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Improving Query-by-Singing/Humming by
Combining Melody and Lyric Information

Chung-CheWang and Jyh-Shing Roger Jang, Member, IEEE

Abstract—This paper proposes a novel method for improving
query-by-singing/humming systems by using both melody and
lyric information. First, singing/humming discrimination is per-
formed to distinguish between singing and humming queries,
which is achieved by considering the similarity between acoustic
models. For the humming queries, a pitch-only melody recognition
method that was ranked first among the MIREX (Music Informa-
tion Retrieval Evaluation eXchange) query-by-singing/humming
task submissions is applied. For the singing queries, a lyric
similarity is computed using speech recognition techniques; the
computed similarity is subsequently combined with the melody
distance to exploit additional information in the lyrics. Several
methods for combining melody distance and lyric similarity
are investigated. Under the optimal experimental settings, the
proposed query-by-singing/humming system achieves 51.19%
error rate reduction for the top-10 retrieved results, indicating the
feasibility of the proposed method.
Index Terms—Combined melody distance and lyric similarity,

query-by-singing/humming (QBSH), singing voice recognition,
singing/humming discrimination (SHD).

I. INTRODUCTION

Q UERY-BY-SINGING/HUMMING (QBSH) is an intu-
itive, natural user interface for music retrieval; in this in-
terface, a user can retrieve a song by singing or humming

a portion of the song. The aim of this study was to distinguish
singing from humming and to extract lyric information from the
singing input to achieve optimal accuracy. The related works are
described in the following subsections.

A. Related Work: Melody and Textual Lyric Information

Recent studies on QBSH have used melody information as
the only cue for retrieval [1]–[3], [7]. Ghias et al. [1] proposed
a query-by-humming method that involves using three charac-
ters (U, D, and S) to indicate whether the pitch of a note is
higher than, lower than, or identical to the preceding note, and an
approximate string-matching algorithm subsequently identifies

Manuscript received August 15, 2014; revised December 25, 2014; accepted
February 23, 2015. Date of publication March 06, 2015; date of current ver-
sion March 16, 2015. This work was supported in part by the National Science
Council, Taiwan, under Grant NSC 102-2221-E-002-164 -MY2. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Thushara Abhayapala.
C.-C Wang is with the Department of Computer Science, National Tsing Hua

University, Hsinchu 300, Taiwan (e-mail: geniusturtle@mirlab.org).
J.-S. R. Jang is with the Department of Computer Science and Informa-

tion Engineering, National Taiwan University, Taipei 106, Taiwan (e-mail:
jang@mirlab.org).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASLP.2015.2409735

potential song matches. McNab et al. [2] enhanced the repre-
sentation by considering rhythm information obtained from seg-
mented notes. Jang and Gao [3] proposed the first QBSH system
using Dynamic Time-Warping (DTW) over frame-based pitch
contours, which improved the retrieval performance by accom-
modating natural singing/humming. Jang et al. [7] proposed a
QBSH system that uses Linear Scaling (LS), which is a simpler
yet effective method compared with DTW.
Lyrics are a critical identifier of a song, and they can also

indicate its mood or genre. However, the use of lyrics for con-
tent-based music analysis did not begin until much later. Mayer
et al. [19] used song lyrics to improve music classification and
similarity ranking systems. Chi et al. [4] and Chen [13] used tex-
tual lyric input to enhance music mood estimation. Wang et al.
[5] proposed a music information retrieval system that used both
lyric and melody information; however, instead of extracting
lyric information from an acoustic input, the system requires
users to input the queried lyrics manually. Xu et al. [6] indicated
that acoustic distance must be considered if an acoustic input
approximates the lyric query in performing a lyric search. The
method proposed in this study involves exploiting additional in-
formation in the lyrics and decoding the queried lyrics directly
from the singing input, thus improving user convenience.

B. Related Work: Singing Voice Recognition
Suzuki et al. [12], [18] proposed a system in which singing is

used as an input for singing voice recognition. Furthermore, the
system verifies the candidates identified by the singing voice
recognition module by analyzing time-alignment information
and comparing the relation between music scores and recog-
nizedword sequences. However, the system cannot handle hum-
ming inputs, which are potentially crucial mode of retrieval in
QBSH systems. Papiotis and Purwins [14] attempted to locate
the exact position of a query input within a single music piece
by combining the warping cost of DTW based on pitch con-
tour, Mel-Frequency Cepstral Coefficients (MFCCs), and root
mean square energy. However, this approach is potentially un-
suitable for large-scale systems where storing a large number of
solo vocal clips in a database would be difficult. Mesaros and
Virtanen [20], [21] used -gram language models to perform
singing voice recognition from singing inputs. However, that
approach involved using lyrics to directly build up the recogni-
tion network, which is similar to those proposed by other studies
[12], [18]. McVicar et al. [33] improved the accuracy of lyric
transcription by evaluating repetitions in music to transcribe the
whole song. However, in the system proposed in the current
study, only a short query clip must be transcribed and repeti-
tions seldom occur.
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C. Related Work: Singing/Humming Discrimination

