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Combining Acoustic and Multilevel Visual Features
for Music Genre Classification

MING-JU WU and JYH-SHING R. JANG, National Taiwan University

Most music genre classification approaches extract acoustic features from frames to capture timbre informa-
tion, leading to the common framework of bag-of-frames analysis. However, time-frequency analysis is also
vital for modeling music genres. This article proposes multilevel visual features for extracting spectrogram
textures and their temporal variations. A confidence-based late fusion is proposed for combining the acoustic
and visual features. The experimental results indicated that the proposed method achieved an accuracy
improvement of approximately 14% and 2% in the world’s largest benchmark dataset (MASD) and Unique
dataset, respectively. In particular, the proposed approach won the Music Information Retrieval Evaluation
eXchange (MIREX) music genre classification contests from 2011 to 2013, demonstrating the feasibility and
necessity of combining acoustic and visual features for classifying music genres.
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1. INTRODUCTION

With the rapid growth of digital music and online music services (e.g., Spotify, Groove-
shark, 7digital, and Pandora), music information retrieval (MIR) has recently emerged
as a popular field of research. In particular, music genre classification is becoming more
relevant, because genres provide useful descriptions of music [Tzanetakis and Cook
2002]. A key factor in genre classification is the use of effective features for classifica-
tion. For example, Mel-frequency cepstrum coefficients (MFCCs) [Tzanetakis and Cook
2002], octave-based spectral contrast (OSC) [Jiang et al. 2002], and low-level spectral
features [McKay 2010] are the most widely used features based on spectral analysis.
However, most approaches pertain to only the spectral characteristics of music.

On the other hand, spectrograms provide effective representations for time-frequency
analysis, because they describe the temporal change of energy distribution over fre-
quency bins. Different genres of music exhibit different temporal structures [Grosche
et al. 2012]. For instance, Pop songs typically feature a verse and chorus framework,
whereas Folk songs exhibit a strophic form [Grosche et al. 2012]. Furthermore, spec-
trograms provide unique visual texture patterns for various musical instruments [Alm
and Walker 2002], and music genres are also closely associated with types of music in-
strument [Pachet and Cazaly 2000]. Thus, spectrograms can reflect the distinct visual
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texture patterns of various genres. Although much effort has been spent on music genre
classification, few studies have focused on extracting features from spectrograms [Costa
et al. 2012; Deshpande et al. 2001; Wu et al. 2011].

This article proposes multilevel visual features (MLVFs) for extracting spectrogram
textures and their temporal variations. The MLVFs include our previously developed
song-level texture features [Wu et al. 2011], and novel beat-level texture and het-
erogeneity features. The proposed MLVFs based on the time-frequency perspective
consider beat tracking, which distinguishes the proposed approach from conventional
approaches [Fu et al. 2011]. Because acoustic features are based on spectral analy-
sis and visual features are based on time-frequency analysis, combining both types
of feature benefits music genre classification. However, combining acoustic and visual
features has rarely been attempted (only the early fusion approach was applied [Wu
et al. 2011]). Therefore, a confidence-based late fusion approach is proposed to combine
the decisions made by two individual classifiers (based on acoustic and visual features,
respectively) to achieve the final prediction.

The remainder of this article is organized as follows. Section 2 describes the re-
lated literature, and Section 3 introduces the proposed MLVFs, Section 4 explains the
proposed confidence-based late fusion for combing acoustic and visual features. The
experimental results and a conclusion to the study are presented in Sections 5 and 6,
respectively.

2. RELATED LITERATURE

Feature extraction is the basis of music genre classification [Tzanetakis and Cook
2002], which can be divided into three categories according to the temporal resolution.

(1) Frame-Level. Frame-level features are typically obtained from analysis windows of
10 to 100 ms frames, which can capture local spectral characteristics. Some of the
commonly used frame-level features are MFCCs [Tzanetakis and Cook 2002], OSC
[Jiang et al. 2002], spectral centroid, spectral rolloff, spectral flux [Fu et al. 2011],
etc.

(2) Segment-Level. Because a segment is long enough to capture the sound texture, it
is also referred to as a texture window [Tzanetakis and Cook 2002]. These features
are typically obtained from statistical measures of a segment composed of sev-
eral frames. For example, the winners of MIREX 2010 genre classification contest,
Seyerlehner et al. [2010], proposed a set of block-level features for the Cent-scale
spectrum [Goto 2003] by using various statistical operations, such as percentile
and variance.

(3) Song-Level. Song-level (or clip-level) features tend to capture global characteristics
of music. Costa et al. [2012] proposed using local binary patterns [Ojala et al.
2002] as visual features for music genre classification. Features were extracted
from three 10-s segments from the beginning, middle, and end of each original
song. Independent of Costa et al. [2012], Wu et al. [2011] also proposed song-level
texture features based on the Gabor filter bank.

