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Abstract
The purpose of this study was to detect the presence of retinitis pigmentosa (RP) based on color fundus photographs using 
a deep learning model. A total of 1670 color fundus photographs from the Taiwan inherited retinal degeneration project and 
National Taiwan University Hospital were acquired and preprocessed. The fundus photographs were labeled RP or normal 
and divided into training and validation datasets (n = 1284) and a test dataset (n = 386). Three transfer learning models based 
on pre-trained Inception V3, Inception Resnet V2, and Xception deep learning architectures, respectively, were developed 
to classify the presence of RP on fundus images. The model sensitivity, specificity, and area under the receiver operating 
characteristic (AUROC) curve were compared. The results from the best transfer learning model were compared with the 
reading results of two general ophthalmologists, one retinal specialist, and one specialist in retina and inherited retinal 
degenerations. A total of 935 RP and 324 normal images were used to train the models. The test dataset consisted of 193 
RP and 193 normal images. Among the three transfer learning models evaluated, the Xception model had the best perfor-
mance, achieving an AUROC of 96.74%. Gradient-weighted class activation mapping indicated that the contrast between 
the periphery and the macula on fundus photographs was an important feature in detecting RP. False-positive results were 
mostly obtained in cases of high myopia with highly tessellated retina, and false-negative results were mostly obtained in 
cases of unclear media, such as cataract, that led to a decrease in the contrast between the peripheral retina and the macula. 
Our model demonstrated the highest accuracy of 96.00%, which was comparable with the average results of 81.50%, of the 
other four ophthalmologists. Moreover, the accuracy was obtained at the same level of sensitivity (95.71%), as compared 
to an inherited retinal disease specialist. RP is an important disease, but its early and precise diagnosis is challenging. We 
developed and evaluated a transfer-learning-based model to detect RP from color fundus photographs. The results of this 
study validate the utility of deep learning in automating the identification of RP from fundus photographs.
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Background

Retinitis pigmentosa (RP) is the most common type of inher-
ited retinal disease (IRD), with a worldwide prevalence of 
approximately 1 in 3000–5000 [1]. Although RP is consid-
ered a rare disorder, it still affects a significant number of 
patients. According to our survey in the Taiwan inherited 
retinal degeneration project (TIP), approximately 60% of 
the IRD patients in Taiwan exhibit the RP phenotype, and 
similarly, totally more than 1 million people worldwide are 
affected by RP [1]. RP patients typically suffer from progres-
sive vision loss and eventual blindness, imposing significant 
psychosocial and socioeconomic burdens on both patients 
and society. With the development of novel treatment 
approaches such as gene and cell therapies, early detection 
of patients with RP has become crucial [2, 3]. Accurately 
identifying these patients allows for timely treatment and 
management. Owing to the RP relative rareness compared to 
other eye conditions such as age-related macular degenera-
tion (AMD) or glaucoma, first-contact health care provid-
ers may not be familiar with its symptoms. Incorrect first 
impressions or misinterpretation of funduscopic findings can 
lead to diagnostic errors, necessitating the development of 
better screening tools.

In recent years, artificial intelligence (AI) based on deep 
learning has been widely adopted for image recognition in 
ophthalmology [4]. Deep learning has been applied to fun-
dus photographs and optical coherence tomography (OCT) 
images to detect retinal diseases such as AMD, diabetic 
retinopathy (DR), and macular edema [5–7]. Several studies 
have also applied deep learning to OCT images in the clas-
sification of IRDs [8–10]. However, deep learning has not 
yet been applied to color fundus photographs in the detection 
of RP. This is an unmet need as fundus images are easier and 
less expensive to acquire than OCT images. A deep learning 
model capable of detecting RP on fundus photographs would 
facilitate timely diagnosis and aid in clinical management. 
Furthermore, in conjunction with portable fundus cameras, 
such a model would also have applications in telemedicine 
and personalized health care [11].

In this study, we applied deep learning to create a model 
for automated detection of RP in fundus photographs. RP 
images used in this study were acquired from the database of 
our TIP project, and the corresponding normal controls were 
also obtained from National Taiwan University Hospital. We 
developed a transfer-learning-based model to classify the 
presence of RP in these fundus images. To our knowledge, 
this is the first study on the application of deep learning in 
the detection of RP from color fundus images. The model 
achieved high sensitivity and specificity with an AUROC 
of 96.74%, thus demonstrating the utility of deep learning  
in identifying RP. We further conducted error analysis and 

gradient-weighted class activation mapping to identify 
regions of input that are important for RP classification, 
which provided insight for future research.