Because humming contains no lyric information, developing
a QBSH system using both melody and lyric information
requires a Singing/Humming Discrimination (SHD) function
to distinguish between them. Many studies have attempted to
discriminate among various types of audio signal [15]–[17].
Schuller et al. [15] applied a Support Vector Machine (SVM)
method to discriminate among noise, speech, and monophonic
singing by analyzing the statistical features of pitch contours
and duration of voiced sound/silence in continuous audio
streams. Ohishi et al. [16] combined short-term feature mea-
sures (i.e., MFCCs and their derivatives modeled by Gaussian
mixture models) and long-term feature measures based on F0
contours for discriminating between singing and speech voices,
achieving more than 90% accuracy for signals approximately
2 s in duration. Gärtner [17] proposed a system for classifying
singing/rap by using features derived from speech/singing
classification and speech emotion recognition. However, few
studies focusing on SHD were identified in a thorough review
of relevant research.

D. Related Work: Melody/Lyric Information Combination

Guo et al. [22] proposed a system similar to that proposed
in this study that accepts both singing and humming inputs.
The system uses an SVM to classify the input query as singing
or humming, and then selects candidates from a database by
using melody recognition module, such as LS, DTW, recursive
alignment [23], and earth mover’s distance [24]. The melody
recognition module locates the input query to the candidate
songs. If the input query is classified as singing, the system uses
the alignment information to dynamically build up the recogni-
tion network. The final result of a singing query, however, was
highly dependent on the accuracy of the melody recognition
module.
Regarding information combination, Suzuki et al. [12],

[18] and Guo et al. [22] used a two-stage approach to com-
bine melody and lyric information. Kao et al. [30] compared
a two-stage approach with Borda Count [31], which is a
single-winner election method. Degani et al. [32] normalized
the distances of each method and then used norm for com-
bination. In this study, various methods were attempted for
conducting distance/similarity combination, including different
methods of normalization and weight adjustment.

E. Proposed System

The QBSH system proposed in this study uses lyric and
melody information independently to improve the system ac-
curacy. An SHD function is used to detect the presence of lyric
information. If an acoustic input is classified as singing, lyric
information is used to produce a lyric similarity that is indepen-
dent of the corresponding melody distance. Subsequently, the
lyric similarity and melody distance are combined to enhance
the recognition performance.
The remainder of this paper is organized as follows. The pro-

posed QBSH system is introduced in Section II. Section III re-
ports the experimental results, and Section IV offers a conclu-
sion and recommendations for future research.

Fig. 1. The proposed system.

II. SYSTEM OVERVIEW

Fig. 1 shows a schematic diagram of the proposed QBSH
system, where the components enclosed by thicker lines rep-
resent the proposed methods. In the offline section (left-hand
side), the model similarity is assessed using acoustic models
and a test corpus, where each model is characterized using a
right-context-dependent biphone. Phone-level similarity is es-
timated directly based on the decoded result, whereas syllable-
level similarity is computed based on phone-level similarity by
using Dynamic Programming (DP). For singing voice recogni-
tion, a lexicon network is created according to the lyric database.
A Finite-State Machine (FSM) tool proposed by AT&T [8] is
used to determinize and minimize the lexicon network. In the
online section (right-hand side), SHD is first performed to deter-
mine whether the acoustic input is singing or humming. When
the input is classified as humming, the output is determined by
melody recognition alone. However, when the input is classified
as singing, the corresponding lyric information is used to com-
pute a lyric similarity. Subsequently, in the system output, po-
tentially matching songs are ranked using the combined melody
distance and lyric similarity. The following subsections describe
the system components.

