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1 Abstract 

We propose a new approach to build a fuzzy infer- 
ence system of which the parameters can be updated 
to achieve a desired input-output mapping. The struc- 
ture of the proposed fuzzy inference system is called 
generalized neural networks, and its learning procedure 
(rules to update parameters) is basically composed of 
a gradient descent algorithm and Kalman filter algo- 
rithm. Specifically, we first introduce the concept of 
generalized neural networks (GNN’s) and develop a 
gradient-descent-based supervised learning procedure 
to update the GNN’s parameters. Secondly, we ob- 
serve that if the overall output of a GNN is a linear 
combination of some of its parameters, then these pa- 
rameters can be identified by one-time application of 
Kalman filter algorithm to minimize the squared er- 
ror. According to the simulation results, it is concluded 
that the proposed new fuzzy inference system can not 
only incorporate prior knowledge about the original 
system but also fine-tune the membership functions of 
the fuzzy rules as the training data set varies. 

Introduction 

It’s known that conventional approaches to system 
modeling, which are based on mathematical tool (e.g., 
differential equations), perform poorly in dealing with 
complex and uncertain systems such as economical 
or ecological ones. Contrarily by employing fu~zzy 
if-then rules, a fuzzy inference system can express 
the qualitative aspect of human reasoning without 
using any precise mathematical models of the sys- 
tem. This fuzzy modeling [Takagi and Sugeno, 1985, 
Sugeno and Kang, 19881 has found many practical ap- 
plications in control, AI and OR fields, such as esti- 
mation, classification, inference, and prediction. How- 
ever, some basic problems still plague this approach 
[Takagi and Hayashi, 19911: 
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1. No formal ways to transform experiences or knowl- 
edge of human experts to the rule base and database 
of a fuzzy inference system. 

2. The lack of adaptability or learning algorithms to 
tune the membership functions so as to minimize 
error measure. 

The aim of this paper is to alleviate the above limi- 
tations by using a special structure called GNN-based 
fi.4zzy inference system. The concept of GNN (gener- 
alized neural network) and its gradient-descent-based 
learning procedure are introduced in the next section. 
We further use Kalman filter algorithm to speed up 
convergence and reduce the possibility of being trapped 
in local minima. The simulation results to verify 
the proposed approach are demonstrated through 3- 
dimension diagrams. To sum up, some general com- 
ments and discussions are given in the last section. 

Generalized Neural Networks 
A generalized neural network (GNN) (Figure 1) is a 
multi-layer feed-forward network in which each node 
performs a particular function (node fin&on) on in- 
coming signals as well as a set of parameters pertaining 
to this node. If the set of parameters is empty, then 
we use a circle to denote this node, otherwise a square. 
The exact forms of node functions may vary from node 
to node, and the choice of node functions depends on 
the overall function that a GNN is designed to carry 
out. (Note that the links in a GNN only serve the 
transmission of signals between nodes; no weight is as- 
sociated with each link.) 
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Figure 1: A generalized neural network (GNN). 

The parameter set of a GNN is the union of the pa- 
rameter set of each node. In order to minimize the 
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output error measure of a GNN, these parameters are where S is the set 
updated according to given training data and a learn- (Y. The derivative 
ing algorithm described later. then calculated as: 

Cybenko [Cybenko, 19891 showed that a continuous 
neural network (NN) with two hidden layers and any 
fixed continuous sigmoidal nonlinear can approximate 
any continuous function arbitrarily well on a compact 
set. Therefore a GNN node can always be replaced by 
an ordinary NN with the same input-output character- 
istics. In this context, GNN can be looked upon as a 
super set of NN. 

Accordingly, the update amount for the generic param- 
eter Q is 

Suppose a given GNN has L layers and the k-th layer 
has #(k) nodes. We can denote the node in the i- 
th position of the k-th layer by (k,i), and its node 
function (or node output) by Of. Since a node output 
depends on its incoming signals and its parameter set, 
we have 

where q is a learning rate and it can be further ex- 
pressed as 

where k is the step size of the gradient descent. 
Of = Of(Ofwl,.. .O$i~-l),a, b,c ,...) (1) 

where a, b, c, etc. are parameters pertaining to this 
node. 

Assuming the given training data set has P entries, 
then we ca3n. define the error measure (or energy func- 
tion ) on p-th (1 5 p 5 P) entry of training data as 
the square of error: 

ML) 
Ep = c (Tna,p - Oh,” (2) 

rn=l 

where Tm,P is the m-th component of p-th target out- 
put vector, and Ok is the m-th component of actual 
output vector produced by the presentation of the pth 
input vector. (For brevity, we omit the subscript p in 
Ok.) Hence the overall error measure is E = c,‘=, EP. 
Now we want to develop a learning procedure that 
implements gradient descent in E over the parameter 
space. 

