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ABSTRACT: Alzheimer’s disease (AD) progresses relentlessly from the
preclinical to the dementia stage. The process begins decades before the diagnosis
of dementia. Therefore, it is crucial to detect early manifestations to prevent
cognitive decline. Recent advances in artificial intelligence help tackle the complex
high-dimensional data encountered in clinical decision-making. In total, we
recruited 206 subjects, including 69 cognitively unimpaired, 40 subjective cognitive
decline (SCD), 34 mild cognitive impairment (MCI), and 63 AD dementia
(ADD). We included 3 demographic, 1 clinical, 18 brain-image, and 3 plasma
biomarker (Aß1‑42, Aß1‑40, and tau protein) features. We employed the linear
discriminant analysis method for feature extraction to make data more
distinguishable after dimension reduction. The sequential forward selection method was used for feature selection to identify the
12 best features for machine learning classifiers. We used both random forest and support vector machine as classifiers. The area
under the receiver operative curve (AUROC) was close to 0.9 between diseased (combining ADD and MCI) and the controls.
AUROC was higher than 0.85 between SCD and controls, 0.90 between MCI and SCD, and above 0.85 between ADD and MCI.
We can differentiate between adjacent phases of the AD spectrum with blood biomarkers and brain MR images with the help of
machine learning algorithms.
KEYWORDS: Alzheimer’s disease spectrum, mild cognitive impairment, subjective cognitive decline, machine learning, neuroimage,
plasma biomarker

■ INTRODUCTION
Alzheimer’s disease (AD) is the most important cause of
dementia in the elderly population, and the pathological
hallmarks are intraneuronal tau accumulations as neuro-
fibrillary tangles and extracellular amyloid plaques depositions.
AD is now considered a disease that progresses continuously
from the preclinical stage to the prodromal phase and finally to
dementia. The process begins years, if not decades, before the
diagnosis of clinical dementia.1 While the pathology of the
asymptomatic stage of preclinical AD can be evidenced only by
neuroimaging or cerebrospinal fluid (CSF) biomarkers, the AD
prodromal stage may be defined by single- or multi-domain
cognitive impairment without impairment to daily functions.
The cognitive impairment is usually episodic memory, so-
called single-domain amnestic mild cognitive impairment
(MCI), or multi-domain MCI by combining other cognitive
dysfunctions. MCI can further be confirmed by neuroimaging
or fluid biomarkers. Previous evidence based on a large
population demonstrated that the progression from MCI to
dementia ranged from 20 to 60%, especially in the amnesic
multi-domain subtypes.2 The annual conversion rates were
10−15%.3

Subjective cognitive decline (SCD) is characterized by a self-
reported cognitive decline with unimpaired cognitive test
results.4,5 Several studies have suggested that subjects with
SCD may be more likely to develop MCI and dementia.6−8

Therefore, some subjects with SCD may be in the AD
preclinical stage, and the self-experienced cognitive decline
compared to previous performance may be a warning sign of
clinical dementia. One previous study showed that SCD
complaints might be the early manifestation of MCI, a
precursor of multiple types of dementia,9 including AD.
Thus, it is crucial to detect early indications in SCD and MCI
to prevent or modify cognitive decline progression. Although
there is no cure or effective disease-modifying therapy for AD,
we must identify subjects with prodromal even preclinical
stages of AD to obtain better therapeutic effects for future
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disease-modifying treatment. Despite available definitions of
each stage of the AD continuum by pathology, cognitive
functions, activities of daily living (ADL), instrumental daily
activities (IADL), neuroimages, and fluid biomarkers,10 it is
sometimes challenging to determine a boundary between
adjacent phases of AD on clinical grounds. In formulating the
clinical diagnosis, a clinician would consider the cognitive test
results, ADL/IADL assessments, findings of neuroimages, and
reports from their family or close friends. Therefore, the
diagnosis is not straightforward, even though we have those
clinical or research diagnostic criteria. One of the effective
tools for clinical validation is the nature course of disease, but
it takes a longitudinal observation of months or years. Thus,
the application of artificial intelligence technology to assist
classification is warranted. Previous studies using machine
learning or other computational approaches in diagnosing and
monitoring AD included detecting AD from healthy controls,11

measuring disease severity,12 predicting conversion from MCI
to dementia,13 and differential diagnosis from other types of
dementia.11,14,15

