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An integrated biometric voice and facial features for early
detection of Parkinson’s disease
Wee Shin Lim1,7, Shu-I Chiu2,7, Meng-Ciao Wu3, Shu-Fen Tsai1, Pu-He Wang1, Kun-Pei Lin4, Yung-Ming Chen5, Pei-Ling Peng6,
Yung-Yaw Chen3, Jyh-Shing Roger Jang1 and Chin-Hsien Lin6✉

Hypomimia and voice changes are soft signs preceding classical motor disability in patients with Parkinson’s disease (PD). We aim
to investigate whether an analysis of acoustic and facial expressions with machine-learning algorithms assist early identification of
patients with PD. We recruited 371 participants, including a training cohort (112 PD patients during “on” phase, 111 controls) and a
validation cohort (74 PD patients during “off” phase, 74 controls). All participants underwent a smartphone-based, simultaneous
recording of voice and facial expressions, while reading an article. Nine different machine learning classifiers were applied. We
observed that integrated facial and voice features could discriminate early-stage PD patients from controls with an area under the
receiver operating characteristic (AUROC) diagnostic value of 0.85. In the validation cohort, the optimal diagnostic value (0.90)
maintained. We concluded that integrated biometric features of voice and facial expressions could assist the identification of early-
stage PD patients from aged controls.
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INTRODUCTION
Parkinson’s disease (PD) is the second most common neurode-
generative disorder causing both motor and non-motor symp-
toms that result in disability and caregiver burden in aging
society1. It was estimated that the number of people with PD will
rise from 4 million in 2005 by two times to an estimated of 9.3
million in the year 20302. Although dopaminergic treatments and
deep brain stimulation could provide symptomatic benefit for
some PD motor symptoms, the disease continues to progress with
age. Given the likely entry of mechanism-targeted therapies into
early human clinical trials, it is crucial to identify susceptible
subjects in the premotor or prediagnostic stage of PD, when they
are transitioning from normal aging to early-stage PD, to ensure
that the proper intervention can mitigate disease progression.
Several clues of soft signs could be detected before the

occurrence of the classical motor dysfunction of PD. These early
biometric features included reduced facial expressions, voice
changes (including reduced speech volume and speech tempo,
frequent speech pauses, and shortened speech) and gait pattens
with reduced arm-associated movements3. However, these mild
signs are often ignored and considered normal aging phenomena,
which may delay the diagnosis and optimal treatment of PD.
Among these mild biometric features, linguistic changes could

be observed as early as 5 years before the PD diagnosis4.
Additionally, facial bradykinesia, also known as hypomimia or
“poker” face, is another early biometric sign of PD. It manifests as a
reduction in facial movements, and both the upper and lower face
may be affected5. Hypomimia is considered a sensitive character-
istic of PD, which makes it a potentially promising feature for
assisting the early diagnosis of PD6.
The current existing digital biomarkers for assisting the

diagnosis of PD are focused on motor features, often detected

with wearable sensors7. Although wearable sensors are reliable,
they typically require active participation and are often expensive,
which can hinder widespread use in a large population. On the
other hand, voice and facial expression analysis, which only
requires a webcam or a smartphone with a camera, is a
convenient, relatively affordable tool for detecting PD in commu-
nities. Researchers or physicians can analyze these biometric
features remotely to identify patients that potentially have PD
without an in-person interview. This feature may benefit patients
that need physical separation from other conditions (e.g., COVID-
19) and patients that live in underdeveloped areas without access
to a movement disorder specialist.
Although several apps have been developed for the smart-

phone or smartwatch, those apps mainly focus on detecting the
arm swing movement pattern and related motor symptoms8,9. A
single-domain modality may not be PD-specific, because patients
with stroke or arthritis may also manifest reduced arm movement.
An integrated multidomain biometric features with automatic
analysis and machine-learning algorithms might be more sensitive
than a single-feature modality for accurately detecting early-stage
PD. Hence, in this study, we aimed to establish a deep learning
model that incorporated various biometric features derived from
voice and facial expression analyses, which could be used to
distinguish patients with early-stage PD from age- and sex-
matched healthy controls.