Some approaches use frame or segment-level features to generate other effective
features. For example, Cao and Li [2009] (MIREX 2009 genre classification contest
winners) applied the Gaussian super vector (GSV) [Campbell et al. 2006] to music
genre classification. A Gaussian mixture model (GMM) is applied to train a universal
background model (UBM) [Reynolds et al. 2000] to capture the global timbre charac-
teristics of the frame-level features. The GSV from each music clip is then derived from
a song-specific GMM by using the maximum a posterior (MAP) adaptation [Gauvain
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Table I. Comparison of Approaches to Music Genre Classification

Aspects of comparison Previous approaches Proposed method
Temporal resolution of features Fixeda Dynamicd

Analysis unit for temporal variation All of the musicb Inter-beat intervalse

Method for combining acoustic and
visual features

Early fusionc Confidence-based late fusion

a[Costa et al. 2012; Jiang et al. 2002; Seyerlehner 2010; Seyerlehner et al. 2010; Tzanetakis and Cook
2002]
b[Lee et al. 2009]
c[Wu et al. 2011]
dBased on beat-level texture features.
eBased on beat-level heterogeneity features.

and Lee 1994] from the UBM. Because of the effectiveness of the GSV, it was applied
to represent the acoustic features in this study.1

However, the GSV is a bag-of-frames approach, which is inadequate for modeling
temporal variation. Approaches have been proposed for describing the temporal evo-
lutions of music. The multivariate autoregressive model was employed to estimate
temporal dependencies between frames by using an affine prediction scheme [Meng
et al. 2007]. Modulation spectral analysis can be applied to reveal music trends. For
example, Lee et al. [2009] proposed the modulation spectral contrast (MSC) and mod-
ulation spectral valley (MSV) to analyze the temporal variation of music. However,
relatively little research has investigated using temporal analysis to classify music
genres.

Moreover, using one type of feature may be inadequate to achieve optimal results.
Consequently, fusion approaches can be employed to combine multiple types of features.
For early fusion, multiple types of features can be directly concatenated to form a
new feature vector before classification. In late fusion, the fusion is performed after
classification. The majority vote rule, kernel-based late fusion, and probability-based
late fusion are widely used late fusion strategies. According to the majority vote rule,
the class (genre) that receives the most votes from various classifiers is selected as the
prediction. During kernel-based late fusion, multiple kernels can be integrated into one
kernel. For example, a convolution kernel and product probability kernel can be applied
for such purposes [Meng and Shawe-Taylor 2005]. The problem in probability-based
late fusion is to design a global measure that combines the probability of each class
from various classifiers. For example, two individual support vector machine (SVM)
classifiers can be trained using two types of features, and the SVM can estimate the
posterior probability of each class (genre) [Wu et al. 2004]. Several strategies, such as
Max, Product, and Sum rules, can be employed to fuse the probabilities returned by
all classifiers [Costa et al. 2012; Kittler et al. 1998]. The class with the maximal value
is then selected as the prediction. However, designing optimal late fusion strategies
remains challenging.

Table I shows a comparison of the proposed method with previous approaches used to
classify music genres. Conventional approaches for music genre classification have gen-
erally involved frame-level, segment-level, and song-level features with fixed temporal
resolutions. By contrast, in the proposed approach, the temporal resolution adopted
by beat-level texture features is dynamic instead of fixed. More specifically, beat-level
texture features are a type of segment-level feature, wherein the segment size is dy-
namically determined based on the music content. For example, a piece of music with a
fast tempo leads to shorter inter-beat interval (IBI) segments. Because IBIs are likely

1For more details on the GSV, please refer to Chen et al. [2011].

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 1, Article 10, Publication date: August 2015.



10:4 M.-J. Wu and J.-S. R. Jang

Fig. 1. MLVF flowchart.

to be the unit perceived by listeners, it is natural to use IBI-based features for genre
classification. Thus far, only a few studies have addressed beat-level features. Ellis
and Poliner [2007] used the beat-level MFCC and beat-level chroma features to assess
music similarity, whereas Pei and Hsu [2009] identified musical instruments in poly-
phonic music using the beat-level MFCC and beat-level MPEG-7 features. However, no
studies have investigated the visual features at the beat level. In addition, the proposed
beat-level heterogeneity features measure the temporal variation of IBIs contained in
music rather than measuring all aspects of music. The proposed confidence-based late
fusion is also a novel attempt for combining acoustic and visual features.