Dimensionality reduction is widespread preprocessing in
high-dimensional data analysis, visualization, and modeling.16

However, high-dimensional data are problematic for classi-
fication algorithms due to high computational cost and
memory usage.17 Besides, high dimension data are susceptible
to the ″curse of dimensionality,″ which refers to problems that
arise when working with high-dimensional data. Prevalent
difficulties related to training machine learning models due to
high dimensional data are ″data sparsity″ and ″distance
concentration″, especially in data sets with a relatively small
number of samples and large numbers of features.
There are two dimensionality reduction techniques: feature

extraction (also known as dimensionality reduction explicitly
or feature transformation) and feature selection.16 Our
previous study applied feature extraction to reduce dimension
and constructed models by machine learning algorithms to
differentiate the disease groups effectively.15,18 It also reflected
the disease severity in different groups using blood
biomarkers.15,18 Feature selection is a preprocessing technique
that identifies the critical features of a given problem.19 It can
reduce dimensionality and help us understand the causes of
disease.19 We then applied feature selection to identify
essential features20 and subject these chosen features to
different classifiers. Finally, we used some metrics to evaluate
the performance of the two classifiers. Further correlation with
the clinical relevance is needed to identify compelling features
for the differential diagnosis of subjects with preclinical (SCD),
prodromal (MCI), and dementia in the AD continuum.

■ RESULTS
Participants in the AD dementia (ADD) group were
significantly older than those in the control and MCI groups
(p < 0.05); therefore, we controlled the age effect in the
following between-group analysis for plasma and image
biomarkers. There was no significant between-group difference
for gender distribution. ADD and MCI groups had lower
MMSE scores than the control or SCD groups (p < 0.05;
Table 1). As for the plasma biomarkers, both ADD and MCI
groups had higher plasma tau levels than the control group (p
< 0.001; Figure 1A). For plasma Aß1‑40, all three clinical groups
had lower levels than the control group (all p < 0.05; Figure
1B), and the Aß1‑42/Aß1‑40 ratios of the three clinical groups
shared the same relative relationship with the control group

(all p < 0.05; Figure 1D). For Aß1‑42, only ADD reached a
significant difference compared to the controls (p < 0.05;
Table 1 and Figure 1C).

The image biomarkers were the so-called AD-signature areas
in terms of hippocampal volume and cortical thickness of these
regions of interest. Both ADD and MCI groups had smaller
hippocampi as compared to the control (p < 0.001) or SCD
groups (p < 0.05 or 0.01). Regarding the AD signature areas’
cortical thickness, most of the significant between-group
difference was between ADD, MCI, and the control group
(p < 0.05 or 0.01). Only two regions showed significant
differences between SCD and the control group, the left
anterior cingulate, and left precuneus cortices (p < 0.05).

Feature Extraction and Feature Selection. Feature
Extraction. We used the linear discriminant analysis (LDA)
method to project data onto a lower-dimensional space with
good class separability to visualize the data distribution. LDA
reduced the dimensionality to three; the best three combined
(transformed) features (i.e., LD1, LD2, and LD3) place the
samples in a 3D space that is easier for further classification
(Figure 2). The three combined features are new features in
the reduced dimensionality. We classified the data set into four
classes according to disease severity (i.e., controls, SCD, MCI,
and ADD). We used leave-one-out cross-validation (LOOCV)
to objectively estimate our model construction procedure’s
performance. The accuracy with the three linear discriminant
variables (LD1 + LD2 + LD3) was higher than those with one
(LD1) and two (LD1 + LD2), with an accuracy of 0.76
(Figure S1).