RESULTS
The demographics of all enrolled patients with PD (n= 186) and
controls (n= 185) are shown in Table 1. The age and sex were
comparable between controls and patients with early-stage PD;
but those with advanced-stage PD were older than those with
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early-stage PD and controls (P < 0.01). The PD groups had a higher
percentage of men compared to controls. Among PD patients, 24
(12.9%) have motor fluctuations (15 patients with Hoehn–Yahr
stage 3 and 9 patients were Hoehn–Yahr stage 4) and all these
patients with motor fluctuations received the biometric data
collection in their “on” phase. The training dataset (i.e., patient
data retrieved during the “on” phase, n= 112; and age-matched
matched controls, n= 111) is shown in supplementary Table 1.
The validation dataset (i.e., patient data retrieved during the “off”
phase, n= 74; and age-matched controls, n= 74) are shown in
supplementary Table 2.
In the voice analysis, patients with PD took longer to read the

article, paused more during reading, and their pitch and volume
variance were reduced, compared to control participants (Table 1).

In the facial expression analysis, among patients with PD, the eye
blinking rate was significantly lower than that of controls, but the
mouth angle and peri-oral movement variances were not
significantly different between groups (Table 1).

Diagnostic performance based on facial and voice features in
the training dataset
In the training dataset, we first examined the performance of the
facial expression characteristics alone to differentiate the entire
cohort of patients with PD from the controls. Among the various
deep-learning classifiers, the random forest classifier showed a
diagnostic value of 0.69, when the ROC was analyzed with a
discretization and 10-fold cross-validation procedure (Fig. 1a). The

aa b

c
Combined (Facial + Voice features)

Fig. 1 Receiver operating characteristic curves calculated with nine deep-learning classifier models. The models were used to evaluate the
predictive value of either a facial features alone, b voice features alone, or c combined both features. The area under the curve indicates the
ability to differentiate between the entire patient cohort and the controls, in the training dataset.
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diagnostic performance of voice features alone showed that the
best classifier was AdaBoost, with an acceptable diagnostic value
of 0.86 (Fig. 1b). A combined model with both features of voice
and facial expression (age and sex were not included) showed a
diagnostic value of 0.84 using the logistics regression classifier
(Fig. 1c).
Next, we further integrated the facial features, voice parameters,

and basic characteristics of age and sex as an integrated model.

We used the sequential forward selection method to select the
best features for each classifier. The ROC analyses calculated with
the logistic regression and random forest classifiers provided the
optimal diagnostic values of 0.85 and 0.84, respectively, for
distinguishing between entire patients with PD and controls,
based on selected features of voice and facial expression
characteristics (Fig. 2a; the selected features are shown in
Supplementary Fig. 1A).

Fig. 2 Receiver operating characteristic curves calculated with nine deep-learning classifier models, based on combined facial and voice
biometric features. The models were tested for their ability to differentiate between a all patients with PD during the “on” phase and controls,
and b patients with early-stage PD during the “on” phase and age-matched controls, in the training dataset. The models were confirmed with
an independent validation dataset, where they differentiated between c all patients with PD during the “off” phase and controls, and
d patients with early-stage PD during the “off” phase and age-matched controls.

W.S. Lim et al.
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Given the high statistical significance of the above analysis, we
assessed whether our artificial classifier, based on the deep-
learning algorithm with integrated voice and facial expression
features, might also be able to distinguish patients with early-
stage PD during the “on” phase from age- and sex-matched
controls. We found that the AdaBoost classifier achieved high
diagnostic performance, with an AUROC of 0.84 (Fig. 2b; the
selected features are shown in Supplementary Fig. 1B). The
comparisons of diagnostic performance, accuracy scores, F1-
scores, precision, and recall for all nine classifiers were shown in
Supplementary Tables 3 and 4. The tables show the differentiation
between all patients with diverse PD severities and controls and a
separate analysis that focused on discriminating between patients
with early-stage PD and matched controls.