3. PROPOSED MULTILEVEL VISUAL FEATURES

This section describes the proposed MLVFs, which comprise texture and heterogeneity
features, as shown in Figure 1. The texture features are used to represent the texture
of a spectrogram from a global and local perspective (i.e., song-level and beat-level tex-
ture features). The beat-level heterogeneity features are used to represent the texture
variation of IBIs, which can also be considered a measure of temporal variation. Finally,
the texture and heterogeneity feature vectors are concatenated to form the MLVFs.

3.1. Song-Level Texture Features

A spectrogram for each music clip is computed using a short-time Fourier transform
(STFT) with a window size of 1024 samples (or 46.4 ms for a sampling rate of 22 050 Hz)
and a half overlap. Each point in the spectrogram represents the log-scale energy at a
particular time and frequency. To make the spectrogram easier to observe, the log-scale
energy is quantized to an intensity of 256 gray levels based on linear mapping.

Human perceptions of music are based on a logarithmic frequency scale, and notes
separated by an octave are perceived as harmonically equivalent [Muller et al. 2011].
Hence, octave-based sub-bands [Jiang et al. 2002] should be considered. Thus, the
spectrogram is divided into seven sub-bands, Si, according to the following octave-
based sub-bands: 0 to 200 Hz, 200 to 400 Hz, 400 to 800 Hz, 800 to 1600 Hz, 1600 to
3200 Hz, 3200 to 8000 Hz, and 8000 to 11025 Hz.
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A two-dimensional Gabor filter in the spatial domain exhibits the following general
form:

ψλ,θ (x, y) = exp

(
−x′2 + y′2

2σ 2

)
exp

(
j2πx′

λ

)
, (1)

where {
x′ = x cos θ + y sin θ
y′ = −x cos θ + y sin θ

. (2)

In Eq. (1), λ is the wavelength, which is inversely related to the frequency. Thus, a
higher wavelength corresponds to a lower frequency, causing the Gabor filter to gen-
erate a stronger response to the slowly varying components of an image. The variable
θ is the rotation degree that controls the orientation selectivity of the filter. σ is the
standard deviation of the Gaussian function, which is set to 0.5λ in this study. The
same settings for the Gabor filter bank are applied that were used in Wu et al. [2011],
with λ ∈ {2.5, 5, 7.5, 10, 12.5} and θ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}. The magnitude of
the filter response is then obtained by convolving Si with a Gabor filter,

Ri,λ,θ = ∣∣Si ∗ ψλ,θ

∣∣, (3)

where Ri,λ,θ represents the magnitude of the filter response for a particular Si with
specific λ and θ . The average and standard deviation of all elements in Ri,λ,θ can be
used to represent the global texture features of a spectrogram. The song-level texture
feature vector is represented as follows:

fsong = [
μR1,1,1 , . . . , μRi,λ,θ

, σR1,1,1 , . . . , σRi,λ,θ

]
. (4)

3.2. Beat-Level Texture Features

Each IBI texture can be represented by a set of local texture descriptors. Let Bi,λ,θ,k
represents the segment between tk and tk+1 in Ri,λ,θ , where tk is a beat instance de-
termined by the beat tracker [Ellis 2007]. Let μBi,λ,θ,k denote a local texture descriptor,
where μBi,λ,θ,k is the average of Bi,λ,θ,k. The kth IBI texture in Si, Ii,k, can be expressed
with all combinations of λ and θ .

Ii,k = [
μBi,1,1,k, μBi,1,2,k, . . . , μBi,2,1,k, μBi,2,2,k, . . . , μBi,λ,θ,k

]T
. (5)

To visualize variation of local texture descriptors, i, λ, and θ are fixed and k varied.

Li,λ,θ = [
μBi,λ,θ,1 , μBi,λ,θ,2 , . . . , μBi,λ,θ,k

]
. (6)

Figure 2(a) shows a spectrogram in S4 of a hip-hop music clip. In Figure 2(b), the
black vertical lines represent beats. The bottom annotations represent the IBI indices,
and the top annotations represent the IBI durations (in frames). The figure shows
that L4,5,0◦ correlates with the vertical components, and L4,5,90◦ correlates with the
horizontal components. This shows the effectiveness of Li,λ,θ at describing textures.
Then beat-level texture features are the average and standard deviations of Li,λ,θ .

fbeat = [
μL1,1,1 , . . . , μLi,λ,θ

, σL1,1,1 , . . . , σLi,λ,θ

]
. (7)

3.3. Beat-Level Heterogeneity Features

Music from different genres is likely to exhibit different degrees of temporal variation.
To take advantage of this characteristic, a self-distance matrix (SDM) [Paulus et al.
2010] is defined to reflect the heterogeneity measure of IBIs. Each element (x, y) in
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Fig. 2. (a) The spectrogram in S4 of a hip-hop clip. (b) Each IBI is divided by beat locations (black vertical
lines). The bottom annotations indicate the IBI indices and the top annotations indicate the IBI durations
(in frames). L4,5,0◦ correlates with the vertical components in the spectrogram, and L4,5,90◦ correlates with
the horizontal components.