Feature Selection. We performed feature selection using the
sequential forward selection (SFS) wrapper method to obtain a
subset of relevant features. First, we used the random forest
(RF) classifier as an evaluation algorithm to find the most
optimal number of features. The evaluation metric was
accuracy. We found that 12 features were the best subset
number in terms of accuracy (0.69). The best 12 features
included total scores of MMSE, age, cortical thickness of the
left precuneus, plasma Aβ1‑40 level, the volume of the left
hippocampus, cortical thickness of the right angular gyrus, left
entorhinal gyrus, plasma total tau level, the volume of the right

Table 1. Demographic, Clinic, and Biomarker Data of
Subjectsa

control SCD MCI ADD

age (years) 65.5 ± 8.6 67.6 ± 6.3 67.5 ± 9.5 71.2 ± 9.7*$

gender (F/M) 46/23 20/20 16/18 33/30
education
(years)

12.5 ± 4.7 14.5 ± 4.1 11.5 ± 4.7 12.0 ± 3.5

CDR 0 0.5 (M =
0.5)

0.5 0.5/1 (56/7)

MMSE 28.7 ± 1.2 29 ± 0.9 27.1 ± 2.9*# 24.9 ± 4.3*#

tau (pg/mL) 16 ± 8.7 20.5 ± 4.9 26.1 ±
10.5**

32.4 ± 10.9**

Aß1‑40 (pg/
mL)

60.2 ± 14.3 44.8 ± 9.6* 48.1 ±
17.4*

50.0 ± 17.2*

Aß1‑42 (pg/
mL)

15.3 ± 1.8 16.9 ± 5.8 16.2 ± 2.2 17.7 ± 2.8

Aß1‑42/Aß1‑40 0.27 ± 0.87 0.37 ±
0.11*

0.39 ±
0.13*

0.42 ± 0.31*

aCDR, clinical dementia rating; MMSE, mini-mental state examina-
tion; SCD, subjective cognitive decline; MCI, mild cognitive
impairment; ADD, Alzheimer’s disease dementia. Compared with
control group (*: p < 0.05, **: p < 0.001); Compared with SCD
group (#: p < 0.05); Compared with MCI group ($: p < 0.05).
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hippocampus, education years, plasma Aβ1‑42 level, and cortical
thickness of the right middle cingulate gyrus. We then applied
both RF and support vector machine (SVM) classifiers to test

the performance of the 12-feature subset. Finally, we evaluated
the performance of models with the area under the receiver
operating characteristic curve (AUROC). We first examined

Figure 1. (A) Plasma tau protein levels of all groups with significant differences between ADD, MCI and Control; (B) Plasma Aβ1‑40 levels of all
groups with significant differences between control and all other three groups; (C) Plasma Aβ1‑42 levels with significant difference only between
ADD and Control; (D) Aβ1‑42/Aβ1‑40 ratios of all groups with significant differences between control and all other three groups. SCD: subjective
cognitive decline, MCI: mild cognitive impairment, ADD: Alzheimer’s disease dementia. Compared with the control group (*: p < 0.05, **: p <
0.001).

Figure 2. 3D cluster plot created by 3-variable linear discriminant analysis. SCD, subjective cognitive decline; MCI, mild cognitive impairment;
ADD, Alzheimer’s disease dementia. One can rotate the axis and get the optimal view by using the link https://rpubs.com/marukocsi/813998.
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the binary taxonomy between the disease group (combining
MCI and AD) and the control group. Then we compared each
adjacent phase of the AD spectrum, including SCD vs control,
MCI vs SCD, and ADD vs MCI.
The binary taxonomy between the disease and control

groups, AUROC values were 0.90 [95% confidence interval
(CI) 0.86−0.92] for RF and 0.80 (95% CI 0.78−0.82) for
SVM (Figure 3A). For the binary taxonomy between SCD and
controls, AUROC values were 0.86 (95% CI 0.80−0.92) for
RF and 0.82 (95% CI 0.79−0.84) for SVM (Figure 3B). For
the binary taxonomy between MCI and SCD, AUROC values
were 0.90 (95% CI 0.88−0.92) for RF and 0.90 (95% CI
0.88−0.91) for SVM (Figure 3C). For those between ADD
and MCI, AUROC values were 0.87 (95% CI 0.84−0.90) for
RF and 0.85 (95% CI 0.84−0.86) for SVM (Figure 3D).