A. Melody Recognition

The melody recognition module contains two main methods;
pitch extraction (from the input query) and database compar-
ison. For the pitch extraction, the system uses the unbroken pitch
determination using DP method proposed in [10], which pro-
duces a smooth continuous pitch contour that is more robust
than using autocorrelation alone.
For the database comparison method, key transposition and

tempo variation must be addressed. For key transposition, the
average pitch of the input query and each song in the database
are first computed; during comparison to a database song, the
input query is then pitch-shifted to match the database song. For
tempo variation (which is typically linear), this study applied
LS [7], which was ranked first among the MIREX2009 QBSH
tasks [11]. Assume that the input pitch vector has a duration of
seconds. The vector must be compressed or stretched to obtain
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Fig. 2. A typical example of LS.

versions of the original vector, with durations equally spaced
between and , where ( ) and ( )
are the minimal and maximal scaling factors, respectively. The
distance between the input pitch vector and a particular song
is thus the minimal distance between each vector and the song.
In Fig. 2, a -second vector is compressed/stretched to obtain
five vectors of decreasing/increasing duration based on equally
distributed increments between and . The optimal
result is obtained when the scaling factor is 1.25. Typically, for
fixed and , increasing results in higher accuracy, but
longer computation time.

B. Phone and Syllable Similarity

An intuitive approach to SHD is based on the number of
distinct phones or syllables decoded in the acoustic input. The
more distinct phones or syllables occurring in an acoustic query,
the higher the probability is that the query is singing rather
than humming. When counting the number of distinct phones
or syllables, phone or syllable similarity must be considered to
achieve more robust results [6]. The procedure for computing
phone and syllable similarity is explained as follows.
In this study, the Mandarin speech corpus TCC300 [25]

and other privately collected corpora were used to train a set
of acoustic models based on right-context-dependent biphone
HMMs (hidden Markov models). Here, 34 phones [34] were
used to construct 155 right-context-dependent biphones and
446 base syllables without tones. Acoustic models thus ob-
tained were adapted according to singing voice in this study.
The effect of adaptation is discussed in Section III.
First, a confusion matrix comprising 155 biphone models

was obtained by performing free-phone decoding on a speech
corpus [26], where element represents the number of times
phone was identified as phone . Subsequently, each row is di-
vided by its maximum to obtain a normalized confusion matrix.
The phone similarity matrix is then defined as the mean of
the normalized confusion matrix and its transpose. Accordingly,
a syllable similarity matrix composed of 446 Mandarin sylla-
bles can be computed using a DP method, as follows. Consid-
ering two syllables and , with respective phone se-
quences and , the similarity between

and is:

(1)

where the recursive formula of is

(2)

with boundary conditions

(3)

The recursive formula of is based on the concept of the
longest common subsequence; thus, .
However, if is a subset of (or vice
versa), is 1 if the denominator is ;
this result is unreasonable because and are unequal.
Consequently, must be divided by for
normalization.
Examples of syllable-level similarity are presented as

follows:
1) “Pao” and “pao” are identical; thus, the similarity is 1.
2) “Huang” and “wang” differ by one consonant; thus, the

similarity is 0.75.
3) “Han” and “hou” differ by one vowel. Because vowels

typically yield higher recognition rates than consonants do,
the similarity is relatively low; 0.0204.

4) “Huang” and “min” differ distinctly; thus, the similarity is
almost zero; 0.0007.

C. Singing/Humming Discrimination

The basic rationale of SHD is that humming typically pro-
duces fewer unique phones or syllables than singing does. Thus,
free-phone/syllable decoding is performed on the singing input
to obtain a sequence of phones or syllables. If these phones or
syllables are acoustically similar, then the effective count of
unique phones or syllables is reduced. For a decoded phone
sequence (excluding silence) comprising unique phones

, the Effective Unique Phone Count (EUPC)
implemented in this study can be defined as follows:

(4)

where is the column sum of the submatrix of corresponding
to . The Effective Unique Syllable Count (EUSC)
is defined similarly, except that the submatrix is extracted from

. A lower EUPC/EUSC indicates a relatively higher prob-
ability that an acoustic query is humming rather than singing.
In particular, if are similar in pronunciation,
then is close to and EUPC/EUSC is close to 1.
By contrast, if these phones differ markedly in pronunciation,
then is close to 1 and EUPC/EUSC is close to
Fig. 3 depicts two examples of EUPC computation. Where the
phones are pronounced similarly (left-hand side), is
high and EUPC is low. Where the difference in pronunciation
is distinct (right-hand side), is close to 1 and the
EUPC is almost equal to .
Thus, an optimal value of EUPC/EUSC can be set as a

threshold for SHD in order to minimize classification errors.
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Fig. 3. Examples of computing EUPC. The left example is the case where
phones are similar in pronunciation; the right example is the case where phones
are very different in pronunciation.

Fig. 4. Example of the recognition network for singing voice recognition.