Diagnostic performance of the established model validated
with a cohort with patients during “off” PD phase or drug
naïve PD
Next, we validated the established model, which was based on the
combined biometric features derived from patients with PD
during the “on” phase. We tested whether this model could detect
patients with PD that had not received anti-parkinsonism
treatments to mimic real-world screening in community settings.
This independent cohort included both patients in the “off” phase
of PD and drug naïve patients with PD. In a ROC analysis, the
model with the random forest classifier yielded an optimal
diagnostic value of 0.90 for discriminating between patients with
diverse PD severity and controls (Fig. 2c). To target patients with
early-stage PD during the “off” state, we performed the ROC
analysis with the AdaBoost classifier. This model had an optimal
diagnostic value of 0.89 for discriminating between patients with
early-stage PD and control participants (Fig. 2d).

DISCUSSION
In this study, we applied an integrated approach that included
both voice and facial expression analyses combined with different
deep-learning classifiers to discriminate between all patients with
PD during the “on” phase and aged controls. The best model
showed optimal diagnostic performance for distinguishing
between patients with early-stage PD and age-matched controls.
Furthermore, this model, which was based on selected voice and
facial expression features, was validated with an independent
cohort that comprised drug naïve patients or patients with PD
during the “off” phase and another group of aged controls. This
analysis mimicked the real-world situation in community screen-
ings. Of note, the model showed high diagnostic performance for
distinguishing between drug naïve patients or patients with early-
stage PD during the “off” phase and normal controls. These results
provided the evidence to show that voice and facial expressions
analyzed with a deep-learning classifier could effectively discrimi-
nate between patients with early-stage PD and control individuals.
Hypomimia, or “poker” face, is considered a common feature

among patients with PD6. In our study, a random forest classifier
for analyzing the facial expressions of participants only showed a
suboptimal diagnostic performance (AUROC= 0.69) for discrimi-
nating between all patients with PD and controls. This diagnostic
performance was lower than the performance demonstrated in a
previous study, where participants performed three facial mimicry
tasks, including a smiling face, a disgusted face, and a surprised
face; that model achieved a 95% classification accuracy10. In the
present study, the participants did not perform facial muscle tasks;
instead, the participants were recorded the natural facial
expressions as they read an article during the voice recording.
In this setting, we measured and analyzed the natural variance
and movements in facial expressions and eye blinking. Among the
individual facial expression features analyzed in the current study,

not surprisingly, reduced eye blinking was the most crucial feature
for distinguishing between the PD group and controls. Other facial
movements, like mouth width or the mouth angle movement
variance, were not remarkably different from controls during
reading. Our observations supported findings in previous studies
that showed facial expressions, even recorded in a natural way,
could serve as a potential biometric marker for detecting PD11.
Our results also supported the concept that a deep-learning
algorithm that can analyze micro-expressions might assist
physicians in identifying patients in the early stage of PD.
Furthermore, we demonstrated that testing suitable classifiers
on the facial features detected with automatic software analysis
could identify subtle characteristics of facial expressions that
distinguished patients with early-stage PD from controls.
Speech impairments, including articulation, phonation, prosody,

