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Abstract 

Diagnosing speech sound disorders (SSD) in children requires 

professional assessment by speech-language pathologists. 

Detecting and diagnosing a medical condition takes time and is 

usually expensive in terms of labor. However, early 

identification and treatment are essential for subsequent care. 

ASR-based child speech assessment prioritizes semantic 

understanding over phonetic accuracy, making it unsuitable for 

pronunciation assessment. This study uses phonemic 

transcription available in a normative dataset and utilizes pre-

trained speech models to develop an automatic phoneme 

recognition model with a Phoneme Error Rate (PER) as low as 

3.76%. Clinically relevant indices calculated from the model 

prediction are highly correlated with those from the original 

normative data. We regard these experimental results as solid 

evidence that validates the feasibility of our evaluation 

workflow for practical application in early screening for 

phonological development delays. 

Index Terms: phoneme recognition, child speech assessment, 

norm-referenced indices 

1. Introduction 

1.1. Assessment of phonological development delay 

Speech sound disorders (SSD) encompass a range of difficulties 

involving speech perception, motor production, or phonological 

representation of speech sounds and phonotactics1. SSD are one 

of the most common disorders among preschool and school-age 

children. The prevalence of SSD in young children is 8 to 9 %2 

with a rising trend [1]. For children with SSD, not only their 

language, psychological and social development are affected, it 

is likely that they experience feelings of isolation, depression 

and low self-esteem [2]. Speech-language-therapists conduct 

professional evaluation to determine whether a child has a delay 

in phonological development by referring to normative data of 

developing children. Early and intensive intervention is crucial 

for success and efficiency for treating children with SSD 

[3]. However, speech therapy demands medical resources and 

the process from caregivers’ awareness of speech problems 

until clinical diagnosis usually takes time [4]. 

Percentage of Consonants Correct (PCC) and Percent 

Vowels Correct (PVC) [5, 6] are well-accepted indicators for 

evaluating SSD in children and are also widely used in clinical 

settings. The testing personnel manually transcribe recorded 

speech at the level of phonemes. Then the proportion of 

correctly pronounced consonants and vowels are calculated [7]. 

 
1 American Speech-Language-Hearing Association (ASHA),  

https://www.asha.org/practice-portal/clinical-topics/articulation-and-phonology/ 

In this respect, automatic speech assessment models can serve 

as core techniques that facilitate rapid screening of speech 

problems. Automatic tools of these kinds are easy for parents 

and caregivers to use. Once severe delay is detected, clinical 

treatment can be sought as soon as possible. Moreover, the 

quantitative evaluation results generated by the automatic 

models can be used as an objective supplementary reference [4]. 

So far, non-automated computer-assisted speech analysis tools 

have enhanced speech therapists’ efficiency. [8]. What we aim 

to achieve in this study is to develop an automated diagnostic 

assessment process that outputs near-expert phonemic 

transcription, reducing the workload of speech therapists. By so 

doing, they can dedicate themselves more to treatment than to 

diagnosis. 

1.2. Automatic child speech assessment 

Automatic child speech assessment has clear benefits, but it is 

also challenging. First of all, child speech data are difficult to 

acquire because they are restricted resource due to privacy 

protections. Reports are often based on small data with 

insufficient annotation granularity [4]. Conventional Automatic 

Speech Recognition (ASR) architectures often incorporate a 

language model that fundamentally prioritizes semantic 

understanding to optimize output results. Grapheme-to-

phoneme conversion is then conducted to obtain phoneme 

sequences [9]. This method has an important caveat for our 

purposes. As it is not a direct speech-to-phoneme model, 

confusion caused by near-matches of words affects the 

precision of phoneme sequences pronounced by children. For 

speech evaluation, precise pronunciation variants, instead of 

optimized word sequences that reflect the expressed speech 

content are required. The applicability of evaluation results 

using such an ASR architecture would be limited [10]. For 

example, mispronunciation caused by distortion or substitution 

may not be recognized, as the language model is likely to 

perform auto-correction and output text that does not align with 

the acoustic features of the pronounced speech content. 

1.3. Our contribution 

In response to the challenges posed by the scarcity of children's 

speech datasets, a normative dataset of Mandarin-speaking 

preschool children is constructed [11]. A wordlist of 70 

multisyllabic words with a balanced design of consonants, 

vowels, and tones, was read by 798 normally hearing, 

developing children aged 3 to 6 years old. The primary 

objective of this dataset construction was to create a scientific 

foundation that supports norm-referenced tests (NRT) for child 

speech evaluation. It was also designed to offer well-annotated 

2 National Institute on Deafness and Other Communication Disorders (NIDCD),  

https://www.nidcd.nih.gov/health/statistics/quick-statistics-voice-speech-language 
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speech materials for sophisticated speech analysis for 

phonological development research.  

