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ABSTRACT

Speech emotion recognition (SER) is an essential technology for
human-computer interaction systems. However, the previous study
reveals that 80.77% of SER papers yield results that cannot be re-
produced on the well-known IEMOCAP dataset. The main reason
for reproducibility challenges is that the database did not provide
standard data splits (e.g., train, development, and test sets). Prior pa-
pers could define its partition, but they did not provide details of the
partition or source code for processing the partition. Therefore, this
work aims to make SER open and reproducible to everyone. We de-
velop the EMO-SUPERB, shorted for EMOtion Speech Universal
PERformance Benchmark, including a user-friendly codebase to
leverage 16 state-of-the-art (SOTA) speech self-supervised learn-
ing models for exhaustive evaluation plus one SOTA SER model
across 6 open-source SER datasets in English and Chinese. We
make all resources open-source to facilitate future developments
in SER. Researchers can easily upload their systems or datasets to
EMO-SUPERB, and we name the project “Open-Emotion”.

Index Terms— Speech emotion recognition, Repro-
ducibility, Multi-label classification, Ambiguity of emotion,
Subjectivity of emotion perception

1. INTRODUCTION

Speech Emotion Recognition (SER) aims to discern emotional cues
from speech inputs, representing a pivotal technology for human-
computer interaction systems. In recent years, significant advance-
ments have been witnessed in SER. However, there are two unsolved
problems in the SER domain:
Issue 1: The author of IEMOCAP [1], the most renowned SER
dataset, has demonstrated that over 80.77% of SER, papers produce
results that cannot be reproduced [2] due to the absence of released
codes and implementation details.
Issue 2: Official data partitioning guidelines are lacking in most
famous SER datasets, such as IEMOCAP and MSP-IMPROV [3].
Consequently, different papers adopt varying partitioning strategies,
leading to potential data leakage problems: Typically, SER datasets
comprise dialogues between two participants, denoted as Speaker A
and Speaker B. In segmenting these dialogues to isolate individual

∗equal first contribution,†equal second contribution,‡equal correspond-
ing author, order is random.

Fig. 1: Demonstration for the EMO-SUPERB platform: Developers
design and evaluate SER models using our standardized dataset par-
tition files and evaluation criteria. Developers then contribute these
prediction results to the online leaderboard, enriching the bench-
mark database and enabling comparative analyses with other SER
models. Finally, developers harness the visualization and statistical
tools on the website to compare performance, gathering invaluable
insights for future works. From the user’s standpoint, they can up-
load datasets and select appropriate models tailored to their individ-
ual applications.

utterances, it is common to encounter scenarios where Speaker A’s
segments contain speech from Speaker B. This can cause issues be-
cause many studies adopt a straightforward approach to dividing the
dataset. They possibly allocate utterances from Speaker A for train-
ing and those from Speaker B for testing. However, this approach
inadvertently exposes the model to Speaker B’s speech during train-
ing, leading to data leakage. Studies employing this cheating par-
tition role, with data leakage, tend to achieve 4.011% performance
improvements than those without it [2]. However, comparing set-
tings with data leakage to those without it is unfair.

To address the above issues individually, we introduce EMO-
SUPERB to advance open-source initiatives in SER. The source
code and complete analysis are on the project website 1. The sup-
plementary material file is available as well 2.

• For Issue 1, we develop a codebase to harness 16 SSLMs,
renowned for enhancing state-of-the-art (SOTA) performance
in SER, for exhaustive evaluation across all open-source SER

1EMO-SUPERB Website
2Supplementary Material

https://emosuperb.github.io/
https://github.com/EMOsuperb/EMO-SUPERB-submission/blob/main/supplementary_material/SLT_2024_Supplementary_Material_for_EMO_SUPERB.pdf


datasets in Section 2.2. Developers can utilize a single com-
mand line to execute training and evaluation processes seam-
lessly, and we will release the easy-to-follow codebase.

• For Issue 2, we partition six open-source SER datasets and
address potential data leakage issues during the partitioning
process, as shown in Section 2.1.

Finally, we make processed labels and data partition files of
all datasets, codes, and baseline results and their checkpoints open
source to the community. We also encourage the emotion recogni-
tion community to upload their SER systems or databases to EMO-
SUPERB.

2. EMO-SUPERB PLATFORM

As shown in Fig. 1, our platform is designed to empower developers
with seamless access to replicate our results, evaluate their custom
SER models, compare model characteristics, and foster future SER
development. This is facilitated by integrating three essential com-
ponents: an easy-to-follow codebase, unified dataset partition files,
and a community-driven leaderboard website. Users can select SER
models for their own usage or upload their own models to the leader-
board.