SDMi represents the correlation-based distance between Ii,x and Ii,y.

SDMi(x, y) = 1 − (Ii,x − Īi,x)
T

(Ii,y − Īi,y)

|Ii,x − Īi,x||Ii,y − Īi,y|
. (8)

A greater SDMi(x, y) reflects greater dissimilarity between Ii,x and Ii,y. A substantial
difference between two adjacent elements in the SDM indicates a sharp temporal
variation between two IBIs.

Because the gradient is a vector pointing in the direction of greatest change for
each element in the SDM, it can be used to indicate temporal variation. Specifically,
the magnitude of the gradient Mi represents the changing rate, and the angle of the
gradient Ai is the direction of that change.

∇SDMi =
[
∂SDMi

∂x
,
∂SDMi

∂y

]
(9)

Mi = ‖∇SDMi‖ (10)

Ai = tan−1
(

∂SDMi/∂y
∂SDMi/∂x

)
. (11)

To identify neighbors with high absolute gradients in SDMi, the following two steps
are performed for each element (x, y) in SDMi:

Step (1). If Mi(x, y) ≥ ρ, go to Step (2).
Step (2). Select a neighbor (xg, yg) according to the direction of Ai(x, y). Set Vi(xg, yg)
to 1,

where ρ denotes the threshold of Mi and Vi denotes a Boolean matrix with all zero
elements. When Mi(x, y) ≥ ρ, this indicates that the distance rapidly changes from
(x, y) to (xg, yg), hence (xg, yg) is recorded by setting Vi(xg, yg) to 1.
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Fig. 3. (a) Example of an SDM obtained from S4 of the same music clip used in Figure 2. (b) Gradient
computed for the SDM. (c) V4 indicate the distances that rapidly change, which correlate to the variation of
IBIs.

Figure 3(a) shows an example of SDM obtained from S4 of the music clip used in
Figure 2. The darker block in the SDM represents a homogenous segment [Paulus
et al. 2010] with similar music content. The corner of the darker block along the main
diagonal indicates the novelty point, which corresponds to the transition of two music
segments [Paulus et al. 2010]. Figure 3(b) shows the gradient of the SDM. Figure 3(c)
shows V4 with ρ = 0.17. The red points tend to be located on the boundaries of blocks,
because these points indicate a rapid change in distance (which is associated with IBI
variation). Consequently, more red points in an SDM reflect a greater heterogeneity
measure.

The heterogeneity measure, hi, for SDMi is defined by

hi =
n∑

x=1

n∑
y=x+1

Vi(x, y)SDMi(x, y)
|x − y| , (12)

where hi is the weighted summation of distances that rapidly change, and the weighting
is divided by |x − y| to reduce the measure if the two IBIs (Ii,x and Ii,y) are far apart.
Only the upper triangle of the SDM should be considered because it is symmetric.

Beat-level heterogeneity features exhibit the following form;

fheterogeneity = [h1, . . . , hi] , (13)

where hi denotes the heterogeneity measure of Si, as in Eq. (12). A higher hi value indi-
cates that stronger temporal variation occurred at the ith sub-band in a spectrogram.

4. PROPOSED CONFIDENCE-BASED LATE FUSION

To perform the proposed confidence-based late fusion, two quantities from SVMs are
measured. Figure 4 shows the flowchart of this process. The prediction of the multiclass
SVM is based on the one-against-one approach. If the predicted classes of the two
multiclass SVMs, ωGSV and ωMLV F , are different, then the confidence measures of
the pair of the binary-class SVMs (corresponding to classes {ωGSV , ωMLV F}), cGSV and
cMLV F , are computed and compared to complete the final prediction. In other words, the
final prediction is taken from the binary classifier with a higher confidence measure.
Because different types of feature may exhibit different discriminative powers for a
given music clip, confidence-based late fusion selects a presumably more accurate
prediction. The following section describes the basic concept of the SVM and how to
compute its confidence measure from two confidence factors.

The goal of a binary-class SVM is to identify the hyperplane (i.e., decision bound-
ary) with the widest separation between two classes of training data, which can be
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Fig. 4. Flowchart of the proposed confidence-based late fusion.

expressed as

g(x) = wT x + b =
l∑

i=1

λi yixT
i x + b, (14)

where x is the feature vector of the test instance; w is a normal vector; b is the bias
term in the hyperplane; xi is a d-dimensional feature vector of training instances; yi
is the label (ground truth) of xi, which is set at either 1 or −1 to distinguish between
the two classes; l is the number of music clips in the training set; λi is the Lagrange
multiplier, which can be either zero or positive. Specifically, the optimal hyperplane is
the linear combination of xi with λi > 0. These xi are support vectors, which support the
maximum-margin and create the optimal hyperplane. Predicted class ω of test instance
x is either 1 or −1, depending on whether the sign of g(x) is positive or negative.

