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Abstract

The purpose of this study was to detect the presence of retinitis pigmentosa (RP) based on color fundus photographs using
a deep learning model. A total of 1670 color fundus photographs from the Taiwan inherited retinal degeneration project and
National Taiwan University Hospital were acquired and preprocessed. The fundus photographs were labeled RP or normal
and divided into training and validation datasets (n=1284) and a test dataset (n=386). Three transfer learning models based
on pre-trained Inception V3, Inception Resnet V2, and Xception deep learning architectures, respectively, were developed
to classify the presence of RP on fundus images. The model sensitivity, specificity, and area under the receiver operating
characteristic (AUROC) curve were compared. The results from the best transfer learning model were compared with the
reading results of two general ophthalmologists, one retinal specialist, and one specialist in retina and inherited retinal
degenerations. A total of 935 RP and 324 normal images were used to train the models. The test dataset consisted of 193
RP and 193 normal images. Among the three transfer learning models evaluated, the Xception model had the best perfor-
mance, achieving an AUROC of 96.74%. Gradient-weighted class activation mapping indicated that the contrast between
the periphery and the macula on fundus photographs was an important feature in detecting RP. False-positive results were
mostly obtained in cases of high myopia with highly tessellated retina, and false-negative results were mostly obtained in
cases of unclear media, such as cataract, that led to a decrease in the contrast between the peripheral retina and the macula.
Our model demonstrated the highest accuracy of 96.00%, which was comparable with the average results of 81.50%, of the
other four ophthalmologists. Moreover, the accuracy was obtained at the same level of sensitivity (95.71%), as compared
to an inherited retinal disease specialist. RP is an important disease, but its early and precise diagnosis is challenging. We
developed and evaluated a transfer-learning-based model to detect RP from color fundus photographs. The results of this
study validate the utility of deep learning in automating the identification of RP from fundus photographs.
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Background

Retinitis pigmentosa (RP) is the most common type of inher-
ited retinal disease (IRD), with a worldwide prevalence of
approximately 1 in 3000-5000 [1]. Although RP is consid-
ered a rare disorder, it still affects a significant number of
patients. According to our survey in the Taiwan inherited
retinal degeneration project (TIP), approximately 60% of
the IRD patients in Taiwan exhibit the RP phenotype, and
similarly, totally more than 1 million people worldwide are
affected by RP [1]. RP patients typically suffer from progres-
sive vision loss and eventual blindness, imposing significant
psychosocial and socioeconomic burdens on both patients
and society. With the development of novel treatment
approaches such as gene and cell therapies, early detection
of patients with RP has become crucial [2, 3]. Accurately
identifying these patients allows for timely treatment and
management. Owing to the RP relative rareness compared to
other eye conditions such as age-related macular degenera-
tion (AMD) or glaucoma, first-contact health care provid-
ers may not be familiar with its symptoms. Incorrect first
impressions or misinterpretation of funduscopic findings can
lead to diagnostic errors, necessitating the development of
better screening tools.

In recent years, artificial intelligence (AI) based on deep
learning has been widely adopted for image recognition in
ophthalmology [4]. Deep learning has been applied to fun-
dus photographs and optical coherence tomography (OCT)
images to detect retinal diseases such as AMD, diabetic
retinopathy (DR), and macular edema [5-7]. Several studies
have also applied deep learning to OCT images in the clas-
sification of IRDs [8-10]. However, deep learning has not
yet been applied to color fundus photographs in the detection
of RP. This is an unmet need as fundus images are easier and
less expensive to acquire than OCT images. A deep learning
model capable of detecting RP on fundus photographs would
facilitate timely diagnosis and aid in clinical management.
Furthermore, in conjunction with portable fundus cameras,
such a model would also have applications in telemedicine
and personalized health care [11].

In this study, we applied deep learning to create a model
for automated detection of RP in fundus photographs. RP
images used in this study were acquired from the database of
our TIP project, and the corresponding normal controls were
also obtained from National Taiwan University Hospital. We
developed a transfer-learning-based model to classify the
presence of RP in these fundus images. To our knowledge,
this is the first study on the application of deep learning in
the detection of RP from color fundus images. The model
achieved high sensitivity and specificity with an AUROC
of 96.74%, thus demonstrating the utility of deep learning
in identifying RP. We further conducted error analysis and

gradient-weighted class activation mapping to identify
regions of input that are important for RP classification,
which provided insight for future research.