2.1. Unified Dataset Partition Rules

Take the IEMOCAP corpus as an example; the database includes 5
dyadic interactions (dialogues between two speakers) involving ten
speakers. In 50% of previous studies, researchers randomly divide
the recordings of these ten speakers into train and test sets [2]. How-
ever, due to overlap often present across speaker’s segments, this
practice can lead to data leakage because speaker B’s speech has al-
ready been used for the model training, mentioned in section 1 (Issue
2).

In this study, we establish partition rules that adhere to speaker-
independent criteria to mitigate the risk of leakage, which is closer
to the naturalist scenarios because there are numerous speakers in
the world. It is hard to do a speaker-dependent scenario in a real-
life application. Specifically, we ensure that all utterances from both
speakers involved in dialogues are assigned to either the training or
testing set. Further details regarding partitioning the six emotion
databases can be found in Supplementary Material C. We provide the
standardization of the training and testing splits and setups across
the six public SER datasets.

2.2. SSLM-based Codebase

2.2.1. Framework

Self-supervised learning (SSL) is a promising direction for develop-
ing speech models. This approach entails training a large model with
large-scale unlabeled data to obtain robust and general representa-
tions. After pre-training, one can achieve nearly SOTA performance
on downstream tasks by employing the fixed SSLMs alongside task-
specific lightweight prediction heads [4]. Furthermore, SSLMs sig-
nificantly enhance SER and demonstrate SOTA performance, as ev-
idenced in [5].

We develop a comprehensive codebase. The codebase depends
on S3PRL 3 [4] to leverage 16 speech-supervised learning models as

3https://github.com/s3prl/s3prl

Fig. 2: Illustration of SSLM-based SER.

feature extractors and trains lightweight heads for exhaustive eval-
uation across 6 open-source SER datasets with 9 common settings,
as shown in Fig. 2. The six datasets adopted are SAIL-IEMOCAP
[1], CREMA-D [6], MSP-IMPROV [3], MSP-PODCAST [7], BIIC-
NNIME [8], and BIIC-PODCAST [9].

2.2.2. Self-supervised Learning Models

We leverage two mainstream categories of SOTA SSLMs (in
S3PRL), pre-trained using generative losses and discriminative
losses. We summarize them in Table 1, and details can be found in
Supplementary Material B due to space limitations.

2.2.3. Pros of the Codebase

The codebase has the following merits:

High-performance: Our choice to utilize SSLMs is based on their
ability to consistently achieve SOTA results in speech emotion
recognition, aligning with our goal to boost open-source efforts in
this domain.

Affordability: The computing barrier is greatly diminished by lever-
aging pre-trained SSLMs and solely fine-tuning a lightweight head,

Model Loss

Autoregressive Predictive Coding (APC) [10] Generative loss
VQ-APC [11] Generative loss
Non-autoregressive Predictive Coding (NPC) [12] Generative loss
Mockingjay [13]) Generative loss
TERA [14] Generative loss
DeCoAR 2 [15] Generative loss
WavLM Large [16] Discriminative loss
Hubert Large [17] Discriminative loss
wav2vec 2.0 Large (W2V2 Large) [18] Discriminative loss
wav2vec 2.0 Robustness (W2V2 R) [19] Discriminative loss
Data2Vec [20] Discriminative loss
XLS-R [21] Discriminative loss
VQ wav2vec (VQ-W2V) [22] [15] Discriminative loss
wav2vec (W2V) [23] Discriminative loss
PASE+ [24] Discriminative loss
Contrastive Predictive Coding (CPC) (M CPC)[25]) Discriminative loss

Table 1: Summary of SSLMs.



enhancing affordability for researchers from diverse backgrounds.

Reproducibility: All codes, data partition files, and checkpoints are
released, ensuring easy reproducibility of results.

Easy-to-follow: Developers can employ a single command line to
execute all training and evaluation processes, making it exception-
ally user-friendly.

2.3. Community-driven Leaderboard

The leaderboard website holds significant importance within EMO-
SUPERB, continuously expanding and welcoming submissions
worldwide, evolving it into a dynamic benchmark beyond showcas-
ing our own evaluation results. To mitigate the participation barrier,
the website accepts submissions with participants’ own models, es-
pecially when migrating their codes to the codebase in Section 2.2
is not straightforward. Participants must adhere to the data parti-
tion files outlined in Section 2.1, evaluate their trained models, and
submit the results. The website also offers useful visualization (e.g.
radar chart Fig. C1 in Supplementary Material) and statistical tools
for comparing detailed characteristics of different models, thereby
enhancing future model development.