and speech fluency, comprise another early feature of patients
with PD12. A wide variety of speech or voice tasks have been
employed for detecting speech impairments, including sustained
vowel phonation13, syllable repetition tasks14, sentence repetition
tasks15, and reading tasks16. One recent study investigated the
speech impairments in 100 drug naïve PD patients and the same
number of controls using a quantitative acoustic analysis of
variable speech dimensions related to phonation, articulation,
prosody, and speech timing17. The results identified an AUROC of
0.86 in men and 0.93 in women for discriminating PD patients
from controls, which diagnostic performance is similar with our
results. Furthermore, speech features combined with support
vector machine classifier assisted detection of early-stage PD from
controls with an accuracy of 89% in men and 70% in women, and
provided an accuracy of 63% for detecting participants with REM-
stage sleep behavior disorders (RBD) from controls18. These results
combined with our findings support a recent multi-center
European study that simple speech recordings with automatic
speech analysis and machine learning classifier could serve as
sensitive noninvasive early biomarkers for PD and those with the
PD prodromal symptom of RBD19. The ability to speak is a unique,
complex process, which can be subdivided into several dimen-
sions, including respiration, phonation, articulation, and prosody20.
Among these features, prosody is an important aspect of human
verbal communication. Therefore, we did not adopt the com-
monly used single vowel phonation test; instead, we used an
article reading task, which was previously used for assisting in the
diagnosis of PD16. The reading task conveyed semantic, syntactic,
and affective information; it also reflected the emotions of the
speaker. We used objective acoustic analysis for the recorded
voice and speech, and then digitized, processed, and analyzed the
retrieved features with different deep-learning classifiers. This
process comprised speech parameterization, consequent statis-
tical analysis, and mathematical modeling. Our results revealed
that the voice features alone showed an optimal diagnostic
performance of 86%, based on the AdaBoost classifier. Previous
evidence has shown that voice or speech impairments could be
identified in a prodromal interval of 10 years before the PD
diagnosis21, highlighting that voice parameters seem to be a
suitable biometric feature for early detection of PD. Furthermore,
most automatic voice condition analysis systems used for
detecting PD are based on speech data recorded under
acoustically controlled conditions. In contrast, our study was
performed in a free-living real-world scenario, where the voice was
recorded with a smartphone in a realistic acoustic environment.
We showed that, under these conditions, we could differentiate
between patients with PD, even early-stage PD, and controls.
Recently, a speech analysis was performed to analyze the effect of
PD on speech rhythm in two different speaking tasks, reading an
article and spontaneous speech phenomena in the monologues,
in a group of 20 PD patients and 20 healthy controls22. The results
showed that there was no major difference in the speech rhythm
of these two speaking tasks among patients with PD. Compared to
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read a simple script, the participants usually need more complex
language planning process to perform a spontaneous speech. In
this regard, the attention of the participant is mostly directed to
the choice of words and the planning of what to say, which largely
depend on the education levels, the personal working and lifestyle
backgrounds. These factors may affect the fruitfulness of the
spontaneous speech, which would broaden its diversity in the
performance of acoustic analysis. The comparable performance in
the acoustic analysis between reading task and spontaneous
speech22 highlights the potential that it is possible to use the
reading task alone to detect rhythmic differences between PD
patients and controls, allowing future large-scale screening in the
pooled database from various sources23. This model may also
have the potential to be applied to stored voice database as a
retrospective analysis to identify subjects who may have PD.
Future longitudinal studies on larger PD cohorts and also on other
languages, with different articulation and rhythmic patterns, are
needed to support our observations.
The field of identifying PD in a pre-diagnostic phase is rapidly

moving, with expanding momentum. Clinical and biofluid
biomarkers are being developed to identify individuals in the
earliest stages of PD. It is widely believed that mechanism-
targeted neuroprotective drugs will have the highest likelihood of
providing benefit in individuals that have not quite met the
criteria for a PD diagnosis. According to the Movement Disorders
Society (MDS), the best characterized prodromal markers of PD
are early pre-motor features, including polysomnography-
confirmed RBD, anosmia, depression, and constipation24. Along
with these non-motor symptoms, subtle motor features may be
present25. The clinical diagnosis of PD requires the presence of
multiple motor features. Thus, when subtle or single motor
abnormalities occur prior to diagnosis, along with early non-
motor features, this period is best referred to as the pre-
diagnostic phase of PD25. In this study, we identified that early PD
related biometric features could be derived from facial expres-
sions and voice parameters recorded during a reading task in a
natural situation. With the aid of suitable deep-learning classifiers,
an analysis of these features could assist in diagnosing PD in the
early motor stage of the disease. Future studies incorporating
more comprehensive biometric features, including gait analysis,
and the MDS research criteria of characteristic prodromal markers
of PD are needed to assist identifying PD patients at the earlier
stage of the disease.
An advantage of our approach was the automatic acquisition of