To facilitate data separation, a linear mapping φ is applied to transform feature
vector xi into a new space with high dimensionality. According to the kernel trick, the
inner product in the high-dimensional space can be expressed as kernel function K in
the original space. The optimal hyperplane can then be expressed as

g(x) =
l∑

i=1

λi yiφ(xi)
T
φ(x) + b =

l∑
i=1

λi yi K(xi, x) + b. (15)

In this study, the widely used radial basis function (RBF) kernel is applied.

K(xi, x) = exp

(
−‖xi − x‖2

2σ 2

)
. (16)

Because the corresponding linear mapping φ transforms data to the Hilbert space (i.e.,
a vector space with infinite dimensions) for classification, two confidence factors in the
Hilbert space are proposed.
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(1) Confidence Factor 1. The Distance Between the Test Instance and the Hyperplane
in the Hilbert Space. The goal of an SVM is to identify the hyperplane with the
maximal margin between two classes of training data. Consequently, the prediction
of the test instance is likely to be correct if the instance is far from the hyperplane.
The distance between the test instance and the hyperplane can be expressed as∣∣g(x)

∣∣
‖w‖ . (17)

To allow this distance to be directly comparable, Eq. (17) is normalized by dividing
it by the half margin (the distance between support vectors and the hyperplane in
the Hilbert space). This normalized distance c f1 is then used as the first confidence
factor:

c f1 =
|g(x)|
‖w‖

1
‖w‖

= |g(x)|. (18)

When c f1 < 1, the test instance is inside the margin. When c f1 = 1, the test
instance is on the margin. When c f1 > 1, the test instance is outside the margin.
Consequently, a greater c f1 tends to reflect higher confidence.

(2) Confidence Factor 2. The Distance between the Test Instance and Its Nearest Neigh-
bor in the Hilbert Space. As demonstrated in Eq. (15), a linear mapping φ transforms
data to a new space with high dimensions. The relationship between training data
xi and test instance x in the new space should also be considered. The distance
between φ(x) and φ(xi) in the Hilbert space can be computed in the original space
by using the kernel trick.

‖φ(xi) − φ(x)‖2 = (φ(xi) − φ(x))T (φ(xi) − φ(x)) (19)
= 〈φ(xi), φ(xi)〉 − 2〈φ(xi), φ(x)〉 + 〈φ(x), φ(x)〉
= K(xi, xi) − 2 K(xi, x) + K(x, x).

According to Eq. (16) and Eq. (19), the second confidence factor can be expressed as

c f2 = min
i,with xi in class ω

{
2 − 2 exp

(
−‖xi − x‖2

2σ 2

)}
. (20)

That is, c f2 computes the minimal distance between φ(x) and φ(xi), where xi are
the training instances of the same class as predicted class ω. A lower c f2 indicates
a higher similarity between φ(x) and φ(xi), and thus ω should be more convincing.
The confidence measures cGSV and cMLV F are then defined as follows:⎧⎨

⎩
cGSV = c f1 (GSV )

c f2 (GSV )

cMLV F = c f1 (MLV F)
c f2 (MLV F)

. (21)

Therefore, a greater c f1 and a smaller c f2 lead to a higher confidence. The final
decision can be determined according to

Apply ωGSV (ωMLV F) if cGSV > (≤) βcMLV F, (22)

where β represents the weighting for adjusting the importance of cGSV and cMLV F .
When cGSV is larger than βcMLV F , ωGSV is applied as the final decision. Otherwise,
ωMLV F is applied.
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5. EXPERIMENTAL RESULTS

This section describes the datasets, experimental settings, and experimental results.

5.1. Datasets

Three datasets are used in this study.

(1) Universal Background Model (UBM) Music Dataset. This dataset is used for train-
ing a robust UBM. Because the UBM dataset should be as diverse as possible [Chen
et al. 2011], 2000 music clips (previews) were randomly selected from 7digital, a
database of more than 25 000 000 songs from various genres, artists, and music
styles.2

(2) GTZAN Dataset [Tzanetakis and Cook 2002]. This dataset is the public benchmark
dataset most used in the literature. It contains 1000 clips equally distributed over
10 genre classes, namely Blues, Classical, Country, Disco, Hip Hop, Jazz, Metal,
Pop, Reggae, and Rock. In this dataset, leave-one-out cross validation is adopted
because it can provide an unbiased accuracy estimate.