Methods
Subjects and Extracted Images

In this study, 1153 fundus images of RP were downloaded
from the picture archiving and communication system.
Acquisition of the RP images was approved by the Ethics
Committee of the participating institution, National Taiwan
University Hospital (Reference number: 201908089RIND).
This study is of the retrospective nature, and all used images
are fully anonymized. Normal fundus images were obtained
from both the National Taiwan University Hospital and the
Hsin-Chu Branch of National Taiwan University Hospital.
Approval from the institutional review board of the Hsin-
Chu Branch at National Taiwan University Hospital was
acquired (Reference number: 108—025-E). Signed informed
consents were obtained from all subjects. Four independent
ophthalmologists, including two general ophthalmologists,
one young retinal specialist, and one retinal and IRD special-
ist, were recruited to read the images for comparison.

Image Preprocessing

First, all images were de-identified to mask off the patient’s
personal information. As the images were captured by different
machines with different resolutions, each image was cropped
automatically to have the same height—width ratio of 1:1.75.
Deep learning models were used to learn RP features and
the corresponding classification from the entire input image.
Unimportant regions, such as regions outside of the round
boundary of the main object, were cropped out automatically.
These unimportant regions could result from artifacts generated
during image acquisition. After removing the irrelevant areas,
the images were resized to 300 x 375 pixels, with pixel values
from O to 1. Reasonable augmentations, such as image rotation
and horizontal and vertical flips, were applied to increase the
number of training images. The augmented dataset was used
only for training the Al models.

Transfer Learning Classification

In this study, we applied three different models, Inception
V3, Inception Resnet V2, and Xception. The inception
network is a deep network designed to reach performance
comparable to that of other deep networks, such as VGG16,
using fewer parameters [12].
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Transfer learning was applied to these models with initial
model weights obtained from the training on the ImageNet
dataset. The last output layer was replaced with two dense
layers for classification. The first dense layer has 1024 units,
and the second has one (for binary classification), all with
the sigmoid activation.

Furthermore, we performed various tasks with different
numbers of adaptable convolution layers. In task 1, we fixed
all convolution layers and fine-tuned the last two layers only.
In task 2, we fine-tuned top 20, 40, 60, 80 convolution layers,
etc., together with the last two layers. The loss function is
binary cross-entropy. The optimization was performed using
the Adam optimizer with a learning rate of 0.0001 and a
decay of 0.001. The models were trained for 80 epochs in
batches of 30 images per step. Fivefold cross-validation
was performed for model evaluation. We monitored the
validation accuracy during the model training, and the
model with the best validation accuracy was saved and used
for prediction on test data. All models were trained on a
computer with Ubuntu (16.04.6), Intel(R) i7-7740X CPU,
two GeForce GTX 1080 Ti 11 Gb GPU, and 62GiB system
memory.

Performance Metrics

A total of 935 RP and 324 normal images were collected
and used for training the models. An independent test
set of 193 RP images and 193 normal images was used
to evaluate the performance of the trained models.
True-positive rate (sensitivity)—false-positive rate (1
— specificity) receiver operating characteristic (ROC)
curves were plotted. By using a ROC curve, we can easily
observe the tradeoffs between sensitivity and specificity.
We can use the area under a ROC (AUROC) curve to
determine the model performance. Accuracy and F beta
score were also used for model evaluation. Accuracy is
the ratio of correctly labeled images against the total
number of images. F beta score allows weighting when
computing the harmonic mean between precision and
sensitivity, where beta=1 considers equal weighting
between precision and sensitivity and beta=3 considers
more weighting toward sensitivity. The formula for F beta
score is as follows:

precision - sensitivity

F beta score = (1 + %) -
(ﬁz ‘precision) + sensitivity

Accuracy, F-measure, and confusion matrix were com-
puted based on the optimal cutoff point on the ROC curve
with Youden’s J statistic [13]:

Youden s J statistic = sensitivity + specificity — 1
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Model Visualization and Interpretation

To visualize important features learned by the models during
training, we adopted the gradient class activation map
(grad-CAM) method. In this method, gradient information
flowing from input layers to the last convolution layer of
a convolutional neural network (CNN) is used, and coarse
heat maps of important regions in the input images are
generated [14]. For better visualization of grad-CAM, we
retrained the models with one-hot encoding to have a two-
class classification problem, with the output layer activation
of SoftMax. In fact, there is no performance difference
between the original binary classification and this two-class
classification with our RP dataset.