■ DISCUSSION
With the machine learning algorithms’ help, we can differ-
entiate between the clinically defined cognitive unimpaired

controls and diseased subjects (MCI and ADD) with high
accuracy (up to AUROCs 0.90). However, from a clinical
perspective, it is even more crucial to identify and differentiate
subjects in the adjacent clinical phases, such as SCD vs the
controls, MCI vs SCD, and ADD vs MCI. The distinction
between SCD and the controls was the subjective complaint.
The boundary between MCI and SCD was the cognitive
performance (including memory) lower than the 4th percentile
of their age and education matched control. The point-of-no-
return to dementia was the ADL/IADL deterioration in
addition to their cognitive deficits. Even experts of dementia
frequently encountered difficulty in the differential diagnosis of
subjects in the adjacent phases on a clinical ground without the
help of comprehensive neuropsychological tests, advanced fluid
biomarkers, quantitative structural MR images, or molecular
images. The outstanding value of this study is that with the
assistance of machine learning algorithms, our selected best 12-
feature subset can differentiate between SCD and the controls
with the best performance higher than 0.85 AUROCs, between

Figure 3. ROC curves using SVM and RF classifiers for a binary taxonomy: (A) between diseases (ADD and MCI) and control; (B) between SCD
and control; (C) between MCI and SCD; (D) between MCI and ADD. SCD, subjective cognitive decline; MCI, mild cognitive impairment; ADD,
Alzheimer’s disease dementia.
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ADD and MCI higher than 0.85 AUROCs, and between MCI
and SCD higher than 0.90 AUROCs. The differentiation
between SCD and its adjacent phases, that is, Controls or
MCI, is of particular importance since it has been proposed as
a pre-MCI at-risk condition of AD. Currently, there are no
specific criteria for SCD. In clinical settings, it takes
comprehensive, structured interviews relying on personal
contact to allow an informed clinical rating of participants’
complaints according to diagnostic categories.
Then, let us examine the clinical relevance of the selected

best 12-feature subset in a sorted sequence: MMSE score, age,
left precuneus cortical thickness, plasma Aβ1‑40 level, left
hippocampus volume, right angular gyrus cortical thickness,
entorhinal gyrus cortical thickness, plasma total tau levels, right
hippocampus volume, education years, plasma Aβ1‑42 levels,
and cortical thickness of the right middle cingulate gyrus.
MMSE is a concise and clinically useful tool for measuring
global cognitive function. However, it has ceiling and floor
effects even after adjustment for the educational level.37 In AD
studies, it is commonly encountered that participants in the
ADD group were significantly older than those in control and
MCI groups as in this study. Age is always a risk factor for both
MCI and dementia.38 As for the plasma biomarkers, our
previous research has shown that plasma Aβ40 might be a
protective indicator of less brain amyloid deposition and
cortical atrophy,39 and computed products of Aβ1‑42 and tau
may be a predictor of AD.28,40 Plasma total tau was negatively
correlated with hippocampus brain volume and precuneus
cortical thickness in MCI and AD.41,42 On the other hand,
previous research showed brain structural change even in
subjects with SCD,43 especially those clinical-based samples as
in this study.43,44