For the output-layer node at (L, i), we can calculate 
3 readily from Equation 2: t 

aJ% - = -2(Td,P - Of) 
tl0; 

For the internal node at (k, i), we can use chain rule 
to write aEp zq as 

84 #(k+l) 
jjq= c aE, dO”+l 

??a=1 tQn 
h+l* (4 

where 1 < k 5 L - 1. Therefore for all 1 5 k 5 L and 
1 5 i < #(k), we can find a by Equation 3 and 4. 
Now if cy is a parameter of the’given GNN, we have 

aEP -= c aE, do* 
da *‘Es dO*dcu (5) 

of nodes whose outputs depend on 
of overall error measure E to CJ is 

(f-9 

(8) 

nference System 
An example of fuzzy if-then rules used in a fuzzy in- 
ference system is 

If pressure is high and temperature 
then volume is small. 

is low, 

where pressure and temperature are input vari- 
ables, volume is an output variable, high, low and 
small are linguistic terms [Zadeh, 1988,Zadeh, 19891 
characterized by appropriate membership functions 
[Zadeh, 19651. Each fuzzy rule represents a local de- 
scription of the system’s behavior. 

Several types of reasoning methods [Lee, 199Oa, 
Lee, 1990b] used in fuzzy models have been proposed 
during the past years. Here we adopt the one pro- 
posed by Sugeno [Takagi and Sugeno, 19831, see Fig- 
ure 2. Note that the firing strength (zul and w2 in 
Figure 2), or weight, of each fuzzy rule is calculated as 
the product of the membership values in the premise 
part, and the final output is obtained 
average of each rule’s consequence. 

as the weighted 

pmh part consequ8nct? part 

Figure 2: The reasoning mechanism adopted 

For illustration, we assume the system to be mod- 
eled has (1) two input variables x and y, each of which 
has three membership functions associated with it, (2) 
and one output variable z. Ideally, these three mem- 
bership functions correspond to three commonly used 
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linguistic terms, i.e., “small”, “medium” and “large”, 
to describe the input variables. The basic configuration 
of the GNN-based fuzzy inference system is shown in 
Figure 3, where nodes in the same layer have the same 
type of node functions explained below. 

(llnk8 kom X mtd, Y ue not rhomn) 

‘Z 

Figure 3: A GNN-based fuzzy inference system. 

Layer 1 Every node in this layer is a square node with 
node function: 

o1 = /Q(x) = 
1 

1 + [( y)2]” 
where x is one of the input variables, {a, b, c} is the 
parameter set, and A is the linguistic term. As the 
values of a, b and c change, this bell-shaped node 
function varies accordingly, thus exhibiting various 
concepts of corresponding linguistic term. Parame- 
ters in this layer are usually called premise parame- 
ters. 

Layer 2 Every node in this layer is a circle node la- 
beled II which multiplies the incoming signals and 
sends the product out. Each node output corre- 
sponds to the firing strength of a rule. 

Layer 3 Every node in this layer is a circle node la- 
beled N. The i-th node calculates the ratio of the 
i-th rule’s firing strength to the sum of all rules’ fir- 
ing strengths. 

Layer 4 Every node in this layer is a square node with 
node function: 

04=w,*(d*x+e*y+f) (10) 
where wrs are is from layer 3, and {d, e, f } is the 
parameter set. Parameters in this layer are usually 
called consequence parameters. 

Layer 5 It’s a circle node labeled C that sums all in- 
coming signals. 
Thus we have constructed a fuzzy inference system 

by a GNN with 5 layers, 34 nodes, and 45 parameters 
( 18 in layer 1, 27 in layer 4). Then the proposed learn- 
ing procedure can be applied to tune the parameters 
according to given training data. One way to speed up 
the tuning process is to employ Kalman filter algorithm 
which is to be discussed in the next section. 

Kalman Filter Algorithm 
From Figure 3, it is observed that given the values of 
the premise parameters and P entries of training data, 
we can form P linear equations in terms of the conse- 
quence parameters. For simplicity, assume there are m 
consequence parameters and the resulting linear equa- 
tions can be expressed in the following matrix form: 

AX=B (11) 

where the elements of X are consequence parameters. 
Several approaches have been developed to solve this 
kind of over-constrained simultaneous linear equations, 
and one of the most concise is 

X* = (ATA)-lATB (12) 

where AT is the transpose of A, and (ATA)-lAT is 
called the pseudo-inverse of A if ATA is non-singular. 

In many cases, the row vectors of matrix A (and cor- 
responding elements in B) are obtained sequentially, 
hence it may be desirable to compute the least-square 
estimate of X in Equation 11 recursively. Let the 
ith row vector of matrix A defined in Equation 11 
be ai and the ith element of B be ba, then X can 
be calculated recursively using the following formulas 
[Ikeda et al., 1976,Astrom and Wittenmark, 19841: 

X* a+1 = XS + Si+laf’&i+l - ai+m) 

I§* a+1 = si - 
SiUr++lUi+lSi 
l+ai+iSia~+;,' 

i = O,l,*.*,P- 1 
X = xp 

with initial conditions 

x0 = 0 and SO= rI. 

where y is a positive big number, I is the identity ma- 
trix of dimension m x m. 