Results
Al Program Design and Image Collection Flow

In this study, we aim to design an Al program for diagnosing
RP using color fundus images, as shown in Fig. 1. Figure 1
A shows that the Al program loads color fundus images and
trains a CNN using the images. The CNN extracts the image
features in the intermediate hidden layers to predict the prob-
ability of the two classes of RP and normal. If the probabil-
ity of RP is high, we can suggest the patient to consult an
IRD specialist for further examination. This program has the
potential to be developed into a decision support system for
diagnosing RP in rural areas with limited medical resources,
as shown in Fig. 1B.

To train our models, we followed the procedure out-
lined in Fig. 2. The collected images (1670) consisting of
RP and normal images were separated into a training set
(960 RP and 324 normal) and a test set (193 RP and 193
normal). For training, we used Xception as the pretrained
model and performed fivefold cross-validation for model
evaluation. On the training of each fold, the best model was
obtained when the validation accuracy was maximum. The
final model was the ensemble of the best models obtained
from each fold. The final output was obtained by weighted
average of these five models. Finally, we also visualized the
important regions of the images learned by our model using
grad-CAM.

Model Selection and Fine-Tuning

To search for the best model, we trained several CNNs
(Xception, Inception V3, and Inception Resnet V2) and
applied the best model for further testing. We found that the
Xception model had the best performance in our test. The
Xception model is the most recent version in the inception
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Fig.1 Program design and usage. A Layout of our program design. B Outline of our program usage. The proposed artificial intelligence pro-
gram can be developed into a decision support system, which provides aid in rural areas with limited medical resources

network series. Figure 3A shows the model architecture,
where the input first goes through the entry and middle
flows, which is repeated eight times, and finally through the
exit flow. Convolution, separable convolution, and pool-
ing layers are applied across the whole model in different
blocks. The convolution and separable convolution layers
in the model act as an image feature extractor. A portion
of the feature map on each block is shown in gray scale in
Fig. 3B. Grad-CAM was computed using the model weights
and the feature map to visualize the importance area in the
images. The redder the region, the more significant the Al
model considers the area to be correlated with the RP traits,
as shown in Fig. 3B.

Among the three CNN models we used, Xception dem-
onstrated the best sensitivity and specificity for early detec-
tion of RP with an AUROC of 80%, better than those of
Inception V3 and Inception Resnet V2 models, as shown in
Fig. 4A, B. First, we trained the model with frozen weights
in the convolution layers based on the pretrained CNN

models. The training dataset could reach 100% accuracy,
but the validation dataset only reached about 80% accuracy,
as shown in Fig. 4C. The discrepancy between the accuracies
of the training and validation sets may indicate that overfit-
ting could occur in the constructed models in the fivefold
cross-validation. Hence, we changed the number of adapt-
able CNN layers from 20 layers up to all (126) layers and
performed another experiment using the Xception model
[15, 16]. After fine-tuning all CNN layers, the AUROC
could reach as high as 99% accuracy in both the training
and validation datasets, as shown in Fig. 4D.

Test Dataset Performance

Using the Xception model with transfer learning, we can
achieve an AUROC of 99.46% for the validation dataset.
An independent test dataset was used to evaluate the model
objectively. The accuracy, F3, and AUROC for the training,
validation, and test datasets are shown in Fig. 5. Figure 5A

@ Springer
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Fig.2 Program flowchart, which shows the acquisition of color fundus images, training and testing of the model, and model visualization and

evaluation

shows that the AUROC on our test dataset is 96.89%, which
is satisfactory for common medical applications. From the
ROC curve, an optimal cutoff threshold was selected by
Youden’s J statistic. Based on this threshold, we can measure
the accuracy, F-score, and confusion matrices, as shown in
Fig. 5B, C. The test dataset can archive an accuracy of 91.45%
and F3 of 91.66%, which are only slightly lower than those of
the validation dataset, with an accuracy of 96.65% and F3 of
96.88%. As the performance indices between the validation
and test datasets are close, we can safely assume that the
model is not likely to run into the risk of overfitting herein.