Additionally, our platform encourages community contributions
of prompts and datasets with newly re-labeled typed descriptions.
Submitters can conveniently evaluate the quality of their labeled
datasets using a single command line on our codebase introduced in
Section 2.2.

2.4. Artifacts

Modern deep learning models present a reproducibility challenge,
even with released codes, due to the potential impacts of minor hy-
perparameter change or package version disparities on performance.
To assist users in debugging their training procedures, we offer hy-
perparameters and pre-trained weights in our codebase. Further-
more, we provide downstream prediction files for several state-of-
the-art models, enabling users to visualize and analyze results easily.

3. EXPERIMENTAL SETUP

3.1. Datasets

We include the six public emotion datasets in the work. Some
datasets use both primary emotions (denoted as (P)) and secondary
emotions (marked as (S)) to allow annotators to choose single
and multiple emotions, respectively. The Supplementary Mate-
rial A presents detailed information, and Table A1 summarizes
statistical data regarding the six emotion databases. Supplemen-
tary Material A.1 outlines the license terms and usage issues. The
MSP-PODCAST and BIIC-PODCAST provide commercial licenses
summarized in Table A2 in Supplementary Material. We provide
details of partitions in Supplementary Material C to avoid issue 2 in
Section 1, data leakage. The key information about these datasets is
summarized as follows.

The SAIL-IEMOCAP [1], referred to as IEMOCAP, collects mo-
tion capture, audio, and video recordings from five dyadic conver-
sations acted by ten professional actors in English. The recorded
sessions were manually segmented into 10,039 utterances. The emo-
tional annotations contain 9 emotions.

The CREMA-D [6] contains high-quality audio-visual clips from 91
professional actors. There are 43 female and 48 male actors. There
are 7,442 clips in English annotated via a crowd-sourcing platform.
The process of perceptual annotations has three scenarios: voice-
only, face-only, and audio-visual. In this work, we only use voice-
only emotional annotations since the paper focuses on the SER task.
There are 6 emotions in total.

The MSP-IMPROV [3] referred to as IMPROV, consists of high-
quality audio-video sessions acted by 12 actors in English. All ses-
sions are manually segmented into 8,438 clips. The annotation pro-
cess has two scenarios: primary (P) and secondary (S) emotions.
IMPROV (P) has 4 emotions; IMPROV (S) has 10 emotions.

The MSP-PODCAST [7] , referred to as POD, collected sponta-
neous and diverse emotional speech from various real-world podcast
recordings with a commercial license. The labeling setting also con-
tains primary and secondary scenarios. The major difference is the
number of emotions in the given options. We use the release version
1.11 of the database, including 84,030 utterances in the train set,
19,815 in the development set, 30,647 in the test1 set, and 14,815 in
the test2 set. We combine the test1 and test2 as the test set. POD (P)
has 8 emotions; POD (S) has 16 emotions.

The BIIC-NNIME [8], referred to as NNIME, consists of video,
audio, and physiology recordings of dyadic conversations acted by
43 actors in Mandarin Chinese. All sessions are manually segmented
into 5,596 clips. We exclude utterances annotated by “other” from
all annotators or by less than three annotators. All annotators watch
clips in order and choose emotions from the given 12 emotion op-
tions.

BIIC-PODCAST [9], referred to as B-POD, is a variant of MSP-
PODCAST in Mandarin Chinese. We use the release version 1.01.
There are 48,815 utterances in the train set, 10,845 in the develop-
ment set, and 10,340 in the test set. At least five annotators annotate
each utterance, and the emotional annotators contain primary emo-
tions (P) and secondary emotions (S), which is the same as MSP-
PODCAST.

4. PARTITION SETTING

In the speaker-independent scenario, where the model is trained on
data from certain speakers and tested on data from speakers not seen
during training, ensuring fair and robust evaluation is crucial. We
take the IEMOCAP as one example. The details of other datasets
are in Supplementary Material C. Table 2 summarizes the partition-
ing settings for the IEMOCAP corpus. Considering each session, we
define five speaker-independent splits (i.e., Dyad 1 to Dyad 5). Each
session consists of two speakers engaged in dyadic interactions. In
our experiments, we conduct a 5-fold cross-validation as illustrated
in Table 2, where each fold includes a unique combination of train-
ing, development, and test sets to ensure a comprehensive evalua-
tion of the model’s performance across different dyadic interactions
within the IEMOCAP corpus.