D. Singing Voice Recognition
When an acoustic query is classified as singing, the accu-

racy of a QBSH system can be improved by applying singing
voice recognition. Because the duration of query clips is 8 s in
the corpus (MIR-QBSH) [9], the first 30 syllables of each song
are sufficient for establishing the recognition network. (Without
loss of generality, the anchor position of each query is assumed
to be the beginning of a song. When this is not the case, the an-
chor positions can be set at the onsets of phrases or notes, and a
brute-force search can be initiated.) The recognition network is
considered as an FSM, and the network is thus determinized and
minimized using the FSM tool proposed by AT&T [8]. More-
over, to handle the case of “stop in the middle of a sentence,” an
epsilon transition is inserted between each internal state and the
terminal state, as described in [12], [18]. Fig. 4 shows depicts
a network composed of the first three syllables of two songs,
where “ ” denotes the th syllable of the th
song, and “ <eps> “ denotes the epsilon transition.
Typical results of determinization and minimization are

shown in Fig. 5, where the recognition network is composed
of the following three phrases: 1) “ ” (“qing hua da xue”;
i.e., “Tsing Hua University”); 2) “ ” (“jiao tong da xue”; i.e.,
“Chiao Tung University”); and 3) “ ” (“qing chu”; i.e., “clear”).
The upper recognition network is the original one. After deter-
minization, the middle recognition network is obtained where
the identical subpaths originating from node 0 merge. After
minimization, the lower recognition network is obtained where

Fig. 5. The effect of determinization and minimization.

the identical subpaths ending at node 4 merge. Subsequently,
the number of nodes and transitions is reduced considerably,
thereby reducing the memory usage during implementation.

E. Lyric Matching and Distance/Similarity Combination
The Viterbi search can be executed over the recognition

network to obtain a decoded syllable sequence with the max-
imum likelihood. To obtain the lyric similarity, the decoded
syllable sequence is compared with the first 30 syllables of
each song; this procedure was achieved through DP instead
of using exact string matching. Specifically, the DP formula
for computing the similarity between two syllables sequences

and can be
expressed as

(5)

where is the similarity between and
; and is the similarity matrix of syllables

defined in (1). The boundary conditions are:

(6)

Thus, can be taken as a similarity between the de-
coded string from the query and the lyrics of each song in the
database. In a previous study [28], the decoded string was ob-
tained from the singing voice recognition extracted from linear
lexicons. In this study, the decoded sequence is extracted di-
rectly from the SHD to minimize the required computation.
Fig. 6 illustrates an example of distributions of melody dis-

tance and three types of lyric similarity, where the singing lyrics
are “ ” (“hao jiu hao jiu de hu shi shi ma ma gao
su wo”; i.e., “mommy told me a story about long long time
ago”); furthermore, the decoded strings for lyric matching are
extracted from the singing voice recognition module or SHD
module (using free-phone or free-syllable decoding). Because
the decoded string extracted from the singing voice recogni-
tion module is an exact subset of the corresponding song in
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Fig. 6. The distribution of distance and similarity of the decoded string “ ”
(“hao jiu hao jiu de hu shi shi ma ma gao su wo”; i.e., “mommy told me a story
about long long time ago”).

the database, the length of this string is the highest similarity
value (which is 13 in this example). However, regarding the sim-
ilarities computed using free-phone or free-syllable decoding,
because insertions occur frequently, the length of the decoded
string is typically longer, and the obtained similarity values are
generally higher. Higher values are favorable for lyric simi-
larity, whereas lower values are favorable for melody distance.
Thus, this study must design a method to combine them consis-
tently.
For a database comprising songs, the vectors (size = )

and (size = ), were defined to represent the raw lyric simi-
larity and raw melody distance measures, respectively. Accord-
ingly, this study investigated several methods for combining
and :

(7)

For a vector in (7), indicates linear normalization,
where is linearly mapped to the range [0,1] indicates
z-normalization, where is normalized to have zero mean and
unit variance; is used to raise each element in to the th
power; and the vector (size = ) represents the combined
results of one of the methods. Because indicates similarity,

or must be used in the combined formulas to convert
into a distance-like quantity.
The minimal entry in corresponds to the most likely can-

didate song when both lyric and melody information are con-
sidered. If , then only the lyric information is considered;

however, if , then only the melody information is consid-
ered. For the experiments conducted in this study, the value of
was empirically set to 0.5.