Model Interpretation and Error Analysis

Although the Xception network demonstrated the best
performance in classifying RP color fundus images, the model is

@ Springer

similar to a black box as it lacks explanation on which parts of the
images are important for the classification. In this study, we used
grad-CAM to locate the important areas for the classification
[14]. According to the results of heat maps shown in Fig. 6A, we
could observe that the “hot area” of the normal group is more
extensive, usually covered from the optic disc, vessel arcades,
to the periphery. However, the hot area of the RP group focused
mainly on the macular area. This could mean that the contrast
between the periphery and the macula is an important feature
for the identification of RP. The idea seems to be confirmed in
the false-positive and false-negative cases shown in Fig. 6B. In
our model, false-positive results were mostly obtained in cases
of high myopia with highly tessellated retina, especially in the
periphery, and false-negative results were mostly obtained in
cases of unclear media such as cataract that led to a decrease in
the contrast between the peripheral retina and the macula.
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«Fig.3 Xception model architecture visualization. A Xception model
architecture. B Feature map in hidden layers visualized in gray scale
and visualization of the gradient CAM heat map

Performance Comparison Between the Al Model
and Ophthalmologists

To test our Al model further, we compared the performance
between our Al model and that of ophthalmologists in clas-
sifying the RP cases. We randomly picked 100 (70 RP and
30 normal) images as a new test set from our datasets. These
randomly selected images were graded separately by four
domain experts, including two general ophthalmologists,

(A) Receiver operating characteristic (ROC) curve
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Fig.4 Model evaluation and hyperparameter tuning. A Receiver
operating characteristic (ROC) curve of the training dataset on three
different convolutional neural network models. B Xception model has
the highest area under ROC curve. C Xception model accuracy. D
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one young retinal specialist, and one retinal and IRD expert.
We retrained our model without all other images (excluding
these 100 images) and compared the model performance
with the grading results of the four experts. The model
could reach an AUROC of 96.14% when predicting these
randomly selected images, as shown in Fig. 7A. Moreover,
our model had the highest values of accuracy (96.00%), pre-
cision (98.53%), sensitivity (95.71%), and F3 (95.99%) when
compared with the results of the four experts, as shown in
the Table in Fig. 7B. In conclusion, our model produced
consistent and stable results in the validation and test sets.
It also compares favorably with the domain experts based on
another test set of 100 images.

(B)

Inception V3 68
Inception
Resnet V2 i
Xception 80
(D)
AUROC

AUROC, %

100
80
60
40
20
0

No 20 layers 40 layers 60 layers 80 layers All

Number of finetune layers

Change in the area under the receiver operating characteristic when
fine-tuning a different number of convolution layers of the Xception
model
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Discussion

RP is a retinal degenerative disease characterized by pro-
gressive degeneration of rod photoreceptors followed by sec-
ondary cone loss. In the middle stages of the disease, fundus
examination reveals characteristic bone spicule-like pigment
deposits. In the later stages of the disease, fundus exami-
nation reveals widespread atrophy and degeneration of the
retina. Although classic RP fundus photographs have distinct
characteristics that are easily identifiable by ophthalmolo-
gists, very early or late stages of the disease may resemble
other pathologies. Furthermore, RP is genetically heteroge-
neous, with over 100 genes implicated. The corresponding
wide range of presentations complicates diagnosis [1]. This
study aims to standardize and automate the diagnosis of RP
using deep learning-based image recognition.

Deep learning has been widely applied to ocular imag-
ing, and numerous models have demonstrated robust per-
formance in detecting various retinal diseases, such as DR
and AMD, from fundus photographs [5, 7]. However, to

(A) Receiver operating characteristic (ROC) curve

100 - — ——
F/ j:/‘
80 ‘f'
{I
i
2 60
Z
3
=
5}
40
20
Training ROC (AUC = 100.00 %)
—— Validation ROC (AUC = 99.46 %)
—— Test ROC (AUC = 96.89 %)
0 20 40 60 80 100

False positive rate

©

Percentage, %

date, the value of deep learning in the detection of RP has
not been explored. Our study applies deep learning to the
identification of RP in color fundus images, and the results
demonstrate that our deep learning-based algorithm can
differentiate RP from healthy fundi with high sensitivity
and specificity. We conducted error analysis to identify
the types of fundus images that were misclassified by our
algorithm. False-positive cases occurred predominantly in
highly myopic eyes with tessellated fundi, which can be mis-
taken for early RP. False-negative cases occurred in low-
quality fundus images, such as eyes with cataracts or corneal
scarring.