facial and voice features from smartphone video recordings.
Electronic devices, such as smartphones, smartwatches, and
tablets, contain several sensors that can acquire acoustic signals
and facial expressions. This availability may enable low-cost
screening in large populations where access to a neurologist is
limited. Furthermore, the ability to access data remotely could
empower neurologists to monitor patients effectively, objectively,
and as frequently as necessary. Numerous studies have shown
that information on motion activity could be harnessed with
wearable sensors26. Advances in wearable technology and the
availability of remote testing, combined with a widely available
deep-learning algorithm, could aid in objective measurements of
emerging subtle motor dysfunction in those at risk of PD. Indeed,
our approach to speech and voice analyses could be combined
with monitoring devices for detecting symptoms of RBD, gait, and
motion. In the future, these techniques could be combined in an
integrated multimodal biometric sensing platform for early PD
detection and for monitoring PD progression.
Our study had several limitations. First, some patients with PD

had jaw and voice tremors, but we did not subgroup these
patients. Therefore, the inclusion of these patients might have
partially affected the analyses of voice and speech. Second, we did
not correlate the variance or features of speech and facial
expressions with limb movement difficulties in patients with PD.

However, impairments in speech prosody have not been clearly
correlated with motor symptom scores, disease duration. or in
particular, disease progression over time27. Third, we exclude PD
patients with depression because the existence of depression has
been shown to affect the speech features28, which would
contribute to be a confounding factor in this analysis. However,
depression is a common non-motor feature or even a prodromal
feature of PD, future studies incorporating PD patients with or
without depression would provide a more comprehensive picture
to assist the early diagnosis of PD. Finally, we did not record serial
acoustic or facial expression changes over time. Thus, we could
not exclude the possibility that variability due to daily vocal and
facial feature fluctuations could have influenced the results.
In conclusion, our results showed that the integrated biometric

features of voice and facial expressions combined with deep-
learning classifiers could assist the identification of early-stage PD
patients from aged controls. In future, a multi-faceted biometric
implemented in a longitudinal prospective study is needed to
validate the potential of biometric markers in assisting with the
early diagnosis of PD.

METHODS
Subjects
We recruited 371 participants, including 186 patients with PD and
185 healthy controls, from National Taiwan University Hospital.
PD was diagnosed according to the United Kingdom PD Society
Brain Bank Clinical Diagnostic Criteria29. Controls were neurolo-
gically unaffected participants who were spouses or accompany-
ing friends of the patients with PD. Participants underwent
otolaryngologic evaluations, to exclude hearing loss and other
non-neurologic disorders that might affect the vocal cords. They
also underwent ophthalmologic evaluations, to exclude ophthal-
mologic disorders that could impair visual acuity. Participants
were excluded when they were illiterate, had dementia (defined
as a score <20 on the Montreal Cognitive Assessment scale)30, or
had co-morbid depressive symptoms, assessed with the Move-
ment Disorder Society-Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS), part I31. The severity of motor symptoms in
patients with PD was evaluated with the MDS-UPDRS part III
motor score31 and with Hoehn–Yahr staging32. Early-stage PD was
defined as a Hoehn-Yahr stage <3, and advanced-staged PD was
defined as a Hoehn-Yahr stage ≥3. All participants provided
written informed consent and the institute of ethics board
committee of National Taiwan University Hospital approved
the study.
We grouped data from 186 patients with PD and 185 controls

into a training set (112 PD patients during the “on” phase and 111
controls) and a validation set (74 patients during the “off” PD
phase [n= 50] or drug-naïve patients with PD [n= 24] and 74
controls). The “on” and “off” phase were defined within 3 h and
more than 12 h after the last dose of dopaminergic medication
individually. The validation group assignment was based on
whether an anti-parkinsonism medication effect was evident in
patients with PD, when they underwent the voice and facial
expression recordings.
Patients with idiopathic PD can respond well to levodopa

therapy. In those cases, during the “on” phase, motor function
may be similar to that observed in healthy aged individuals.
Therefore, patients in the “on” phase of PD are more difficult to
differentiate from controls than patients in the “off” phase of PD.
Hence, we trained the model with the features derived during the
“on“ phase that could differentiate PD patients from healthy
controls. We reasoned that a model that could discriminate
patients in the “on” phase of PD from controls might show optimal
diagnostic performance in identifying drug-naïve patients with PD
from healthy, aged individuals, in a real-world situation.
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Accordingly, the validation cohort was an independent cohort of
patients in the “off” PD phase, which mimicked the drug naïve
state. These patients were compared to an independent age- and
sex-matched healthy control group.