(3) Unique Dataset [Seyerlehner 2010]. This dataset contains 3115 clips from 3115
unique artists spanning 14 genres: Blues (41), Country (58), Dance (766), Electronic
(187), Hip-hop (229), Jazz (310), Classical (744), Reggae (74), Rock (398), Pop (59),
Soul or Rhythm and Blues (39), Folk (38), World (146) and Spoken Word (26). The
duration of each clip is approximately 30 s. Here leave-one-out cross validation is
also applied as the performance index.

(4) MSD Allmusic Style Dataset (MASD) [Schindler et al. 2012]. This dataset contains
273 936 clips encompassing 25 genres, and is a benchmark dataset of the MSD
(Million Song Dataset) [Bertin-Mahieux et al. 2011]. Schindler et al. [2012] con-
structed this dataset to provide a large-scale comprehensive music genre dataset
that afforded researchers a realistic environment in which to test their systems. The
dataset genres include Big Band (3115), Contemporary Blues (6874), Traditional
Country (11 164), Dance (15 114), Electronica (10 987), Experimental (12 139), Folk
International (9849), Gospel (6974), Emo Grunge (6256), Hip Hop Rap (16 100),
Classic Jazz (10 024), Alternative Metal (14 009), Death Metal (9851), Heavy Metal
(10 784), Contemporary Pop (13 624), Indie Pop (18 138), Latin Pop (7699), Punk
(9610), Reggae (5232), RnB Soul (6238), Alternative Rock (12 717), College Rock
(16 575), Contemporary Rock (16 530), Hard Rock (13 276), and Neo-Psychedelia
Rock (11 057). The duration of the clips is typically 30 or 60 s.

In the current study, we apply the same stratified split used in Schindler et al.
[2012]; 2/3 of the data are used for training and 1/3 is employed for testing; artist,
album, and time filters are applied for both training and test sets. In other words,
the split prevents the same artist and album from appearing in both the training and
test sets. In addition, all music clips in the training set are released earlier than the
music clips in the test set. Because copyright laws prevent redistributing the music
clips, the dataset cannot provide audio files. Consequently, we downloaded the audio
files from 7digital according to the provided track IDs. Because some files from 7digital
were corrupted or unavailable, we obtained only 98.65% of the dataset. In particular,
1.36% and 1.35% of the music clips were unavailable in the training and test sets,
respectively.3

2http://www.7digital.com/.
3The missing tracks are listed at http://mirlab.org/users/brian.wu/genreClassification/missing tracks.txt.
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Table II. Feature Comparison

Features Feature dimension GTZAN Unique MASD
Beat-level heterogeneity features 7 33.50% 42.41% 11.68%
Song-level texture features 420 84.30% 75.31% 40.00%
Beat-level texture features 420 82.80% 74.64% 38.08%
MLVFs 847 85.70% 75.67% 40.28%

5.2. Experimental Settings

The music clips were converted to a sampling rate of 22 050 Hz with 16-bit resolution
in all the datasets. The well-known SVM tool, LIBSVM [Chang and Lin 2010], with
a RBF kernel is applied as a classifier. The cost value, C, of the SVM is set to 3.
For normalization, the MLVFs are normalized to a zero mean and unit variance. For
the parameters, ρ is empirically set to 0.05. The GSV parameters are established
according to the settings used in Wu et al. [2011], in which the MFCC dimension is 39
and the number of mixture components is 30. Therefore, the GSV dimension is 1170
(39×30 = 1170). When the early fusion for the MLVFs and GSV is performed, the new
feature vector totals 2017 dimensions (1170 + 847 = 2017).

5.3. Visual Feature Comparison

To examine the performance of the MLVFs, Table II shows a comparison of the MLVFs
with various visual features. Features are directly input into the SVM for classifica-
tion. For the beat-level heterogeneity features, the maximal accuracy is approximately
42.41%, despite its low dimensionality of 7. This implies that temporal variation is
important to music genre classification. The accuracies of the beat-level texture fea-
tures are different from, but comparable to, the accuracies of the song-level texture
features. This indicates that the local textures are also informative. Moreover, the
MLVFs achieve the most favorable performance of all the visual feature combinations.

In order to demonstrate the statistical significance of difference among visual fea-
tures, we used the Friedman test [Demšar 2006] with α = 0.05 to evaluate the differ-
ences among beat-level features, song-level texture features, and MLVFs, where the
Friedman test is a statistical test for the comparison of multiple methods over multiple
datasets. The p value of our experiment is 0.0498, which is less than 0.05, indicating
the differences among these three sets of visual features are statistically significant.

Admittedly, the improvement of MLVFs over song-level texture features is not im-
pressive in terms of the recognition rate. However, if we look at the error reduction rate
(which is commonly used in speech recognition), the improvement becomes much more
significant. More specifically, the error reduction rate is 8.92% for the GTZAN dataset,
1.46% for the Unique dataset, and 0.47% for MASD.