The least-square estimate of X can be interpreted 
as a Kalman filter [Kalman, 19601 for the process 

X(/c + 1) = X(/C) (15) 
Y(k) = A(k)X(b) + noise (16) 

where X( Ic) = Xk, Y( Jc) = bk and A(L) = al,. There- 
fore the formulas in Equation 13 are usually referred 
to as Kalman jilter algorithm. 

Simulation Results 
In the first example, the training data are obtained 
from a fuzzy inference system with 2 inputs and 1 
output, where 3 membership functions are assigned to 
each input variable. We use 121 training data which 
are sampled uniformly from [-lo, lo] x [-lo, lo] of the 
input space of the original system. 

The GNN used here is exactly the same as Fig- 
ure 3. The initial values of the premise param- 
eters are set in such a way that the membership 
functions along X and Y axis satisfy c completeness 
[Lee, 199Oa,Lee, 1990b] (e = 0.5 in our case), normality 
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Figure 4: Example 1, (a) target surface and identified 
surfaces in different stages, (b) average percentage er- 
ror, (c) initial and final membership functions (MF’s). 
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Figure 5: Example 2, (a) target surface and identified 
surfaces in different stages, (b) average percentage er- 
ror, (c) initial and final membership functions (MF’s). 

JANG 765 



epochs 

(4 

initial MF’s final MF’s of x 

final MF’s of Y final MF’s of z 

(b) 

Figure 6: Example 3, (a) average percentage error, (b) 
initial and final membership functions (MF’s). 

and convexity [Kaufmann and Gupta, 19851. Though 
these initial membership functions are set heuristically 
and subjectively, they do provide an easy interpreta- 
tion parallel to human thinking. The initial and fi- 
nal membership functions are shown in Figure 4(c). 
The consequence parameters can always be found by 
Kalman filter algorithm as long as the premise param- 
eters are fixed. Therefore, the initial values of conse- 
quence parameters are irrelevant here. The 3-D dia- 
gram of the training data is shown as the target sur- 
face in Figure 4(a). Other identified surfaces at differ- 
ent epoch numbers are also shown in that figure. (Note 
that the “initial surface” is obtained after the first time 
the consequence parameters have been identified, so it 
looks similar to the target surface already.) In order 
to evaluate the performance of the GNN-based fuzzy 
inference system, we define average percentage error 
(APE) as 

APE = x:1 1 T(i) - 0(i) 1 * 100% 
CL I T(i) I 

(17) 

where P is the number of training data (P = 121 in 
this example); T( ‘) z and O(i) are i-th desired output 
and calculated output, respectively. Though the final 
values of parameters are not the same as those used 
in the original fuzzy inference system, the final surface 
after 200 epochs is close to the target surface with APE 
equal to 1.5674%. 

In the second example, all the settings are the same 
as those in the previous example except that the train- 
ing data are obtained from a nonlinear function (see 
the target function in Figure 5(a)) 

z = (3e6 (x + 4)n -1)*15*tanh( ;)+(4+e%)*8*sin 1. 

(18) 
The simulation results are shown in Figure 5. After 
200 epochs, we end up with an APE equal to 0.4641%, 
which is quite good considering the complexity of the 
target function. 

In the third example, the training data are obtained 
from 

output = (1 + xos5 + y-r + r--l.5)2 (19) 
This example has been 
[Takagi and Hayashi, 19911, 

used by Takagi 
Sugeno 

[Sugeno and Kang, 19881 and Kondo [Kondo, 19861 to 
verify their approaches. The GNN used here has 18 
premise parameters in layer 1 and 24 consequence pa- 
rameters in layer 4. We use 216 training data which 
are sampled uniformly from [l, 61 x [l,S] x [l, 61. In or- 
der to compare the simulation results with previously 
reported research, we use a different APE: 

APE _ 2 1 T(i) - ‘@) 1 * lo-,% - 
I w I (20) 

kl 

(We cannot use this definition in the previous ex- 
amples since the denominator could be zero.) The 
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simulation results are shown in Figure 6. (The tar- 
get and identified surfaces are hyper-surfaces in 4-D 
space, so we cannot display them as before.) After 
200 epochs, the APE is driven to 0.01357 %, which is 
much better than those (0.59 % and 4.7 %) reported 
by [Sugeno and Kang, 19881 and [Kondo, 19861. 

Comments and 
In this paper, we have successfully solved the second 
problem mentioned in Section 1. The first problem, 
however, is considered partially solved since in our ap- 
proach the number of membership functions is pre- 
specified, as well as the number of rules. A promis- 
ing future work is to use clustering method to roughly 
find the number of membership functions needed, then 
apply our approach to find their optimal shapes. 

Since the proposed learning algorithm is a gradi- 
ent descent procedure, sometimes it could get stuck 
around local minima. However, the final average per- 
centage error is still acceptable even though the global 
minimum has not been found, as shown in the second 
example in Section 5. Furthermore in a GNN-based 
fuzzy inference system, if prior knowledge of the origi- 
nal system is available, we can incorporate it into the 
initial values of the parameters. This provides an ini- 
tial point close to the optimal one in the (premise) pa- 
rameter space, thus decreasing the possibility of being 
trapped in local minima during the learning process. 
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