III. EXPERIMENTS

A. Experimental Setup
In this study, a public corpus MIR-QBSH [9] was used for

the experiments, where the anchor positions of all queries were
assumed to be the beginning of a song. The corpus comprised
5460 query clips, including 959 humming clips, 4299 singing
in Mandarin clips, and 202 singing in English clips. Because
the proposed speech recognition engine was designed to recog-
nize Mandarin, in this study, 5023 clips were selected from the
corpus corresponding to 35 songs in Mandarin (4299 singing
in Mandarin clips in addition to 724 humming clips belonging
to one of the 35 Mandarin songs). All clips were manually la-
beled as either singing or humming. To increase the complexity
of the comparison, 2119 noise songs from the Essen collection
[29] were added to the database; consequently, the database con-
tained 2154 songs.
First, 200 humming clips and 200 singing clips were selected

from the corpus (5023 query clips) and used as an SHD training
set. The remaining 4623 clips (4084 singing clips and 539 hum-
ming clips) were used to test the overall performance of the pro-
posed QBSH system.
Acoustic models were constructed by training with more than

150 h of Mandarin speech corpora, including TCC300 [25] and
some privately collected corpora. The test corpus for obtaining
the model similarity was Tang Poetry corpus 2002 [26] (ap-
proximately 4 h in length). The Cepstral mean normalized 12
MFCCs combined with log energy as well as their delta and ac-
celeration (MFCC_E_D_A_Z in HTK terminology) were used
as acoustic features. To facilitate the comparison of the results
with those reported in [28], the acoustic models (for SHD and
singing voice recognition) were adapted using maximum like-
lihood linear regression, where the adapted corpus is the vocal
component of the MIR-1 K data set [27] (approximately 2 h
in length). The detailed parameters for training and adapting
acoustic models were set empirically.
The following experiments were performed on a laptop with

i5-3230M CPU and 12 GB RAM. The experiments were imple-
mented in C.

B. Experimental Results of SHD
Fig. 7 shows the SHD Detection Error Tradeoff (DET) curve

of the training data at various EUPC/EUSC thresholds. In the
figure, the free-phone and free-syllable decoding results are
denoted as “FreePhn” and “FreeSyl,” respectively. Moreover,
“-Adapt” is appended to indicate usages of the adapted acoustic
models. The minimal error rate (defined as the ratio between
the number of misclassifications and total number of cases) of
each case is identified by the circles on the curve. Occasionally,
humming may contain certain pronunciations that are incom-
parable to any syllable in speech or singing; consequently,
the performance of free-syllable decoding is inferior to that
of free-phone decoding. Because the adapted corpus contains
only singing voices, predicting the overall effect on SHD is
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Fig. 7. The DET curve for SHD.

TABLE I
CONFUSION MATRIX OF SHD OVER THE TEST DATA

difficult because the adapted models are suitable for singing
but unsuitable for humming. The optimal training result was
obtained through free-phone decoding using the original (i.e.,
nonadapted) acoustic models; the minimal error rate occurs
when the EUPC threshold was 28.8541.
The thresholds that resulted in minimal errors in the training

stage were used to evaluate the test data (different thresholds
were used in different methods). Table I shows the confusion
matrix of the test data based on four decoding processes.
For “FreePhn” (threshold = 28.8541), the recognition rate is
83.06%. In particular, 15.96% of the humming clips were mis-
classified as singing, which could result in erroneous outputs
in singing voice recognition. An initial error analysis indicated
that the misclassification of some humming clips probably
resulted from contrasting variations in pronunciation (i.e.,
mixtures of “da,” “la,” “deng,” and so on) in the humming.
Regarding the singing clips, 17.07% of them were misclassified
as humming, which probably resulted from repetitive or similar
syllables in the lyrics, or from the slow tempo of the song.

Fig. 8. The top-10 melody recognition rates versus computation time.

However, the accuracy of melody recognition is already high;
thus, the misclassification of singing clips had a relatively
minor impact on the overall performance.

C. Melody Recognition Results
Both the melody recognition and lyric matching performance

levels were assessed according to the top- recognition rate, as
defined in (8): Fig. 8 depicts the top-10 melody recognition rates
versus computation time of the test data. The parameters are de-
noted as ( , , ) on the right-hand side of the points. As
shown in this figure, for fixed and , increasing re-
sults in higher accuracy but longer computation time. The pa-
rameter sets, (0.5, 2, 11) and (0.5, 2, 51), that resulted in the
lowest and highest recognition rates, respectively, were used for
the following experiments. Because and of these two
parameter sets are identical, only the resolution was used to dis-
tinguish between these two sets in the subsequent discussions.)