We can also evidence the advantage of MLVFs over song-level texture features using
visualization by projecting features onto 2D plane via linear discriminant analysis
(LDA). As shown in Figure 5, the projection of MLVFs are more separable than song-
level texture features. Consequently, it makes sense to have MLVFs as the final visual
features.

5.4. Performance Evaluation

Figure 6 shows the proposed confidence-based late fusion using various β for three
datasets. As can be seen, we tend to obtain superior results when β ≥ 1, indicating
visual features are more critical than acoustic features. For the GTZAN dataset, the
accuracy is 88.40% when β = 1, and the best accuracy is 88.60% when β = 1.35. For the
Unique dataset, the best accuracy is 77.66% when β = 1. For the MASD, the accuracy
is 41.45% when β = 1, and the best accuracy is 41.76% when β = 1.9. Consequently,
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Fig. 5. Visualization via LDA projection to 2D space for the GTZAN dataset using (a) song-level visual
features and (b) MLVFs.

Fig. 6. The proposed confidence-based late fusion using various β. (a) GTZAN dataset. (b) Unique dataset.
(c) MASD.

Table III. Comparison of the Fusion (Two Feature Types) and Nonfusion
(One Feature Type) Methods

Method GTZAN Unique MASD
MLVF+GSV (confidence-based late fusion) 88.60% 77.66% 41.76%
MLVF+GSV (probability-based late fusion by the max rule) 87.70% 76.98% 40.60%
MLVF+GSV (probability-based late fusion by the sum rule) 88.10% 77.14% 41.49%
MLVF+GSV (probability-based late fusion by the prod rule) 88.20% 77.43% 41.53%
MLVF+GSV (early fusion) 87.00% 77.50% 41.90%
MLVF 85.70% 75.67% 40.28%
GSV 80.10% 73.58% 34.73%

β = 1 can usually achieve comparable results when compared with the optimal value
of β. As a result, we can set β = 1 as the default value for unknown datasets.

To validate whether using both acoustic and visual features outperforms the recog-
nition rates when only one type of feature is used, the fusion (two types of feature) and
nonfusion methods (one type of feature) are compared. Table III illustrates the compar-
ison, in which the fusion methods outperform the nonfusion method. Because MLVFs
and GSVs are used, both spectral and time-frequency aspects are utilized, considerably
increasing the discriminating power of the features. This is vital to the success of music
genre classification.

Table III shows that the proposed confidence-based late fusion is superior to the
probability-based late fusion for three datasets. To further validate the statistical sig-
nificance, we applied the Friedman test [Demšar 2006] with α = 0.05 for all late fusion
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approaches (optimal β is applied for the confidence-based late fusion) to obtain the p
value of 0.0293 which is smaller than 0.05. Although the proposed confidence-based
late fusion can achieve results that are only comparable to those of early fusion, early
fusion increases the dimensionality of feature space, whereas confidence-based late
fusion does not. Because the memory requirement is a crucial concern when training a
classifier using a large-scale dataset, the proposed confidence-based late fusion is more
applicable for large-scale datasets than is early fusion.

5.5. Comparison with Other Approaches

Table IV shows a comparison of various approaches on various datasets. Bergstra
et al. [2010] proposed a set of spectral features. Seyerlehner et al. [2010] also used
block-level features to capture spectral characteristics. Tsunoo et al. [2011] developed
an approach to identify rhythmic and bass-line patterns. Ren and Jang [2012] ap-
plied time-constrained sequential pattern mining to discover genre-specific patterns.
Panagakis et al. [2010] proposed dimensionality reduction methods for auditory tem-
poral modulations, and Panagakis et al. [2014] proposed a joint sparse low-rank repre-
sentation. Yeh et al. [2013] proposed a dual-layer bag-of-frames feature representation.

For the GTZAN dataset, the proposed method is superior to other approaches except
for the approach of Panagakis et al. [2014]. However, the proposed method outper-
forms Panagakis et al. [2014] for the Unique dataset. This indicates our approach is
comparable to Panagakis et al. [2014]. For the MASD, the proposed method achieves
an accuracy level of 41.76%. Notably, there are 1246 (1.35%) unavailable music clips
in the test set. To ensure a fair comparison with other approaches, the proposed sys-
tem can be assumed to be unable to recognize all 1246 music clips, in which case, the
accuracy would decrease to 41.20%.4 Nevertheless, the proposed method achieves an
approximately 14% improvement. The superior performance indicates that combining
GSVs and MLVFs can be used to obtain more discriminating power than that achieve
when using conventional features.