Using the phonemic annotation of this normative dataset, 

we utilize the pre-trained speech model Whisper released by 

OpenAI [12] to build a customized Phoneme Recognition 

Model, for which we will show that the model performance is 

more than satisfactory. We have achieved a Phoneme Error 

Rate (PER) of 3.76%. We will also show that quantitative 

indices computed from our model output are highly correlated 

with the trends of the normative dataset. This model is likely to 

serve as a core technique that can be further developed into an 

automatic child speech assessment tool. This will enable early 

screening of delays in phonological development. A similar 

model structure using normative data of children can be used 

for L2 learning and for languages other than Mandarin. To the 

best of our knowledge, this is the first approach to training a 

PRM model on phonemic transcription of normative data and 

using the model to generate objective indicators for 

phonological development assessment. 

2. Methodology  

2.1. The normative dataset 

798 Mandarin-speaking preschool children were recorded in a 

picture-naming task with the Sinica Child Balanced Wordlist 

[11]. Figure 1 shows the number of subjects by age and gender. 

 

 

Figure 1: Number of subjects. 

None of the children had known, diagnosed diseases related 

to language, hearing and cognitive development. The word list 

consists of 62 disyllabic and 8 trisyllabic words. A total of 

55,860 words, equivalent to 118,104 syllables, were recorded. 

All onsets and rhymes eligible for composing Chinese syllables 

occur in both the first and second syllable positions. To 

facilitate easy reading and repetition for children, the word list 

was specifically designed to encompass semantic fields familiar 

to young children. The speech data were digitized at a sampling 

rate of 16 kHz. Signal-aligned boundary information for 

syllables was obtained using the ILAS phone aligner and 

manually post-edited in PRAAT [13]. 

For obtaining phonemic transcription, a two-stage 

annotation procedure was adopted. Accuracy and acceptability 

at the levels of “words”, “syllables”, and “tones” were first 

labelled by two annotators with high agreement rates as 

reported in [14]. “Correct syllables”, defined as those whose 

labels in word, syllable, and tone are all correct, were 

automatically converted to standard phoneme sequences, 

without entering into the second stage of the transcription 

process. The remaining 18,695 syllables (15.8% of the overall 

dataset) have at least one label among word, syllable, and tone 

annotated as “incorrect”. These syllables were phonetically 

transcribed using the International Phonetic Alphabet (IPA) by 

an experienced phonetician using PRAAT.  

2.2. Phoneme recognition model 

Mandarin Chinese syllables have at most four segments. The 

onset inventory consists of six plosives /p ph t th k kh/, six 

fricatives /f s ʂ ɕ x ʐ/, six affricates /ts tsh tʂ tʂh tɕ, tɕh/, two nasals 

/m n/ and one lateral /l/, or it can be vacant. Only /n/ or /ŋ/ is 

allowed in the coda position. There are two glides /j w/ and 15 

vowels including mono- and diphthongs /i ɨ ɯ u y a o  e  ai 

ei au ou ye/. Phoneme Recognition Model (PRM) serves as the 

core component of automatic speech assessment. Instead of 

manual phonemic transcription, a PRM outputs phoneme 

sequences pronounced by children. In recent years, significant 

breakthroughs have been achieved in speech applications with 

the development and release of pre-trained large-scale speech 

models. In this study, we adopted Whisper for our task. Whisper 

utilizes a transformer-based sequence-to-sequence model, 

which includes an encoder-decoder architecture and follows an 

end-to-end training approach. The input speech is segmented 

into 30-second fragments, transformed into log-Mel 

spectrograms, exhibiting superior noise resistance 

characteristics. These segments are then processed through an 

encoder, representing a deep understanding process of the 

speech features. The decoder is trained to predict text content 

corresponding to the speech, serving as a language model 

capable of directly outputting text in different languages for 

various recognition tasks. Whisper is trained on a vast and 

diverse set of speech data, including 680,000 hours of speech, 

comprising 117,000 hours across 96 different languages, along 

with 125,000 hours of transcribed and translated data [12].  