Methods

Subjects and Extracted Images

In this study, 1153 fundus images of RP were downloaded 
from the picture archiving and communication system. 
Acquisition of the RP images was approved by the Ethics 
Committee of the participating institution, National Taiwan 
University Hospital (Reference number: 201908089RIND). 
This study is of the retrospective nature, and all used images 
are fully anonymized. Normal fundus images were obtained 
from both the National Taiwan University Hospital and the 
Hsin-Chu Branch of National Taiwan University Hospital. 
Approval from the institutional review board of the Hsin-
Chu Branch at National Taiwan University Hospital was 
acquired (Reference number: 108–025-E). Signed informed 
consents were obtained from all subjects. Four independent 
ophthalmologists, including two general ophthalmologists, 
one young retinal specialist, and one retinal and IRD special-
ist, were recruited to read the images for comparison.

Image Preprocessing

First, all images were de-identified to mask off the patient’s 
personal information. As the images were captured by different 
machines with different resolutions, each image was cropped 
automatically to have the same height–width ratio of 1:1.75. 
Deep learning models were used to learn RP features and 
the corresponding classification from the entire input image. 
Unimportant regions, such as regions outside of the round 
boundary of the main object, were cropped out automatically. 
These unimportant regions could result from artifacts generated  
during image acquisition. After removing the irrelevant areas, 
the images were resized to 300 × 375 pixels, with pixel values 
from 0 to 1. Reasonable augmentations, such as image rotation 
and horizontal and vertical flips, were applied to increase the 
number of training images. The augmented dataset was used 
only for training the AI models.

Transfer Learning Classification

In this study, we applied three different models, Inception 
V3, Inception Resnet V2, and Xception. The inception 
network is a deep network designed to reach performance 
comparable to that of other deep networks, such as VGG16, 
using fewer parameters [12].
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Transfer learning was applied to these models with initial 
model weights obtained from the training on the ImageNet 
dataset. The last output layer was replaced with two dense 
layers for classification. The first dense layer has 1024 units, 
and the second has one (for binary classification), all with 
the sigmoid activation.

Furthermore, we performed various tasks with different 
numbers of adaptable convolution layers. In task 1, we fixed 
all convolution layers and fine-tuned the last two layers only. 
In task 2, we fine-tuned top 20, 40, 60, 80 convolution layers,  
etc., together with the last two layers. The loss function is 
binary cross-entropy. The optimization was performed using 
the Adam optimizer with a learning rate of 0.0001 and a 
decay of 0.001. The models were trained for 80 epochs in 
batches of 30 images per step. Fivefold cross-validation  
was performed for model evaluation. We monitored the  
validation accuracy during the model training, and the 
model with the best validation accuracy was saved and used 
for prediction on test data. All models were trained on a 
computer with Ubuntu (16.04.6), Intel(R) i7-7740X CPU, 
two GeForce GTX 1080 Ti 11 Gb GPU, and 62GiB system 
memory.

Performance Metrics

A total of 935 RP and 324 normal images were collected 
and used for training the models. An independent test  
set of 193 RP images and 193 normal images was used 
to evaluate the performance of the trained models.  
True-positive rate (sensitivity)–false-positive rate (1 
— specificity) receiver operating characteristic (ROC) 
curves were plotted. By using a ROC curve, we can easily 
observe the tradeoffs between sensitivity and specificity.  
We can use the area under a ROC (AUROC) curve to 
determine the model performance. Accuracy and F beta 
score were also used for model evaluation. Accuracy is 
the ratio of correctly labeled images against the total 
number of images. F beta score allows weighting when 
computing the harmonic mean between precision and 
sensitivity, where beta = 1 considers equal weighting 
between precision and sensitivity and beta = 3 considers 
more weighting toward sensitivity. The formula for F beta 
score is as follows:

Accuracy, F-measure, and confusion matrix were com-
puted based on the optimal cutoff point on the ROC curve 
with Youden’s J statistic [13]:

F beta score =
(

1 + �2
)

⋅

precision ⋅ sensitivity
(

�2 ⋅ precision
)

+ sensitivity

Youden’s J statistic = sensitivity + specificity − 1

Model Visualization and Interpretation

To visualize important features learned by the models during  
training, we adopted the gradient class activation map  
(grad-CAM) method. In this method, gradient information 
flowing from input layers to the last convolution layer of  
a convolutional neural network (CNN) is used, and coarse 
heat maps of important regions in the input images are 
generated [14]. For better visualization of grad-CAM, we 
retrained the models with one-hot encoding to have a two-
class classification problem, with the output layer activation  
of SoftMax. In fact, there is no performance difference 
between the original binary classification and this two-class 
classification with our RP dataset.

Results

AI Program Design and Image Collection Flow

In this study, we aim to design an AI program for diagnosing 
RP using color fundus images, as shown in Fig. 1. Figure 1 
A shows that the AI program loads color fundus images and 
trains a CNN using the images. The CNN extracts the image 
features in the intermediate hidden layers to predict the prob-
ability of the two classes of RP and normal. If the probabil-
ity of RP is high, we can suggest the patient to consult an 
IRD specialist for further examination. This program has the 
potential to be developed into a decision support system for 
diagnosing RP in rural areas with limited medical resources, 
as shown in Fig. 1B.

To train our models, we followed the procedure out-
lined in Fig. 2. The collected images (1670) consisting of 
RP and normal images were separated into a training set 
(960 RP and 324 normal) and a test set (193 RP and 193 
normal). For training, we used Xception as the pretrained 
model and performed fivefold cross-validation for model 
evaluation. On the training of each fold, the best model was 
obtained when the validation accuracy was maximum. The 
final model was the ensemble of the best models obtained 
from each fold. The final output was obtained by weighted 
average of these five models. Finally, we also visualized the 
important regions of the images learned by our model using 
grad-CAM.

Model Selection and Fine‑Tuning

To search for the best model, we trained several CNNs 
(Xception, Inception V3, and Inception Resnet V2) and 
applied the best model for further testing. We found that the 
Xception model had the best performance in our test. The 
Xception model is the most recent version in the inception 
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network series. Figure 3A shows the model architecture, 
where the input first goes through the entry and middle 
flows, which is repeated eight times, and finally through the 
exit flow. Convolution, separable convolution, and pool-
ing layers are applied across the whole model in different 
blocks. The convolution and separable convolution layers 
in the model act as an image feature extractor. A portion 
of the feature map on each block is shown in gray scale in 
Fig. 3B. Grad-CAM was computed using the model weights 
and the feature map to visualize the importance area in the 
images. The redder the region, the more significant the AI 
model considers the area to be correlated with the RP traits, 
as shown in Fig. 3B.

Among the three CNN models we used, Xception dem-
onstrated the best sensitivity and specificity for early detec-
tion of RP with an AUROC of 80%, better than those of 
Inception V3 and Inception Resnet V2 models, as shown in 
Fig. 4A, B. First, we trained the model with frozen weights 
in the convolution layers based on the pretrained CNN 

models. The training dataset could reach 100% accuracy, 
but the validation dataset only reached about 80% accuracy, 
as shown in Fig. 4C. The discrepancy between the accuracies 
of the training and validation sets may indicate that overfit-
ting could occur in the constructed models in the fivefold 
cross-validation. Hence, we changed the number of adapt-
able CNN layers from 20 layers up to all (126) layers and 
performed another experiment using the Xception model 
[15, 16]. After fine-tuning all CNN layers, the AUROC 
could reach as high as 99% accuracy in both the training 
and validation datasets, as shown in Fig. 4D.