4.1. Preprossessing

4.1.1. Data Format

We ensure the presence of audio recordings and extract them from
video clips if the original datasets lack separate audio files. If the



Table 2: IEMOCAP corpus partitions.

Partition Training Set Development Set Test Set

1 Dyad 1,2,3 Dyad 4 Dyad 5
2 Dyad 2,3,4 Dyad 5 Dyad 1
3 Dyad 3,4,5 Dyad 1 Dyad 2
4 Dyad 1,4,5 Dyad 2 Dyad 3
5 Dyad 1,2,4 Dyad 3 Dyad 4

audio is in stereo format, we convert it to a monophonic channel.
Furthermore, we resample the audio to 16 kHz as it is the most com-
mon sampling rate for speech processing. Prior to passing the speech
input into modeling, we normalize it by subtracting the mean and di-
viding it by the standard deviation of the training set across all our
experiments.

4.1.2. Selection of Emotions

Most SER prior studies [26, 2] only choose anger, happiness, sad-
ness, and neutral state emotions as target emotions. In addition, they
regard the excitement/joy annotations as happiness; however, excite-
ment and happiness are not the same emotions [27], though those
two emotions have correlations [28].

In contrast to previous approaches, we retain all original emotion
labels and refrain from merging any emotions into others to balance
the data (e.g., combining excitement with happiness). This strategy
allows us to accurately assess performance and mirror natural emo-
tion perceptions under real-world conditions.

4.1.3. Label Representation

Inspired by Semantics Space Theory [29], we follow Chou et al.
[30] to gather numerous annotations and compute a distribution-like
(soft label) representation, aiming to capture the high-dimensional
nature of emotion perception more accurately. Here is one example:
Let’s assume we gather five annotations from five distinct raters for
a single sample. These annotations comprise neutral (N), anger (A),
anger (A), sadness (S), and sadness (S). Subsequently, we compute
the label distributions, represented as (N, A, S, H) = (0.2, 0.4, 0.4,
0.0) for training SER systems. Additionally, to enhance SER perfor-
mance, we employ the label smoothing technique proposed by [31]
to refine the vector, utilizing a smoothing parameter of 0.05. This
approach assigns a small probability to emotional classes with zero
values.

4.2. Evaluation Metric

We use the macro-F1 score [32] to evaluate the SER performance
via the Scikit-learn [33], considering recall and precision rates si-
multaneously. For the distribution-like multi-label training target,
we select target classes by applying thresholds on the ground truth.
A prediction is deemed successful if the proportion for a class sur-
passes 1/C, where C represents the number of emotional classes
during evaluating stage, aligning with the settings employed in
prior research [34, 30]. For instance, consider a four-class emotion
recognition task, and the emotion classes contain neutral, anger,
sadness, and happiness. Assume we consider the predictions for
three different models: (0.2,0.35,0.35,0.1), (0.1,0.45,0.45,0.0), and
(0.45,0.1,0.0,0.45). The three predictions are transformed into

(0,1,1,0), (0,1,1,0), and (1,0,0,1), respectively, using the threshold.
In these cases, only the first two predictions are fully corrected.

4.3. Training Details

We use the AdamW optimizer [35] with a 0.0001 learning rate, a
batch size of 32, and an epoch of 200. We choose the best models ac-
cording to the lowest value of the class-balanced cross-entropy loss
on the development set. We use the Nvidia Tesla v100 GPUs with 32
GB memory for all results. The total of GPU hours is around 3,300
hours. According to [4, 36, 37], SSLMs usually result in consis-
tent results and consume large computations. All results in the work
are single-run. We also verify it by running experiments for small
SSLMs; the standard deviation is only less than 1% on average.

4.4. Class-balanced Cross-entropy Loss

Inspired by the study [38], we follow the study [39] to adopt the
class-balanced cross-entropy loss as our primary objective function
due to the imbalanced label distributions across the six databases.
This approach proposed by the study [38] helps mitigate the impact
of class imbalance by giving more weight to minority classes during
the optimization process, leading to improved model performance,
especially for datasets with imbalanced class distributions. The main
idea is to add a weighting factor to adjust the values of the used loss
function based on the inverses of the class frequency considering the
training set. The factor is 1−β

1−β
nj , where nj is the number of positive

samples in the jth emotion class in the train set, and β ∈ (0, 1] is
a hyperparameter. The number of factors to weigh the loss values
equals to the number of target emotions. The CBCE value can be
calculated using Eq. 1, where LCE

(j) is the value of cross-entropy
loss for the jth emotion.