We used LOOCV to estimate the performance of our model
construction procedure, which is particularly important since
our data set is not too big for LOOCV, which is an unbiased
version of cross-validation. LOOCV is an estimate of a model’s
generalization performance trained on n − 1 samples of data,
which is one sample estimate of a model’s performance trained
on all n samples.
The strength of the present report is twofold. First, the

machine learning system can differentiate clinical gray zones
using easily accessible plasma biomarkers and clinically
available brain MR structural images. As aforementioned, it
is not always easy, even in an expert’s service, to define
taxonomies such as control vs SCD, SCD vs MCI, and MCI vs
mild ADD without a comprehensive neuropsychological test,
functional assessment from careful observation of a responsible
principal caregiver, relative invasive CSF biomarkers, or
expensive PET scans with radiation risk. The other strength
is that we can achieve such good accuracy (Table S1) even
with a relatively small number of subjects in each subgroup.
Moreover, with the combination of those selected features
(variables) by machine learning algorithms, we achieved high
AUROC (0.85∼0.92) corresponding to a considerable effect
size (1.44∼2.01),45 implying a very significant synergistic
diagnostic effect between features.
There is an unexpected finding. Intuitively, clinical differ-

entiation between MCI and SCD is more complex than
distinguishing control from disease (MCI/ADD). However,
our results show that the AUROCs are about equal (RF 0.90
for both MCI vs SCD and disease vs control) or the AUROCs
of MCI vs SCD are greater than disease vs control (SVM 0.90
vs 0.80). The exact cause is unclear. We proposed that, at least

in part, is due to sampling bias. The SCD group (14.5 ± 4.1
years) has a higher education than the MCI group (11.5 ± 4.7
years, p < 0.01). In addition, SCD is a more homogenous
group than other groups in terms of standard deviations of
MMSE scores, total tau, and Aß1‑40 levels (Table 1). MMSE
(top 1), Aß1-40 (top 4), total tau (top 8), and education (top
10) are among the top 10 features, which might contribute to
the distinction between SCD and MCI.

Limitation of the Study. Our study has several
limitations. First, due to the scarcity of human data, our
study population is still relatively small to avoid all possible
sampling bias, and we cannot have an additional validation
cohort at this moment. Therefore, we must take great care in
generalizing our study’s findings. Also, this is a cross-sectional
study, and validation through observation of natural course is
not available. Therefore, in the future, we need to repeat the
study using biomarkers and machine learning algorithms of this
report on a novel population for cross-validation and a
longitudinal cohort composing cognitively unimpaired and AD
subjects with different clinical severities.

Conclusions. We can differentiate the gray zone between
adjacent AD phases with easily accessible plasma biomarkers
and clinically available brain MR structural images and achieve
a significant effect size with machine learning algorithms.
Future application on participant inclusion of appropriate
subjects with preclinical, prodromal, or early AD for preventive
intervention or disease-modifying therapy will be possible.

■ METHODS AND MATERIAL
Subjects. In total, we recruited 206 subjects from the memory

clinic of the Department of Neurology, National Taiwan University
Hospital. They included 69 cognitively unimpaired control subjects,
40 SCD, 34 MCI (mostly multi-domain), and 63 ADD (Table 1).
This study adhered to the National Institute on Aging/Alzheimer’s
Association Diagnostic Guidelines for MCI and dementia due to
AD.21,22 The subjects were required to have had at least 6 years of
formal education or read and write Chinese to complete the
comprehensive neuropsychological battery (NPT). Subjects with
cognitive decline complaints but unimpaired cognitive performance
(better than −1.5 SD of their age- and education-matched norm)
were categorized as the SCD group.5 The MCI group had abnormal
performance in the NPT, defined as lower than the 4th percentile
compared with their age- and education-matched controls for more
than one memory task23 with or without impairment in other
cognitive domains. In addition, they had normal instrumental ADL.
Subjects with impaired cognitive function and abnormal instrumental
ADL were classified as ADD.24 We excluded those subjects whose
brain MR images showed main artery strokes or microangiopathy
(Frazekas score >1 or lacunar infarcts) for possible confounding of
vascular cognitive impairment.

Neuroimage Biomarkers. Image Acquisition. High-resolution
structural brain magnetic resonance imaging (MRI) data were
acquired using a 1.5 T MRI scanner (EXCITE, General Electric,
Milwaukee, WI, USA). A whole-brain T1-weighted 3D spoiled
gradient recovery sequence was used (TE = 9.4 ms, TR = 3.9 ms, T1
= 600 ms, flip angle = 12 degrees, matrix size = 192 X 192, FOV = 25
cm), and a total of 170 contiguous sagittal slices, 1.3 mm in height,
were acquired.