Test Dataset Performance

Using the Xception model with transfer learning, we can 
achieve an AUROC of 99.46% for the validation dataset. 
An independent test dataset was used to evaluate the model 
objectively. The accuracy, F3, and AUROC for the training, 
validation, and test datasets are shown in Fig. 5. Figure 5A 

Fig. 1  Program design and usage. A Layout of our program design. B Outline of our program usage. The proposed artificial intelligence pro-
gram can be developed into a decision support system, which provides aid in rural areas with limited medical resources
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shows that the AUROC on our test dataset is 96.89%, which  
is satisfactory for common medical applications. From the 
ROC curve, an optimal cutoff threshold was selected by 
Youden’s J statistic. Based on this threshold, we can measure 
the accuracy, F-score, and confusion matrices, as shown in 
Fig. 5B, C. The test dataset can archive an accuracy of 91.45% 
and F3 of 91.66%, which are only slightly lower than those of  
the validation dataset, with an accuracy of 96.65% and F3 of  
96.88%. As the performance indices between the validation 
and test datasets are close, we can safely assume that the 
model is not likely to run into the risk of overfitting herein.

Model Interpretation and Error Analysis

Although the Xception network demonstrated the best  
performance in classifying RP color fundus images, the model is 

similar to a black box as it lacks explanation on which parts of the  
images are important for the classification. In this study, we used 
grad-CAM to locate the important areas for the classification 
[14]. According to the results of heat maps shown in Fig. 6A, we 
could observe that the “hot area” of the normal group is more 
extensive, usually covered from the optic disc, vessel arcades, 
to the periphery. However, the hot area of the RP group focused 
mainly on the macular area. This could mean that the contrast 
between the periphery and the macula is an important feature 
for the identification of RP. The idea seems to be confirmed in 
the false-positive and false-negative cases shown in Fig. 6B. In 
our model, false-positive results were mostly obtained in cases 
of high myopia with highly tessellated retina, especially in the 
periphery, and false-negative results were mostly obtained in 
cases of unclear media such as cataract that led to a decrease in 
the contrast between the peripheral retina and the macula.

Fig. 2  Program flowchart, which shows the acquisition of color fundus images, training and testing of the model, and model visualization and 
evaluation
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Performance Comparison Between the AI Model 
and Ophthalmologists

To test our AI model further, we compared the performance 
between our AI model and that of ophthalmologists in clas-
sifying the RP cases. We randomly picked 100 (70 RP and 
30 normal) images as a new test set from our datasets. These 
randomly selected images were graded separately by four 
domain experts, including two general ophthalmologists, 

one young retinal specialist, and one retinal and IRD expert. 
We retrained our model without all other images (excluding 
these 100 images) and compared the model performance 
with the grading results of the four experts. The model 
could reach an AUROC of 96.14% when predicting these 
randomly selected images, as shown in Fig. 7A. Moreover, 
our model had the highest values of accuracy (96.00%), pre-
cision (98.53%), sensitivity (95.71%), and F3 (95.99%) when 
compared with the results of the four experts, as shown in 
the Table in Fig. 7B. In conclusion, our model produced 
consistent and stable results in the validation and test sets. 
It also compares favorably with the domain experts based on 
another test set of 100 images.

Fig. 3  Xception model architecture visualization. A Xception model 
architecture. B Feature map in hidden layers visualized in gray scale 
and visualization of the gradient CAM heat map

◂

Fig. 4  Model evaluation and hyperparameter tuning. A Receiver 
operating characteristic (ROC) curve of the training dataset on three 
different convolutional neural network models. B Xception model has 
the highest area under ROC curve. C Xception model accuracy. D 

Change in the area under the receiver operating characteristic when 
fine-tuning a different number of convolution layers of the Xception 
model
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Discussion

RP is a retinal degenerative disease characterized by pro-
gressive degeneration of rod photoreceptors followed by sec-
ondary cone loss. In the middle stages of the disease, fundus 
examination reveals characteristic bone spicule-like pigment 
deposits. In the later stages of the disease, fundus exami-
nation reveals widespread atrophy and degeneration of the 
retina. Although classic RP fundus photographs have distinct 
characteristics that are easily identifiable by ophthalmolo-
gists, very early or late stages of the disease may resemble 
other pathologies. Furthermore, RP is genetically heteroge-
neous, with over 100 genes implicated. The corresponding 
wide range of presentations complicates diagnosis [1]. This 
study aims to standardize and automate the diagnosis of RP 
using deep learning-based image recognition.