5.6. MIREX Contest

To further demonstrate the feasibility of the proposed method, we participated in the
MIREX genre classification contest. The competition is rigorous because it evaluates
each submission based on threefold cross validation (with artist filtering) using a pri-
vate dataset that contains 7000 music clips from 10 genres. Table V shows a comparison
of the recognition rates of the winning MIREX submissions over the past seven years.5
The results are directly comparable because the same dataset (which is not available to
the public) has been used in evaluations since 2007. Our team has won the competition
for three consecutive years since 2011.6 Our submissions from 2011 to 2013 used the
same early fusion approach, but different features were used, as shown in Table V. In
particular, because we used more visual features at various levels, the performance
improved.

6. CONCLUSION AND FUTURE WORK

This article proposes the MLVFs as a new feature set for music genre classification.
The MLVFs are based on the time-frequency perspective, which includes song-level

438107/(91253+1246)=41.20%.
5We have not listed the accuracy of Philippe Hamel [Pei and Hsu 2009] in 2011 because the author declared
that the result was untrustworthy due to an unforeseen bug in his submission.
6Participation in the MIREX genre classification contest began in 2010. The 2010 submission achieved an
accuracy level of 67.57%; however, the 2010 submission differed from the method used in this study, and
therefore, is not introduced.
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Table IV. Comparison between the Proposed Approach and Other Approaches

Method Dataset Accuracy

Panagakis et al. [2014] GTZAN 89.40%
Proposed methoda GTZAN 88.60%
Seyerlehner et al. [2011] GTZAN 87.03%
Yeh et al. [2013] GTZAN 85.70%
Panagakis et al. [2010] GTZAN 84.30%
Ren and Jang [2012] GTZAN 81.70%
Bergstra et al. [2010] GTZAN 81.00%
Tsunoo et al. [2011] GTZAN 76.10%

Proposed method Unique 77.66%
Seyerlehner et al. [2011] Unique 75.86%
Panagakis et al. [2014] Unique 75.05%

Proposed method MASD 41.76%
Statistical spectrum descriptors [Lidy and Rauber 2005] MASD 27.41% [Schindler et al. 2012]
MFCCs [Rabiner and Juang 1993] MASD 24.13% [Schindler et al. 2012]
LPC [McKay 2010] MASD 17.92% [Schindler et al. 2012]
Low-level spectral features [McKay 2010] MASD 17.91% [Schindler et al. 2012]
Rhythm patterns [Lidy and Rauber 2005] MASD 17.23% [Schindler et al. 2012]

afGSV + fMLV F with confidence-based late fusion.

Table V. Comparison between the Proposed Approach and Winning Submissions in the MIREX
Genre Classification Contest (Mixed Popular Dataset)

Submission Ranking (# of submissions) Year Accuracy
Our 2013 submissionb 1 (11) 2013 76.23%
Our 2012 submissionc 1 (16) 2012 76.13%
Our 2011 submissiond [Wu et al. 2011] 1 (15) 2011 75.57%
Seyerlehner et al. [2010] 1 (24) 2010 73.64%
Cao and Li [2009] 1 (31) 2009 73.33%
MARSYAS [Tzanetakis 2007] 1 (13) 2008 66.41%
IMIRSEL M2K [Downie et al. 2005] 1 (7) 2007 68.29%

afGSV + fMLV F with confidence-based late fusion.
bfGSV + fMLV F with early fusion.
cfGSV + fsong + fbeatwith early fusion.
dfGSV + fsong with early fusion.

and beat-level texture features, and beat-level heterogeneity features. The proposed
confidence-based late fusion method successfully combines different types of feature.

The findings are summarized as follows:

(1) The experimental results show that the proposed MLVFs are more effective at
describing spectrogram characteristics than song-level texture features, indicating
the importance of using multiple temporal resolutions when design features.

(2) The experimental results indicate that the MLVFs are more critical than or equally
critical to GSVs when the confidence-based late fusion is applied. This implies that
time-frequency analysis may be more important than timbre analysis for music
genre classification.

(3) Both confidence-based late fusion and early fusion approaches can effectively com-
bine acoustic and visual features; however, the optimal fusion approach could be
dataset (genre) dependent.
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In addition to genre classification, MLVFs have been applied to music mood recog-
nition and classical composer identification in MIREX contests. Future studies should
apply MLVFs to other MIR tasks, including tag annotation and audio music similarity,
to demonstrate the feasibility of MLVFs. We should also apply dimensionality reduc-
tion analysis to find the intrinsic structure embedded in MLVFs. Because the proposed
confidence-based late fusion is a generic scheme for combining multiple decisions from
SVM classifiers using different features, we should also explore the possibility of apply-
ing the proposed fusion method to other machine learning tasks. We will also develop a
framework of probability-based late fusion based on the proposed confidence measures
as a direction of our future work.
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