We also acquired routine clinical MR images from the same
scanner with axial T2 (TR = 1067 ms, TE = 35 ms, flip angle = 20°)
and axial T2 FLAIR (TR = 8600 ms, TE = 114.3 ms, flip angle = 90°)
for diagnostic purposes.

Image Processing. T1 images were processed using FreeSurfer
suite, version 5.2 (https://surfer.nmr.mgh.harvard.edu). The image
processing steps included motion correction and conformation,
Talairach transform computation, intensity normalization, volumetric

ACS Chemical Neuroscience pubs.acs.org/chemneuro Research Article

https://doi.org/10.1021/acschemneuro.2c00255
ACS Chem. Neurosci. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/suppl/10.1021/acschemneuro.2c00255/suppl_file/cn2c00255_si_001.pdf
https://surfer.nmr.mgh.harvard.edu
pubs.acs.org/chemneuro?ref=pdf
https://doi.org/10.1021/acschemneuro.2c00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


registration, and white matter segmentation, followed by spherical
mapping and registration, then cortical parcellation, and mapping to
subcortical segmentation.25 Afterward, we selected and extracted the
cortical thickness data from 16 cortical areas, including anterior,
middle, and posterior cingulate cortices, precuneus, angular gyrus,
entorhinal, perirhinal, parahippocampus cortices of the bilateral
hemispheres, and the volumes of bilateral hippocampi for analysis.26

Plasma Biomarkers. Preparation of Human Plasma. Subjects
were asked to provide a 10-mL non-fasting venous blood sample (K3
EDTA, lavender top tube). The blood samples were centrifuged
(2500 g for 15 min) within 1 h of collection, and the plasma was
aliquoted into cryotubes and stored at −80 °C.
Assays of Plasma Biomarkers. All human plasma samples were

measured for Aß1‑42, Aß1‑40, and tau protein using immunomagnetic
reduction assay (IMR) with three different reagents. Each reagent
consists of magnetic nanoparticles dispersed in a pH −7.2 phosphoryl
buffer solution. These reagent nanoparticles are produced by
immobilizing antibodies against Aß1‑40 (Simga/A3981), Aß1‑42
(Abcam/ab34376), and tau protein (Sigma/T9450) on magnetic
nanoparticles produced by MagQu Co. Ltd., New Taipei City,
Taiwan. The mean diameter of antibody-functionalized magnetic
nanoparticles is 50−60 nm. The magnetic concentration of each kind
of reagent is 12 mg-Fe/mL. For a given human plasma sample, we
mixed 80 μL of Aß1‑40 reagent (MFAB0-0060, MagQu) with 40 mL of
room-temperature human plasma; 60 μL of Aß1‑42 reagent (MF-AB2-
0060, MagQu;) with 60 μL plasma; and 80 μL of total tau reagent
(MF-TAU-0060, MagQu) with 40 μL plasma. The reduction in the ac
magnetic susceptibility, that is, the IMR signal of the reagent after
being mixed with a sample, was measured using a superconducting
quantum interference device-based ac magnetic susceptometer
(XacPro-S, MagQu). We converted IMR signals to concentrations
of biomarkers by using logistic functions. Duplicate measurements of
IMR signals were performed for each human plasma sample. The
mean value of the duplicated measurements for a given biomarker in a
human plasma sample was used for the statistical analysis. The IMR
assay of plasma biomarkers for the AD spectrum was detailed in our
previous work.27−29