Experimental procedures
Both the script and the smartphone (iPhone 8 plus, Apple Inc.)
were placed in front of the participant and the distance between
the smartphone and the participant is 35 cm, which can record the
voice and facial expression clearly (Fig. 3a). Experimental
procedures are shown schematically in Fig. 3.

Facial expression recordings and feature descriptions
Video recordings were performed by SJCAM SJ4000 (SJCAM
Limited Co., Ltd.). Participants’ facial expressions were recorded
when they were reading. Facial landmarks were extracted from
these video recordings with Google MediaPipe Face Mesh (https://
google.github.io/mediapipe/solutions/face_mesh.html).
Six key eye- and mouth-related features were calculated

automatically based on the facial landmarks (Fig. 4a). These
features were analyzed individually on both sides of the face. The
eye-blinking feature was evaluated with various different rate
thresholds. The mouth-related features included the mouth
height/width variance; the mouth angle variance; the mouth-to-

Fig. 3 Schematic representation of the experimental paradigm. The written consent was obtained from the participant for publication of
the photograph.
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eye distance variances; and the peri-oral area movement
variances. These features are defined below.

1. Eye blinking (with different thresholds): the total time spent
blinking the eyes during the 30-s recordings. We applied the

Fig. 4 Voice and facial expression features analyzed in this study. a The diagram illustrates the facial features extracted from facial
landmarks with Google Media Pipe Face Mesh. These features were: eye blinking (EAR), mouth to eye distance variance, mouth height and
width movement variances, peri-oral area movement variance, and mouth angle variance. b The voice recording is divided into volume and
pitch features.
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eye aspect ratio (EAR) to determine whether the eye had
blinked. The EAR was calculated as the eye height divided
by the eye width. We calculated the rolling average of EAR
values within every 30 frames (1 s/frame). An eye blink was
defined as a valley with a lower value than the overall EAR
mean (thresholds: 30, 50, 70, and 90% of the mean value).
Once the total eye blinking time was acquired, the value
was divided by the total frame number.

2. Mouth to eye distance variance (right/left): we summed the
changes between the current and previous frames in the
distances from the eye corner landmark to the mouth corner
landmark on each side. This sum was divided by the face
width and the total frame number.

3. Mouth height variance: we summed the changes between
the current and previous frames in the distances from the
upper lip to the lower lip. This sum was divided by the face
width and the total frame number.

4. Mouth width movement variance: we summed the changes
between the current and previous frames in the distance
between the mouth corners. This sum was divided by the
face width and total frame number.

5. Mouth angle variance: we summed the changes between the
current and previous frames in the mouth lip cross angle. The
angle was calculated from two lines: a horizontal line drawn
through both corners of the mouth (mouth width) and a
vertical line drawn from the upper lip to the lower lip (mouth
height). The sum was divided by the total frame number.

6. Peri-oral area movement variance (right/left): We selected 6
points near the mouth and jaw area. A distance was drawn to
each point from the center of the nose. The distance change
was calculated by subtracting the distance in the current
frame from that in the previous frame, and dividing by the
face width. We summed the distance changes for all six
points, and divided by the total frame number.

The mouth to eye distance variance and the peri-oral area
movement variance both had right and left values, and the eye
blinking feature had four different thresholds. Therefore, we
included 20 total features, including age and sex, in the model.

Voice recordings and feature descriptions
Participants were asked to read an article containing 500 words. Voice
samples were recorded in linear PCM format (.wav) at a sampling rate
of 44.1 kHz with a 24-bit sample size. The signal was subsequently
converted to 44.1-kHz and 16-bit in a linear PCM format.
For the voice analysis, we focused on volume and pitch features

that might discriminate patients with PD from controls (Fig. 4b).
Volume represents the loudness of the audio signal, which is
correlated to the amplitude of the signals. Pitch represents the
vibration rate of audio signals, which can be represented by the
fundamental frequency, or equivalently, the reciprocal of the
fundamental period of the voice audio signals. Six voice-related
features were analyzed, including reading time, phonetic score,
pause percentage, voice volume variance, average pitch, and pitch
variance. These six voice features are defined below.