Deep learning has been widely applied to ocular imag-
ing, and numerous models have demonstrated robust per-
formance in detecting various retinal diseases, such as DR 
and AMD, from fundus photographs [5, 7]. However, to 

date, the value of deep learning in the detection of RP has 
not been explored. Our study applies deep learning to the 
identification of RP in color fundus images, and the results 
demonstrate that our deep learning-based algorithm can 
differentiate RP from healthy fundi with high sensitivity 
and specificity. We conducted error analysis to identify 
the types of fundus images that were misclassified by our 
algorithm. False-positive cases occurred predominantly in 
highly myopic eyes with tessellated fundi, which can be mis-
taken for early RP. False-negative cases occurred in low-
quality fundus images, such as eyes with cataracts or corneal 
scarring.

The Xception model demonstrated the best performance, 
as compared to Inception V3 and Inception Resnet V2, in our 
study. Next, we discuss why the Xception model performed 
better than the other two models. Both Xception and Inception-
ResNet V2 are the modifications of the Inception V3 model. The 
Inception-ResNet V2 model combines a residue connection and 
a revised version of the Inception architecture, which increases 
the model depth while retaining its computational efficiency 

Fig. 5  Overall dataset performance. A Area under the receiver operat-
ing characteristic (AUROC) results in the training, validation, and test 
datasets. The test dataset AUROC is slightly lower than that of the 
validation or training datasets but still is more than 95%. B Confusion 

matrix of the training, validation, and test datasets. C Bar chart com-
pares the AUROC, accuracy, and F3 among the training, validation, 
and test datasets
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[17]. Similarly, the Xception model is the latest modification 
in the Inception model series; it adds a residue connection into 
the model and improves the Inception architectures by replacing 
Inception modules with depthwise separable convolutions [18]. 
The separable convolution used in Xception has a major impact 
on its improvement as it can potentially decouple the learning of  
channel-wise and space-wise features. We assume this to be the  
case because RP color fundus images show neurodegenerative  
patterns both space-wise and channel-wise. The separate  
learning of channel-wise and space-wise features might result 

in better outcome of our model. Therefore, the Xception model 
performs better on our dataset.

This study validates the value of applying deep learning  
to the detection of RP from color fundus images. This  
should be of importance as RP is a disease that may lead 
to irreversible blindness, and early detection could help the 
patients to seek further consultation and potential treatments. 
Furthermore, RP is an inherited disease that can affect other 
members in the patient’s family. Early awareness may also 
assist with the family planning. However, our algorithm is 

Fig. 6  Model interpretation and 
error analysis. A Class activa-
tion heat maps show retinitis 
pigmentosa (RP) features. B 
High-myopia images are likely 
to be falsely predicted as RP, 
and RP patients with cataract 
have a higher chance to be clas-
sified as normal
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limited as it only detects the presence of RP and does not 
differentiate between RP and different causative genes; in 
addition, it cannot identify the RP stage. This limitation is 
due to the relatively low number of images, by deep learning 
standards, used to train this model. Compared to other ocular 
diseases, RP is rare, and thus data are limited. Hence, a small 
dataset was used. In the future, we will consider international 
collaboration to attain enough images to cover different RP 
subtypes, thus expanding our algorithm scope of performance.

Our study has the following strengths. First, we utilized 
the data from TIP, a comprehensive data source that has long-
term follow-up and observational data for most IRD patients 
in Taiwan. Most fundus photographs used in this study  
were captured using the same camera and graded by a fixed 
team of retina specialists in Department of Ophthalmology, 
National Taiwan University, Taiwan. The inherent problem  
of CNN-based classification systems is that algorithms may 
use peculiarities in image acquisition and grading to make 
predictions. In this study, using images taken from the same 
camera to train the algorithm mitigates the risk of the RP  
classification based on imaging anomalies. However, the 
homogeneity of our testing data increases the risk of overfitting;  
hence, the model may perform worse when tested with images 
from other sources. Further validation is still warranted in the 
future. Based on our results, cross-institutional collaboration to 
collect more RP images may potentially expand the algorithm 
capacity for detection of different RP genotypes.

Conclusion

In this study, a deep learning-based algorithm trained using 
color fundus images was demonstrated. It achieved high  
sensitivity and specificity in identifying eyes with RP. To the 
best of our knowledge, this is the first study to evaluate the 
utility of deep learning in automating the detection of RP from 
fundus photographs. Further research is needed to explore the 
practicality of clinical applications of this algorithm.
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