D. Lyric Matching Results
Table II shows the six settings for combining the SHD and

lyric string decoding methods used in this study, and Fig. 9 il-
lustrates the top-10 recognition rates for lyric matching versus
computation time of the singing clips corresponding to the six
settings shown in Table II.
As shown in this figure, because two decoding processes

(SHD and singing voice recognition) are required for “Lin”
and “Lin-Adapt,” these two settings are slower than the other
four settings. However, because the output strings from the
free-phone/syllable decoding contain more noises than the
results from using linear lexicon, the recognition rates yielded
by “Lin” and “Lin-Adapt” are considerably higher than those
obtained under the other four settings. Moreover, because
the target utterances are singing, the adapted acoustic models
are more accurate than the original (nonadapted) ones. Using
the adapted models, the recognition rates are 72.30% for
“Lin-Adapt,” 40.71% for “FreePhn-Adapt,” and 39.30% for

top recognition rate
of clips with its ground truth appearing in the top- candidates

of clips
(8)
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Fig. 9. Top-10 recognition rates of lyric matching versus computation time.

TABLE II
DESCRIPTION OF SETTINGS FOR LYRIC MATCHING

Fig. 10. Distribution of recognition results of 3473 clips for two different LS
resolutions.

“FreeSyl-Adapt.” Accordingly, these three settings were se-
lected for further experimentation.
Fig. 10 illustrates the distribution of the recognition results

of the 3473 clips classified as singing when the “Lin-Adapt”
setting was used. The top-10 accuracy of the melody recog-
nition is 82.87% and 93.61% when the LS resolutions were
set at 11 and 51, respectively. The minimum and maximum of

Fig. 11. The top-10 recognition rates of the baseline system and the nine dif-
ferent distance/similarity combination methods. The upper and lower plots cor-
respond to LS resolution equal to 11 and 51, respectively.

the scaling factors and were set to 0.5 and 2, re-
spectively. Furthermore, when the LS resolution was set at 11,
11.52% of the clips in top-10 candidates that could not be ob-
tained using melody recognition could be obtained using lyric
matching. Moreover, even when the accuracy of melody recog-
nition was high (93.61%when the LS resolution was 51), 3.63%
of the clips that could not be retrieved using melody recog-
nition could be retrieved using lyric matching, despite most
of the clips containing out-of-tune singing. These observations
demonstrate the potential advantage of combining melody and
lyric information.

E. Combined Result

Fig. 11 depicts the top-10 recognition rates of the baseline
system (which uses only melody information) and the nine dis-
tance/similarity combination methods at LS resolutions of 11
and 51, respectively. The dashed line represents the baseline
system, followed by distance/similarity combination methods
1-9 for three settings (i.e., “Lin-Adapt,” “FreePhn-Adapt,” and
“FreeSyl-Adapt”). The value of in (7) was empirically set to
0.5. According to these results, method 4 was selected for dis-
tance/similarity combination in the proposed system.
A post analysis was subsequently conducted for method 4 by

plotting the overall recognition rates against the values (Fig. 12).
At an identical LS resolution, the recognition rate of Lin-Adapt
is consistently higher than those of FreePhn-Adapt and FreeSyl-
Adapt. Apparently, the performance remained relatively similar
at LS resolutions equal of 11 and 51, provided that the value of
is within [0.4, 0.9], thereby validating the decision set the value
for at 0.5.
Fig. 13 illustrates the overall performance of the proposed

QBSH system. The top-10 recognition rates of the combined
results at an LS resolution of 11 (51) are 92.02% (96.15%)
for “Lin-Adapt,” 86.63% (94.61%) for “FreePhn-Adapt,” and
86.83% (94.70%) for “FreeSyl-Adapt,” which outperforms
the baseline system using melody information alone, which
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Fig. 12. Plots of overall recognition rates with respect to the values of p, for
two values of LS resolution.

Fig. 13. The top-N recognition rate of 4623 clips.

achieved a recognition rate of 83.65% (93.42%). The error re-
duction rates at an LS resolution of 11 (51) are 51.19% (41.45%)
for “Lin-Adapt,” 18.25% (18.09%) for “FreePhn-Adapt,” and
19.44% (19.41%) for “FreeSyl-Adapt.” The results obtained
from a sign-rank test showed that the improvement of the top-10
hit results for all the methods were at the 0.01 level, indicating
that the improvement is statistically significant. These results
show that the improvement from combining melody and lyric
information in a QBSH system.

IV. CONCLUSION AND FUTURE WORK

This paper proposes an improved QBSH system that dis-
tinguishes between singing and humming queries, and subse-
quently applies various procedures to exploit the lyric informa-
tion in the singing input. The experimental results demonstrate
the effectiveness of the proposed system, with error reduction

rates ranging from 18.09% to 51.19%, depending on the param-
eter settings.
Several directions for future research are currently being ex-

amined. A potentially desirable direction for future research
would be to incorporate multilingual speech recognition, partic-
ularly because a considerable number of famous songs in var-
ious languages have the samemelody but different lyrics. More-
over, using graphics processing unit computationmethods could
assist in improving the system performance, which would allow
the comparison of input queries to start from any point in a song
in the database.