The Xception model demonstrated the best performance,
as compared to Inception V3 and Inception Resnet V2, in our
study. Next, we discuss why the Xception model performed
better than the other two models. Both Xception and Inception-
ResNet V2 are the modifications of the Inception V3 model. The
Inception-ResNet V2 model combines a residue connection and
a revised version of the Inception architecture, which increases
the model depth while retaining its computational efficiency
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Fig.5 Overall dataset performance. A Area under the receiver operat-
ing characteristic (AUROC) results in the training, validation, and test
datasets. The test dataset AUROC is slightly lower than that of the
validation or training datasets but still is more than 95%. B Confusion
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matrix of the training, validation, and test datasets. C Bar chart com-
pares the AUROC, accuracy, and F3 among the training, validation,
and test datasets
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Fig.6 Model interpretation and ( A)
error analysis. A Class activa-

tion heat maps show retinitis
pigmentosa (RP) features. B
High-myopia images are likely

Normal images

RP images

to be falsely predicted as RP,
and RP patients with cataract
have a higher chance to be clas-
sified as normal

Original

Heatmap

Original Heatmap

(B)

[17]. Similarly, the Xception model is the latest modification
in the Inception model series; it adds a residue connection into
the model and improves the Inception architectures by replacing
Inception modules with depthwise separable convolutions [18].
The separable convolution used in Xception has a major impact
on its improvement as it can potentially decouple the learning of
channel-wise and space-wise features. We assume this to be the
case because RP color fundus images show neurodegenerative
patterns both space-wise and channel-wise. The separate
learning of channel-wise and space-wise features might result

@ Springer

in better outcome of our model. Therefore, the Xception model
performs better on our dataset.

This study validates the value of applying deep learning
to the detection of RP from color fundus images. This
should be of importance as RP is a disease that may lead
to irreversible blindness, and early detection could help the
patients to seek further consultation and potential treatments.
Furthermore, RP is an inherited disease that can affect other
members in the patient’s family. Early awareness may also
assist with the family planning. However, our algorithm is
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Fig. 7 Performance comparison of our Al model and ophthalmologists. A Receiver operating characteristic curve of the randomly selected 100
images. B Table shows all evaluation performance metrics on the Al model and the results of four experts

limited as it only detects the presence of RP and does not
differentiate between RP and different causative genes; in
addition, it cannot identify the RP stage. This limitation is
due to the relatively low number of images, by deep learning
standards, used to train this model. Compared to other ocular
diseases, RP is rare, and thus data are limited. Hence, a small
dataset was used. In the future, we will consider international
collaboration to attain enough images to cover different RP
subtypes, thus expanding our algorithm scope of performance.

Our study has the following strengths. First, we utilized
the data from TIP, a comprehensive data source that has long-
term follow-up and observational data for most IRD patients
in Taiwan. Most fundus photographs used in this study
were captured using the same camera and graded by a fixed
team of retina specialists in Department of Ophthalmology,
National Taiwan University, Taiwan. The inherent problem
of CNN-based classification systems is that algorithms may
use peculiarities in image acquisition and grading to make
predictions. In this study, using images taken from the same
camera to train the algorithm mitigates the risk of the RP
classification based on imaging anomalies. However, the
homogeneity of our testing data increases the risk of overfitting;
hence, the model may perform worse when tested with images
from other sources. Further validation is still warranted in the
future. Based on our results, cross-institutional collaboration to
collect more RP images may potentially expand the algorithm
capacity for detection of different RP genotypes.

Conclusion

In this study, a deep learning-based algorithm trained using
color fundus images was demonstrated. It achieved high
sensitivity and specificity in identifying eyes with RP. To the
best of our knowledge, this is the first study to evaluate the
utility of deep learning in automating the detection of RP from
fundus photographs. Further research is needed to explore the
practicality of clinical applications of this algorithm.
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