and less pronounced. In support of our findings, one 
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recent study comparing performance between long text read-
ing (more than 7 sentences) and single vowel sounds to iden-
tify patients with different types of dysphonia from healthy 
controls showed a marked diagnostic accuracy superiority 
of long text reading (78.12%) compared with single vowel 
sounds alone (50.92%) (Wang et al. 2022). This finding rein-
forces the hypothesis that longer texts capture richer linguis-
tic features that are crucial for the accurate identification of 
PD. Moreover, it indicates that while combining datasets 
in multiple languages can enhance model robustness, the 
length of the input text remains a critical factor for maintain-
ing high diagnostic accuracy.

By integrating both acoustic and linguistic speech fea-
tures, our study provides a comprehensive framework for 
analyzing PD-related speech changes. This approach over-
comes the limitations of sustained phonation by addressing 
a range of speech characteristics, including prosody, articu-
lation, and fluency. Such diversity enhances diagnostic sen-
sitivity and facilitates cross-lingual applicability. Looking 
ahead, leveraging smartphone technology and cloud-based 
analysis could enable remote monitoring of PD symptoms. 
Incorporating speech analysis with wearable devices could 
offer a multimodal diagnostic solution, while personalization 
and cross-cultural validation could improve model robust-
ness and clinical impact. Researchers and physicians could 
analyze these biometric features remotely to identify patients 
who may have PD, without the need for an in-person inter-
view. These directions highlight the potential for translating 
speech-based diagnostics into scalable, practical solutions 
for real-world healthcare settings, particularly benefiting 
patients in remote or underdeveloped areas without access 
to movement disorder specialists.

Our study, while pioneering in its approach to cross-lin-
gual and text-length variations in assisting PD identification, 
has the following limitations. One important constraint is 
the potential imbalance in the representation of languages 
within the datasets, which may have affected the model's 
learning process. Additionally, the study did not account for 
dialectal variations within the Korean and Taiwanese popu-
lations, which could have substantive implications for lin-
guistic biomarkers of PD. On the other hand, we accounted 
for differences between tonal and non-tonal languages by 
applying statistical normalization techniques to standard-
ize fundamental frequency (F0) features across Taiwanese 
Mandarin and Korean. However, the unique tonal patterns 
in Taiwanese Mandarin may introduce linguistic variations 
that are not present in Korean, highlighting a limitation that 
warrants further investigation in future studies. Furthermore, 
the female percentage was higher in the control group than 
in the PD group. Speech formation differs between sexes 
due to anatomical and physiological differences in the 
phonatory system. These differences contribute to distinct 
acoustic parameters, such as jitter (more altered in men) and 

fundamental frequency (higher in women due to greater 
number of vocal fold vibratory cycles) (Lovato et al. 2016). 
Although we performed subgroup analyses demonstrating 
that the integrated model performed well in both males and 
females, as well as in participants aged 40 and older, further 
studies are needed that include more participants, use differ-
ent languages, and ensure a balanced age and sex distribu-
tion in both groups to confirm our findings. In addition to 
acoustic features, we also incorporated linguistic character-
istics in our model, which minimized the effects of sex in our 
model’s diagnostic performance to identify patients with PD 
from controls. Another limitation of this study is the lack of 
information regarding the medication status of the Korean 
participants. All recordings were conducted during the "ON" 
phase to ensure that motor symptoms were controlled dur-
ing speech recording. However, there may be a potential 
impact of anti-parkinsonism medications on the speech fea-
tures of participants. Previous studies have suggested that 
the use of levodopa can improve vocal parameters such as 
fundamental frequency and jitter; however, speech inten-
sity remains reduced in both the "ON" and "OFF" states of 
therapy (Pinho et al. 2018). A future study including drug-
naïve PD patients, free from the effects of anti-parkinsonism 
medications, is needed to confirm our findings. Additionally, 
while this study focused on quantitative features, qualita-
tive aspects like timbre and speech clarity, which may vary 
between early- and late-stage PD, should be explored in 
future research to provide a more holistic understanding of 
PD-related changes.

In conclusion, our findings indicate that leveraging multi-
faceted speech features that encompass both acoustic and lin-
guistic characteristics aid in distinguishing patients with PD 
from healthy individuals, even across different languages.
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