REFERENCES
[1] A. J. Ghias, D. C. Logan, and B. C. Smith, “Query by humming-mu-

sical information retrieval in an audio database,” in Proc. ACM Multi-
media’95, San Francisco, CA, USA, 1995, pp. 216–221.

[2] R. J. McNab, L. A. Smith, I. H. Witten, C. L. Henderson, and S. J.
Cunningham, “Toward the digital music library: Tune retrieval from
acoustic input,” in Proc. ACM Digital Libraries, 1996, pp. 11–18.

[3] J.-S. R. Jang and M.-Y. Gao, “A query-by-singing system based on dy-
namic programming,” in Proc. Int. Workshop Intell. Syst. Resolutions
(8th Bellman Continuum), Hsinchu, Taiwan, Dec. 2000, pp. 85–89,
R.O.C..

[4] C.-Y. Chi, Y.-S. Wu, W.-r. Chu, D. C. Wu, J Y.-j Hsu, and R. T.-H.
Tsai, “The power of words: Enhancing music mood estimation with
textual input of lyrics,” in Proc. Int. Conf. Affective Comput. Intell.
Interact., 2009, pp. 1–6.

[5] T. Wang, D.-J. Kim, K.-S. Hong, and J.-S. Youn, “Music information
retrieval system using lyrics and melody information,” in Asia-Pacific
Conf. Inf. Process., 2009, pp. 601–604.

[6] X. Xu, M. Naito, T. Kato, and H. Kawai, “Robust and fast lyric search
based on phonetic confusion matrix,” in Proc. Int. Symp. Music Inf.
Retrieval, 2009, pp. 417–422.

[7] J.-S. R. Jang, H.-R. Lee, and M.-Y. Kao, “Content-based music re-
trieval using linear scaling and branch-and-bound tree search,” in Proc.
IEEE Int. Conf. Multimedia Expo, Aug. 2001.

[8] AT&T Labs Research, AT&T Labs Research - FSM Library [Online].
Available: http://www2.research.att.com/~fsmtools/fsm/, 2008

[9] J.-S. R. Jang, “MIR-QBSH Corpus,” MIR Lab, CS Dept, Tsing Hua
Univ, Taiwan [Online]. Available: http://mirlab.org/jang, Available at
the “MIR-QBSH Corpus” link at

[10] J.-C. Chen and J.-S. R. Jang, “TRUES: Tone Recognition Using Ex-
tended Segments,” ACM Trans. Asian Lang. Inf. Process., vol. 7, no.
3, pp. 1–23, Aug. 2008, Article 10.

[11] MIREX 2009, 2009. [Online]. Available: http://www.music-ir.org/
mirex/wiki/2009:Query-by-Singing/Humming_Results

[12] M. Suzuki, T. Hosoya, A. Ito, and S. Makino, “Music information re-
trieval from a singing voice based on verification of recognized hy-
potheses,” in Proc. Int. Soc. Music Inf. Retrieval Conf. (ISMIR’06),
2006.

[13] J.-H. Chen, “Content-based music emotion analysis and recognition,”
M.S. thesis, Comput. Sci. Dept., National Tsing Hua Univ., Hsinchu ,
Taiwan, Jun. 2006.

[14] P. Papiotis and H. Purwins, “A lyrics-matching QBH system for inter-
active environments,” in Proc. Sound and Music Comput. Conf., 2010.

[15] B. Schuller, G. Rigoll, and M. Lang, “Discrimination of speech and
monophonic singing in continuous audio streams applying multi-layer
support vector machines,” in Proc. IEEE Int. Conf. Multimedia Expo,
2004, pp. 1655–1658.

[16] Y. Ohishi, M. Goto, K. Itou, and K. Takeda, “Discrimination between
singing and speaking voices,” in Proc. INTERSPEECH, 2005, pp.
1141–1144.

[17] D. Gärtner, “Singing/Rap classification of isolated vocal tracks,”
in Proc. Int. Soc. Music Inf. Retrieval Conf. (ISMIR’10), 2010, pp.
519–524.

[18] M. Suzuki, T. Hosoya, A. Ito, and S. Makino, “Music information
retrieval from a singing voice using lyrics and melody information,”
EURASIP J. Adv. Signal Process., vol. 2007, 10.1155/2007/38727, Ar-
ticle ID 38727, 8 p..

[19] R.Mayer, R. Neumayer, and A. Rauber, “Rhythm and style features for
musical genre classification by song lyrics,” in Proc. Int. Soc. Music
Inf. Retrieval Conf. (ISMIR 2008), 2008.