Whisper has demonstrated excellent performance in recent 

speech applications, e.g., the classification of dysarthria, 

aphasia and child speech recognition tasks [15-17]. While 

Whisper's decoder demonstrates powerful performance, it lacks 

the ability to recognize and output information at the phoneme 

level. Moreover, its output is subject to automatic correction 

based on contextual information. Therefore, we utilize only 

Whisper's encoder and train a dedicated output layer to discern 

phoneme categories. Following the approach of wav2vec2 [18], 

we append a linear classification layer to the encoder and train 

it using Connectionist Temporal Classification (CTC) [19]. 

CTC is an efficient framework for speech recognition tasks, 

primarily employed to align variable-length input sequences 

with variable-length output sequences without explicit 

alignment information. It achieves this by utilizing a softmax 

output layer, which generates probability distributions over a 

set of target labels or characters, enabling the model to predict 

variable-length sequences effectively. CTC offers end-to-end 

training capabilities, robustness to temporal variability, and 

effective handling of noisy data. By leveraging recurrent neural 

networks and softmax output layers, CTC captures temporal 

dependencies and generates probability distributions over target 

labels, making it well-suited for real-world speech recognition 

applications. 

We opt for this approach because the set of phonemes is 

finite. The output set of PRMs is relatively small and limited 

compared to text. However, in the fine-tuning process, unlike 

wav2vec2, we will not freeze the encoder of Whisper. Instead, 

we will train it together with the output layer. 
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Figure 2: Norm-referenced Child Speech Assessment Flowchart. 

2.3. Norm-referenced child speech assessment 

We propose a workflow for constructing an automatic child 

speech assessment system utilizing the normative dataset as the 

norm and our Whisper-adapted PRM as the core technique, as 

shown in Figure 2. The PRM outputs predicted phoneme 

sequences for computing clinically crucial indicators that 

reflect the trends of phonological development of children. We 

consider consonants and vowels as well as syllables and words. 

Multi-level indices are proposed for two reasons. First, spoken 

language performance related to phonetic representation should 

be evaluated at various linguistic levels, e.g., segmental features, 

prosodic features and overall intelligibility [5, 6, 20]. In [20], 

prediction results of lexical tones in Mandarin-speaking 

children seem to be correlated with segment and syllable 

accuracy. Second, higher level information may suffice for 

early screening for severe phonological development delays.  

Percentages of correct consonants and vowels are computed 

directly from the phoneme sequence output. “Correct syllables” 

must have all their syllable components correctly pronounced. 

Likewise, “correct words” must contain only the correct 

syllables. Applying the computation proposed in [6] as shown 

in (1), we propose to use PCC, PVC, PSC (Percentage of 

Syllables Correct) and PWC (Percentage of Words Correct) as 

assessment indices. 

𝑃𝑒𝑟𝑐𝑒𝑡𝑎𝑔𝑒 𝑜𝑓 𝑥 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑥

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑥
× 100  

𝑥 =  {𝐶𝑜𝑛𝑠𝑜𝑛𝑎𝑡𝑛, 𝑉𝑜𝑤𝑒𝑙, 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒, 𝑊𝑜𝑟𝑑} 

(1) 

In this paper, we focus on the construction of the Whisper-

adapted PRM and its performance by evaluating whether the 

output trends in terms of PCC, PVC, PSC, and PWC are 

correlated with the developmental data of our normative dataset. 

If the results are highly correlated, it is strong evidence 

supporting the proposed workflow’s applicability for clinical 

applications. More sophisticated and comprehensive evaluation 

reports can then be developed to help diagnose SSD. For 

children with obvious delays, error types and analyses can be 

explicitly summarized using phoneme prediction. This 

procedure and tool are expected to relieve the burden of manual 

 
1 https://huggingface.co/openai/whisper-base 

transcription for speech therapists significantly. In addition, an 

effective early screening tool will facilitate accurate and rapid 

evaluation of speech development delays. 

3. Experiments and Results 

For constructing the Whisper-adapted PRM, we added special 

symbols, including syllable delimiter, unknown token, and end-

of-speech token during the training phase. Please note that in 

our phoneme transcription convention, speech sounds that do 

not occur in Mandarin’s phoneme inventory are labeled 

“unknown token”. We utilized the Whisper module provided by 

HuggingFace1 for fine-tuning, ranging from the smallest size of 

model “tiny” to the largest scale of model “large”. The model 

architecture employed Whisper's encoder followed by a fully 

connected layer for phoneme classification using linear 

classification. CTC loss was computed for training. Training 

was carried out on National Center for High-performance 

Computing (NCHC)2  wtih Nvidia V100 GPUs. Each model 

size was trained for 20 epochs.  