LCBL =

K∑
j=1

(
1− β

1− βnj
· LCE

(j)). (1)

5. RESULTS AND ANALYSIS

5.1. SSLMs for SER

We mainly use SSLMs as our backbone models to train SER sys-
tems.

5.1.1. Overall Results

Table 3 summarizes macro-F1 scores obtained by 16 SSLMs and
FBANK across six datasets under nine conditions. FBANK, the
most commonly used speech feature, is the baseline for compar-
ison with SSLMs. We have the following observations: (1) All
SSLMs exhibit significantly superior performance compared to
FBANK. Also, XLS-R-1B achieves a remarkable improvement of
relatively 100.8% compared to FBANK. (2) The XLS-R-1B model
demonstrates the highest average performance, surpassing WavLM
Large, which typically achieves state-of-the-art results in most
speech-processing tasks. Despite this, WavLM Large still main-
tains considerable strength, achieving the highest performance in
three out of nine conditions. (3) To our surprise, despite its modest
90 million model parameters, the DeCoAR 2 model outperforms
the W2V2 Large model, which has 317 million parameters. This



Table 3: The table summarizes the overall performance of SSLMs across the 6 public emotion datasets. #Par.(M) means the number of the
SSLM parameters (frozen).

SSLM #Par. (M) Average IMPROV (P) CREMA-D POD (P) B-POD (P) IEMOCAP NNIME IMPROV (S) POD (S) B-POD (S)

XLS-R-1B 965 0.38352 0.552 0.676 0.331 0.266 0.329 0.209 0.422 0.384 0.283
WavLM Large 317 0.38334 0.559 0.673 0.350 0.252 0.336 0.209 0.430 0.369 0.272

Hubert 317 0.38331 0.553 0.675 0.342 0.262 0.337 0.197 0.427 0.383 0.274
W2V2 R 317 0.37874 0.555 0.672 0.331 0.251 0.339 0.196 0.433 0.363 0.269

Data2Vec-A 313 0.37334 0.536 0.659 0.329 0.254 0.331 0.188 0.414 0.378 0.270
DeCoAR 2 90 0.36229 0.512 0.646 0.308 0.256 0.320 0.187 0.405 0.353 0.274

W2V2 Large 317 0.35851 0.469 0.669 0.321 0.255 0.306 0.178 0.396 0.353 0.281
APC 4 0.34975 0.497 0.608 0.298 0.249 0.316 0.186 0.389 0.340 0.266

VQ-APC 5 0.34594 0.497 0.603 0.296 0.246 0.312 0.181 0.389 0.331 0.259
TERA 21 0.34547 0.493 0.596 0.295 0.253 0.308 0.193 0.385 0.337 0.249
W2V 33 0.34212 0.448 0.612 0.300 0.246 0.304 0.188 0.387 0.336 0.258

Mockingjay 85 0.33592 0.485 0.576 0.275 0.244 0.308 0.185 0.379 0.318 0.253
NPC 19 0.33150 0.470 0.570 0.274 0.240 0.304 0.172 0.364 0.333 0.256

VQ-W2V 34 0.33127 0.442 0.605 0.292 0.246 0.294 0.156 0.361 0.325 0.260
PASE+ 8 0.31740 0.456 0.521 0.274 0.233 0.292 0.178 0.349 0.306 0.248
M CPC 2 0.31508 0.453 0.529 0.265 0.228 0.285 0.175 0.337 0.318 0.246

FBANK 0 0.19099 0.305 0.144 0.186 0.199 0.242 0.120 0.184 0.170 0.168

finding suggests that DeCoAR 2 could be an attractive choice for
developers of SER facing computational resource constraints.