[20] A. Mesaros and T. Virtanen, “Recognition of phonemes and words
in singing,” in Proc. 35th Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Dallas, TX, USA, 2010.



806 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 4, APRIL 2015

[21] A. Mesaros and T. Virtanen, “Automatic recognition of lyrics in
singing,” EURASIP J. Audio, Speech, Music Process., vol. 2010, 2010.

[22] Z. Guo, Q. Wang, G. Liu, J. Guo, and Y. Lu, “A music retrieval
system using melody and lyric,” in Proc. Multimedia Expo Workshops
(ICMEW), 2012.

[23] X. Wu, M. Li, J. Liu, J. Yang, and Y. Yan, “A top-down approach to
melody match in pitch contour for query by humming,” in Proc. Int.
Conf. Chinese Spoken Lang. Process., 2006.

[24] S. Huang, L. Wang, S. Hu, H. Jiang, and B. Xu, “Query by humming
via multiscale transportation distance in random query occurrence con-
text,” in Proc. ICME, 2008.

[25] Mandarin microphone speech corpus - TCC300, [Online]. Available:
http://www.aclclp.org.tw/use_mat.php\#tcc300edu

[26] Tang Poetry Corpus, pp. 2002–2006 [Online]. Available: http://mirlab.
org/research/corpus/tangpoetry

[27] C.-L. Hsu and J.-S. R. Jang, “On the improvement of singing voice
separation for monaural recordings using the MIR-1 K dataset,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 18, no. 2, pp. 310–319, Feb.
2010.

[28] C.-C. Wang, J.-S. R. Jang, and W. Wang, “An improved query by
singing / humming system using melody and lyrics information,” in
Proc. 11th Int. Society Music Inf. Retrieval Conf., 2010.

[29] ESAC Data Homepage, [Online]. Available: http://www.esac-data.
org/, 2014

[30] W.-T. Kao, C.-C. Wang, K. C. K. Chang, J.-S. R. Jang, andW. S. Liou,
“A two-stage query by singing/humming system on GPU,” in Proc.
Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA), 2013.

[31] T. K. Ho, J. Hull, and S. N. Srihari, “Decision combination in multiple
classifier systems,” IEEE Trans. Patter Anal. Mach. Intell., vol. 16, no.
1, pp. 66–75, 1 1994.

[32] A. Degani, M. Dalai, R. Leonardi, and P. Migliorati, “A heuristic for
distance fusion in cover song identification,” inProc 14th Int.Workshop
Image Anal.Multimedia Interactive Services (WIAMIS), 2013, pp. 1–4.

[33] M. McVicar, D. P. W. Ellis, and M. Goto, “Leveraging repetition for
improved automatic lyric transcription in popular music,” in Proc.
39th Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2014, pp.
3117–3121.

[34] X. Zhao and P. Li, “An online database of phonological representations
for mandarin chinese,” in Proc. Behavior Res. Meth., May 2009, vol.
41, no. 2, pp. 575–583.

Chung-Che Wang is a Ph.D. candidate in com-
puter science at National Tsing Hua University
(Hsinchu, Taiwan). His research interests include
query-by-singing/humming and audio fingerprinting.

Jyh-Shing Roger Jang (M’93) received his Ph.D.
from the EECS Department at the University of
California, Berkeley. He studied fuzzy logic and
artificial neural networks with Prof. Lotfi Zadeh,
the father of fuzzy logic. As of Dec. 2014, Google
Scholar shows over 9000 citations for Dr. Jang’s
seminal paper on adaptive neuro-fuzzy inference
systems (ANFIS), published in 1993. After ob-
taining his Ph.D., he joined MathWorks to coauthor
the Fuzzy Logic Toolbox (for MATLAB). He has
since cultivated a keen interest in implementing

industrial software for pattern recognition and computational intelligence.
He was a professor in the CS Dept. of National Tsing Hua Univ., Taiwan,
from 1995 to 2012. Since August 2012, he has been a professor in the CSIE
Dept. of National Taiwan Univ., Taiwan. He has published one book entitled
Neuro-Fuzzy and Soft Computing, two books on MATLAB programming,
and one book on JavaScript programming. He has also maintained toolboxes
for Machine Learning and Speech/Audio Processing, and online tutorials on
Data Clustering and Pattern Recognition and Audio Signal Processing and
Recognition. He is the conference co-chair of ISMIR (International Society for
Music Information Retrieval), Taipei, Oct 2014.
His research interests include machine learning and pattern recognition,

with applications to speech recognition/assessment/synthesis, music anal-
ysis/retrieval, image identification/retrieval, and semiconductor manufacturing
intelligence. For further information on Prof. Jang, visit http://mirlab.org/jang.