The default values for all parameters were used. Except for 

retaining the best-performing model for 20 epochs, no other 

hyperparameters were searched. Additionally, due to the small 

number of subjects in each age-gender subgroup, only the 

training and testing sets were split. We evenly selected 20% of 

speakers from each age-gender subgroup in the normative 

dataset as the testing set, while the remaining 80% were used 

for training. Since the speech data were recorded word by word, 

each training audio sample was processed in the units of 

“words”. 

Table 1 illustrates the relationship between the size of 

various models and their performance after fine-tuning, 

including PER on all words in the test set and the correlation 

between the model output and the norm data, i.e., the test set, in 

terms of Pearson correlation coefficient. The model 

performance increases as the model size grows. The best PER 

we achieved is 3.76%. There are currently no benchmarks for 

Mandarin-speaking children. But our PRM has improved 

significantly, compared to previous PRMs [21]. Besides, high 

correlation coefficients are found in all four indices, PCC, PVC, 

PSC, and PWC. Our PRM seems to perform well in the sense 

2 https://www.nchc.org.tw/ 

Consonant/vowel accuracy 

Syllable accuracy 

Word accuracy 

1. Recognizing phonemes 2. Computing assessment indices 3. Norm-referenced tests 

Wisper encoder 

Linear classifier 

Phoneme transcription 

Speech 

Finetune  
with  

CTC 

m.u tɕ.i l.ao i.ŋ ...... 

Phoneme 
transcription 

Standard 
pronunciation 

PCC PVC PSC PWC 

Assessment indices 

Subject’s personal data & 
assessment indices 

Age 

PSC 

Delay in phonological development? 

Assessment results 

Norm 
data 

Age 

Age 

Age 

PWC 

PVC PCC 

2442



that the indices calculated by the model prediction and by the 

norm data are highly correlated. Among them, PCC, PSC, and 

PWC seem more stable than PVC.   

Table 1: Performance of model. 

Size 
Para-

meters 

PER 

(%) 

Pearson Correlation Coefficient 

PWC PSC PCC PVC 

tiny 8 M 7.46 0.918 0.928 0.941 0.842 

base 21 M 6.04 0.947 0.949 0.951 0.857 

small 88 M 4.63 0.967 0.965 0.972 0.880 

medium 307 M 4.29 0.968 0.966 0.972 0.877 

large 637 M 3.76 0.970 0.967 0.975 0.892 

 

Figure 3 illustrates the relationship between the normative 

dataset (Norm, in blue) and the model prediction (Model, in 

orange) in terms of subject-based distributions of the four 

linguistic components. They clearly show the correlation and 

difference between manual and automatic approaches from the 

perspective of individual subjects. Except for the obvious 

discrepancies in the three-year-old subgroup, for which the data 

size is really small, the remaining subgroups exhibit a high level 

of consistency. 

Furthermore, we averaged the model-assessed indices 

obtained from each subgroup and presented them in comparison 

with the norm data in Figure 4. The trends are mostly consistent. 

3-year-olds have greater deviations than other subgroups. 

Nevertheless, the applicability of our proposed model-

generated assessment indices is supported. Improvements can 

surely be achieved with more training data from 3-year-olds and 

other age groups. 

4. Conclusion 

We present in this study an automatic norm-referenced 

assessment workflow using a Whisper-adapted PRM trained on 

a normative dataset with phonemic transcription. We fine-tuned 

Whisper’s encoder with a CTC algorithm to train a linear 

classifier for phonemes. Clinically relevant, multi-level 

assessment indices were generated from the model prediction 

and the norm data. They are highly correlated, supporting the 

applicability of our PRM and workflow as objective assessment 

for screening for phonological development delays. In addition 

to the low performance in the 3-year-old subgroup due to data 

scarcity, we also found that vowels may not serve as a suitable 

indicator for child speech assessment, speculatively due to 

indistinctive spectral features of vocalic qualities. For future 

work, more sophisticated workflows will be designed for 

developing comprehensive evaluation reports. Currently, we 

are testing the validity of our PRM on hearing-impaired 

children’s data.  

 

 

Figure 3: Boxplots of subject-based assessment indices using Norm data and Model prediction. 

 

 

Figure 4: Developmental patterns by Norm data and Model prediction. 

 

2443



5. References 

[1] S. K. Ravi, P. Sumanth, T. Saraswathi, M. A. B. Chinoor, N. 

Ashwini, and E. Ahemed, "Prevalence of communication 

disorders among school children in Ballari, South India: a cross-
sectional study," Clinical Epidemiology and Global Health, vol. 

12, p. 100851, 2021. 