Data Set Description. In total, there are 26 features (inputs) of
the data set, including 3 demographic characteristics (age, gender, and
education), 2 clinical statuses (MMSE and CDR scores), 18 AD-
signature image-biomarker areas (detailed in the paragraph above),23

and 3 plasma AD biomarkers (Aβ1‑40, Aβ1‑42, and total tau
concentrations measured by IMR). Although the AB42/AB40 ratio
can be a good indicator, we have used this ratio in our previous study
to differentiate between MCI and ADD.29 However, the AB42/AB40
ratio, on the one hand, is a derived value; on the other hand, it has a
high positive correlation with Aβ1‑42 (r = 0.88) and a high negative
correlation with Aβ1‑40 (r = −0.66). Hence, the ratio is not included as
an input variable. Furthermore, we used CDR total or memory sub-
box scores for clinical classifications. Thus, it is close to the ″ground
truth″, and we removed the CDR feature in our proposed model.30

On the other hand, although MMSE is a global cognitive function
assessment, it is culture- and education-dependent; its score provides
a reference for clinical classification. Thus, we included 25 features in
total for the training of algorithms.

We used multivariate imputation by chained equations (MICE)31

and classification and regression trees (CART)32 to handle missing
values. MICE created multiple imputations (replacement values) for
multivariate missing data. Each incomplete column must be a target
column with its specific set of predictors. We used the CART
algorithm as the predictor and imputed 58 values by MICE. The
percentage of imputation is 0.01%. We operated data adjustment to
make the data set more compliant with machine learning, and we used
standard scores (z-scores) to adjust the features.

Dimensionality Reduction. In machine learning, dimensionality
reduction reduces the number of features such that it retains the
characteristics of the reduced data as much as possible. Principal
component analysis (PCA) and LDA are two popular dimensionality
reduction methods used on data with many input features. However,
PCA is a commonly used unsupervised linear transformation

technique, and LDA is a supervised method that considers class
labels when reducing the number of dimensions. Our data set
contains class labels and subjects assigned as SCD, MCI, or ADD;
thus, LDA is a more appropriate method for our data set.

This report used both feature selection and feature extraction for
dimensionality reduction. Both methods can avoid the curse of
dimensionality.

Feature Extraction. Feature extraction is a process of
dimensionality reduction by which an initial data set is reduced to
more manageable groups for processing. Feature extraction aims to
reduce the number of features in a data set by creating new features
from the existing ones. We used the LDA method as the feature
extraction technique. As mentioned above, LDA is among the most
commonly used dimensionality reduction techniques in the
preprocessing step for pattern classification and machine learning
applications. LDA projects a data set onto a lower-dimensional space
with good class separability to avoid overfitting and reduce
computational costs. However, classical LDA performs poorly in
high-dimension data corresponding to the sample covariance matrix’s
singularity and instability. Therefore, we would employ LDA for the
initial reduction of data dimensionality and visualization of the data
set in a 3D scatter plot in this study.

Feature Selection. Feature selection selects the best features
among all features that are useful to discriminate classes.19 In feature
selection, we used a SFS wrapper method to enhance dimensionality
reduction.19 The SFS method is an efficient feature selection
algorithm to classify biological signals.33 The SFS is an iterative
method, in which we start with having no feature in the model. For
the first step, the best single feature is selected. Then, pairs of features
are formed using one of the remaining features, and it is the best
feature of the remaining features, and the best pair is selected. Next,
triplets of features are formed using one of the remaining features and
these two best features, and the best triplet is selected. This procedure
continues until it establishes a predefined number of features.
Therefore, we kept adding the feature that best improved our model
(Figure 4).

Classification Algorithms. Among benchmark deep-learning
classifiers,34 our previous study15 shows that overall speaking, RF35

and SVM36 produce the best accuracy. Therefore, we used R language
to implement RF and SVM classifiers.

Statistical Analysis. Between-group comparison of nonparamet-
ric data such as gender distribution was examined by the chi-square
test. In addition, the between-group comparison of parametric data

Figure 4. Flow chart, including data preprocessing, dimension
reduction, feature extraction, feature selection, and training machine
learning classification models of this study.
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was analyzed by multivariate analysis of covariance, controlling the
age effect with Bonferroni correction of multiple comparisons.
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