5.2. Comparison between EMO-SUPERB and SOTA

We are interested in the performance gap between the SOTA SER
framework and ours, so we follow the study [30] to conduct the
experiments using the model proposed by [5], fine-tuning the
“Wav2Vec2-Large-Robust”. Following [5], our model configu-
ration includes adding two hidden layers, each containing 1,024
nodes, atop the modified “wav2vec2-large-robust” backbone. These
layers are activated using the rectified linear unit (ReLU) activation
function. A softmax output layer follows these hidden layers, pro-
viding a probabilistic distribution over the target emotion classes.
Furthermore, we applied average pooling to the resulting representa-
tions, feeding it into the classification layers. We applied a dropout
function with a probability of 0.5 to the first and second layers of
the classification architecture to regularize the model, following the
work [5]. The original code of the model is provided in [5] using
HuggingFace library [40] implemented on the PyTorch [41]4. The
number of model parameters is around 317 million. Table 4 summa-
rizes macro-F1 scores of the SER SOTA and the best results from
the EMO-SUPERB. The average performance of the SOTA SER
model [5] in macro-F1 score leads to 8.83%, absolutely better than
the EMO-SUPERB. We also added the results of the SOTA SER
model to the SER leaderboard. Our codebase only costs around 24
GB GPU memory during training, but the SOTA SER model needs
more than 34 GB GPU memory. We will also release the results of
the SER SOTA and its code files.

5.2.1. Layer analysis

Our training strategy involves extracting features from each layer of
the SSLM, multiplying these features with layer-specific weights,
and then aggregating the weighted features. These aggregated fea-
tures are then fed into the downstream model. Only the layer weights

4https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-
msp-dim

and the downstream model are trainable. A large weight assigned to
a specific layer suggests that the layer encodes rich emotional in-
formation. Additionally, we conduct a layer-wise analysis of the
SSLMs. We select SSLMs with top-five performance, each with the
same number of layers: WavLM Large (WavLM), Hubert Large
(Hubert), W2V2 R, Data2Vec-A, and W2V2. We extract the layer
weights from the best checkpoint of each model and normalize them
using the softmax function to ensure values between 0 and 1. We
average the layer-wise weights if emotion datasets contain multi-
ple partitions (e.g., IEMOCAP and CREMA-D). We show the main
results and additional layer-wise analysis in Supplementary Mate-
rial D.1.

From the model perspective (Fig. 3a), we sum the layer weights
across all datasets for each model and plot the resulting curves.
We have the following observations: Different models have higher
weights on different layers. For instance, the W2V2 R has the
highest weight on the 17th layer, but the Data2Vec-A’s is on the
third layer. Also, the other three models have similar patterns that
emphasize all layers. Additionally, it’s worth noting that the weights

Table 4: The table presents macro-F1 scores of the SER SOTA
(denoted “SOTA”) and the best results from our platform (denoted
“Ours”). The absolute difference is calculated by our results minus
the SOTA results. The Model denotes the best SSLM of our settings.
The AD means Absolute Difference.

Dataset SER SOTA [5] EMO-SUPERB AD (%) Model

IMPROV (P) 0.646 0.559 8.70% WavLM Large
CREMA-D 0.706 0.676 3.00% XLS-R-1B

POD(P) 0.457 0.350 10.70% WavLM Large
B-POD (P) 0.330 0.266 6.40% XLS-R-1B
IEMOCAP 0.507 0.339 16.80% W2V2 R

NNIME 0.279 0.209 7.00% WavLM Large
IMPROV (S) 0.523 0.433 9.00% W2V2 R

POD (S) 0.491 0.384 10.70% XLS-R-1B
B-POD (S) 0.355 0.283 7.20% XLS-R-1B

Average 0.477 0.389 8.83%
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Fig. 3: The layerwise weights analysis.

of W2V2 R in layers 22 to 24 are considerably lower than those in
other layers. We observe that the SSLMs act differently and have no
clear patterns in the work.

Fig. 3b illustrates the layer weights for the state-of-the-art
model, XLS-R-1B. Similar to other models, it exhibits a tendency
to prioritize the shallow layers. However, two notable peak weights
are observed on the 30th layer, particularly trained on the POD (P)
and POD (S) datasets.

6. DISCUSSION AND LIMITATIONS

We only focused on emotion datasets in English and Chinese, omit-
ting datasets in other languages. Also, the absence of recordings fea-
turing elderly and child speech and unknown annotator details may
hinder the representation of emotional perception across certain de-
mographics. We do not address potential performance biases related
to speaker gender within the SER systems.

7. CONCLUSION AND FUTURE WORK

We propose EMO-SUPERB, an ecosystem containing user-friendly
codebases, pre-trained models, fair data partition files, and a
community-driven leaderboard for SER. We effectively address
open questions in SER, including (1) boosting reproducibility and
(2) addressing data leakage. We encourage the community to use
EMO-SUPERB to develop and evaluate the SER systems. We plan
to expand our investigation in future work by incorporating addi-
tional evaluation angles, such as calibration error and gender bias.
Also, we plan to include more emotion datasets in other languages.
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