[2] S. N. d. Simoni, I. C. Leidow, D. L. Britz, D. A. d. O. Moraes, and 
M. Keske-Soares, "Impact of the speech sound disorders: family 

and child perception," Revista CEFAC, 2019. 

[3] H. McFaul, L. Mulgrew, J. Smyth, and J. Titterington, "Applying 
evidence to practice by increasing intensity of intervention for 

children with severe speech sound disorder: a quality 

improvement project," BMJ Open Quality, vol. 11, no. 2, p. 
e001761, 2022. 

[4] G. P. Usha and J. S. R. Alex, "Speech assessment tool methods 

for speech impaired children: a systematic literature review on the 
state-of-the-art in Speech impairment analysis," Multimedia Tools 

and Applications, pp. 1 - 38, 2023. 

[5] L. Shriberg, D. Austin, B. A. Lewis, J. L. Mcsweeny, and D. L. 
Wilson, "The percentage of consonants correct (PCC) metric: 

extensions and reliability data," Journal of speech, language, and 

hearing research : JSLHR, vol. 40 4, pp. 708-22, 1997. 
[6] L. Shriberg and J. Kwiatkowski, "Phonological disorders II: a 

conceptual framework for management," The Journal of speech 

and hearing disorders, vol. 47 3, pp. 242-56, 1982. 
[7] R. E. Owens Jr, Early language intervention for infants, toddlers, 

and preschoolers. Pearson, 2017. 

[8] N. B. John Bernthal, Peter Flipsen, Articulation and Phonological 
Disorders: Speech Sound Disorders in Children, 8 ed. Pearson, 

2016. 

[9] D. Towey et al., "CHOCSLAT: Chinese Healthcare-Oriented 
Computerised Speech & Language Assessment Tools," 2020 

IEEE 44th Annual Computers, Software, and Applications 

Conference (COMPSAC), pp. 1460-1465, 2020. 
[10] E. Cámara-Arenas, "Automatic pronunciation assessment vs. 

automatic speech recognition: A study of conflicting conditions 

for L2-English," 2023.  
[11] S.-C. Tseng, "ILAS Chinese Spoken Language Resources," in 

LPSS, Taipei 2019, pp. 13-20.  

[12] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and 
I. Sutskever, "Robust speech recognition via large-scale weak 

supervision," in International Conference on Machine Learning, 

2023: PMLR, pp. 28492-28518.  
[13] P. Boersma, "Praat, a system for doing phonetics by computer," 

Glot. Int., vol. 5, no. 9, pp. 341-345, 2001. 

[14] S.-C. Tseng, "Corpus-based research on speech acquisition and 
automatic assessment of Taiwan Mandarin-speaking children 

aged 3 to 6," in Linguistic Diversity, but Unity in Research: 

Celebrating the Twentieth Anniversary of the Institute of 
Linguistics, Academia Sinica, S.-C. T. a. E. Zeitoun Ed. Taipei: 

Institute of Linguistics, Academia Sinica, 2024, pp. 475-502. 
[15] S. Rathod, M. Charola, A. Vora, Y. Jogi, and H. A. Patil, 

"Whisper Features for Dysarthric Severity-Level Classification," 

in Proc. INTERSPEECH, 2023, pp. 1523-1527.  

[16] L. Wagner, M. Zusag, and T. Bloder, "Careful Whisper - 

leveraging advances in automatic speech recognition for robust 

and interpretable aphasia subtype classification," in Proc. 
INTERSPEECH, 2023, pp. 3013-3017.  

[17] R. Jain, A. Barcovschi, M. Yiwere, P. Corcoran, and H. Cucu, 

"Adaptation of Whisper models to child speech recognition," in 
Proc. INTERSPEECH, 2023, pp. 5242-5246.  

[18] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, "wav2vec 2.0: 

A framework for self-supervised learning of speech 
representations," Advances in neural information processing 

systems, vol. 33, pp. 12449-12460, 2020. 

[19] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, 
"Connectionist temporal classification: labelling unsegmented 

sequence data with recurrent neural networks," in Proceedings of 

the 23rd international conference on Machine learning, 2006, pp. 
369-376.  

[20] S.-C. Tseng, Y.-F. Liu, and X.-L. Lu, "Model-assisted Lexical 

Tone Evaluation of three-year-old Chinese-speaking Children by 

also Considering Segment Production," in Proc. INTERSPEECH 
2023, 2023, pp. 3909-3913.  

[21] M. Malakar and R. B. Keskar, "Progress of machine learning 

based automatic phoneme recognition and its prospect," Speech 
Communication, vol. 135, pp. 37-53, 2021/12/01/ 2021. 

 

 
 

2444