1. Reading time: the time between starting and finishing
reading a paragraph.

2. Phonetic score: a phonetic score was given for every
participant based on reading the paragraph. The phonetic
scores were calculated (https://ss.mirlab.org/) with the
acoustic model, and articulatory scores were calculated
with the articulatory model.

3. Pause percentage: the percentage of time that a participant
paused when he/she read the paragraph. First, we
performed frame blocking, where a stream of audio signals
was converted to a set of frames. The time duration of each
frame was set at 25 milliseconds. For each participant, when

the volume of a frame was lower than the threshold, the
frame was counted as a pause. This threshold was smaller
than the average volume of all audio signals. When the
average volume of a participant was larger than 100, we set
the threshold to 30. Otherwise, the threshold was set to 20.

4. Volume variance: the difference between the average
volume of the first half of the audio signals and the average
volume of the second half of audio signals, for each
participant. The volume variance was computed as follows:

Volume variance ¼
the average volume of the first half � the average volume of the second half

the total average volume

(1)

A negative value indicated that the volume increased over
time. In contrast, a small value indicated little change in the
volume.

5. Average pitch: Pitch is an auditory sensation in which a
listener assigns musical tones to relative positions on a
musical scale, based primarily on their perception of the
vibration frequency. For the pitch feature, we set the frame
size to 10ms. We created a pitch detection algorithm for
audio signals by computing the number of zero-crossings
during each frame. A zero-crossing is a point where the sign
of a mathematical function changes (e.g., from positive to
zero to negative or from negative to zero to positive). This
term is commonly used in electronics, mathematics, and
acoustics processing.
To calculate the average pitch, we computed the average

time spent on each audio signal over the total number of
frames, as follows:

Average pitch ¼
Pn

t¼1 CZ tð Þ
n

(2)

where n is the total number of frames for an audio signal,
and CZ(t) is the number of times that the signal crossed the 0
level reference (i.e., zero-crossing) during the time (t) of
the frame.

6. Pitch variance: this feature was defined as follows:

Pitch variance ¼
Pn

r¼1 CZ rð Þ � CZ r � 1ð Þj j
n

(3)

Feature selection and machine-learning analysis
We applied the sequential forward feature selection algorithm to
select the most salient features for differentiating between
patients with PD and controls33. The best subset was selected
by optimizing a specified performance metric, given an arbitrary
classifier34. Multiple classifiers were applied, and each classifier
was used as the base model in sequential forward selection.
Features selected coverage percentage from each classifier was
calculated and ranked.
We then used the following classifiers: C4.5 decision tree35, k-

Nearest Neighbor36,37, support vector machine38, Naïve Bayes,
random forest39, logistic regression, gradient boosting machine
classifier40, AdaBoost41, and Light Gradient Boosting Machine42.
These nine training classifiers were compared for their perfor-
mance in terms of accuracy, precision, recall, F1-score, and the
area under the receiver operating characteristic curve (AUROC) for
binary classification. We used 10-fold cross-validation to obtain an
objective estimate of performance. The source codes for all the
classifiers are available in the science kits of application
programming interface43.
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Statistical analysis
Continuous variables are expressed as the mean ± standard
deviation. Categorical variables are expressed as numbers and
percentages. We tested the homogeneity of variances with
Levene’s test. Variables were compared with two-tailed t tests or
analysis of variance (ANOVA), when normally distributed, or with
the non-parametric t test, when assumptions of normality or
homoscedasticity were violated. The diagnostic performance of
the models was expressed as the AUROC, and 95% confidence
interval (95% CI). All statistical analyses were performed with SAS
(version 9.4, Cary, NC, USA) and Graphpad Prism (version 9.0.0, San
Diego, California USA). P-values < 0.05 were considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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