
1949-3045 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TAFFC.2015.2427836, IEEE Transactions on Affective Computing

1

Automatic Music Mood Classification Based
on Timbre and Modulation Features

Jia-Min Ren, Ming-Ju Wu, and Jyh-Shing Roger Jang, Member, IEEE

Abstract—In recent years, many short-term timbre and long-term modulation features have been developed for content-based
music classification. However, two operations in modulation analysis are likely to smooth out useful modulation information,
which may degrade classification performance. To deal with this problem, this paper proposes the use of a two-dimensional
representation of acoustic frequency and modulation frequency to extract joint acoustic frequency and modulation frequency
features. Long-term joint frequency features, such as acoustic-modulation spectral contrast/valley (AMSC/AMSV), acoustic-
modulation spectral flatness measure (AMSFM), and acoustic-modulation spectral crest measure (AMSCM), are then computed
from the spectra of each joint frequency subband. By combining the proposed features, together with the modulation spectral
analysis of MFCC and statistical descriptors of short-term timbre features, this new feature set outperforms previous approaches
with statistical significance.

Index Terms—Music mood classification, modulation spectrogram, octave-based spectral contrast/valley, spectral flatness/crest
measure
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1 INTRODUCTION

W ITH the rapid growth of digital music available
on the Web (e.g., 7digital1) and on personal

devices, managing large music collections has become
an important and challenging issue [1]. Improve the
organization and management of music collections
usually requires the attachment of various metadata
for each music file. Traditional metadata labels, such
as artist, album, and title are insufficient for certain
applications [2], such as music therapy. Other labels,
such as music mood, which describes the inherent
emotional expression of a music clip, are more useful
in these scenarios [3].

1.1 Emotion Models and Recognition

A considerable amount of work has been dedicated
to the modeling of relationships between music and
emotions2 from different disciplines, including psy-
chology, musicology and music information retrieval
[4], [5]. Most of the proposed emotion models belong
to either the categorical approach or the dimensional
approach [4], [6]. Categorical approaches represent
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emotions as a set of categories that are clearly distinct
from each other. For example, Ekman [7] proposed
six basic emotion categories based on human facial
expressions of anger, fear, happiness, sadness, disgust,
and surprise. Another famous categorical approach is
Hevner’s affective checklist [8], where eight clusters of
affective adjectives were discovered and laid out in a
circle, as shown in Fig. 1. Each cluster includes similar
adjectives, and ”the meaning of neighboring clusters
varies in a cumulative way until reaching a contrast
in the opposite position” [5]. Hu and Downie [9] also
derived five emotion categories by clustering affective
tags of music from the All Music Guide, as shown in
TABLE 1. This emotion taxonomy has been used in
the annual MIREX3 audio music mood classification
task since 2007. (More details about this contest are
given in Section 4.1.)

While the categorical approach focuses mainly on
distinguishing different emotions from music, the
dimensional approach characterizes emotions on a
small number of emotion dimensions (usually 2 or
3) intended to represent the internal emotions of
humans. A famous emotion model is Russell’s circum-
plex model [10] which consists of a circular structure
within two dimensions of valence and arousal, as
shown in Fig. 2, where inversely correlated emotions
are placed across the circle from one another. Support-
ive evidence of this valence-arousal, circular-structure
arrangement was obtained by scaling 28 affective
terms [10]–[12].

Since a music piece may evoke more than one
emotion, the categorical approach can be cast into

3. Music Information Retrieval Evaluation eXchange, see the
website http://www.music-ir.org/mirex/wiki/MIREX HOME for
more information.
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TABLE 1
Emotion categories used in MIREX audio mood classification contest.

Cluster Mood
I rousing, passionate, confident, boisterous, rowdy
II cheerful, rollicking, fun, sweet, amiable/good natured
III poignant, literate, wistful, bittersweet, autumnal, brooding
IV silly, humorous, campy, quirky, whimsical, witty, wry
V fiery, aggressive, tense/anxious, intense, volatile, visceral

1
spiritual
lofty
awe-inspiring
dignified
scared
solemn sober
serious 3

dreamy
yielding
tender
sentimental
longing
yearning
pleading
plaintive

4
lyrical
leisurely
satisfying
serene
tranquil
quiet
soothing

2
pathetic
doleful
sad
mournful
tragic
melancholy
frustrated
depressing
gloomy
heavy
dark

5
humorous
playful
whimsical
fanciful
quaint
sprightly
delicate
light
graceful

8
vigorous
robust
emphatic
martial
ponderous
majestic
exalting

7
exhilarated
soaring
triumphant
dramatic
passionate
sensational
agitated
exciting
impetuous
restless

6
merry
joyous
gay
happy
cheerful
bright

Fig. 1. Hevner’s eight clusters of affective terms [8].
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Fig. 2. The 2D valence-arousal emotion space [10].

either a single-label classification problem [13], [14] or
a multi-label classification problem [15]. On the other
hand, the dimensional approach can be formulated as
a regression problem [16] since the output is a point
that can move continuously within the emotion space.
Regardless of whether a categorical or dimensional
approach is used, an effective feature set is always
required. Therefore, in this paper, we focus on de-
veloping a better feature set to improve the perfor-
mance of the single-label music mood classification
problem. The identified features can be used for the
dimensional approach too.

1.2 Audio Features
Many audio features have been proposed for content-
based music classification. In general, we can roughly
categorize audio features as short-term or long-term
[17]. Short-term features, which e.g., capture the tim-
bral characteristics of audio signals, are usually ex-
tracted from short time windows (also called frames).
Widely used timbre features include the zero crossing
rate, spectral centroid, spectral flux, spectral rolloff,
spectral skewness, spectral kurtosis, Mel-frequency
cepstral coefficients (MFCC), octave-based spectral
contrast (OSC) [18], [19], spectral flatness measure
(SFM) [20], spectral crest measure (SCM) [20], MPEG-
7 normalized audio spectrum envelop (NASE) [21],
etc.

On the other hand, long-term audio features, which
generally describe temporal evolutions of a music clip
or capture the inherent properties of music that hu-
mans perceive, are usually generated by aggregating
short-term features. Several methods have been pro-
posed to aggregate temporal features: statistical mo-
ment [1], [22], entropy or correlation [9], modulation
spectral analysis [10], etc. Long-term features used
to reveal the human perception of audio properties
include tempo [1], [23], melody [1], and rhythm [16].

Once audio features are extracted from music clips
of different moods, our next task is to construct
classifiers for mood classification. Several supervised
learning approaches have been proposed for music
classification of various kinds, including Gaussian
mixture models (GMM) [1], [24], hidden Markov
models (HMM) [21], Adaboost [25], linear discrimi-
nant analysis (LDA) [24], k-nearest neighbor classifier
(KNNC) [1], [24], and support vector machine (SVM)
[24], [26].

1.3 Long-Term Modulation-Based Features
Although the use of different classifiers will affect the
accuracy of music classification, feature sets have been
shown to have a more significant effect on accuracy
[27]. Therefore, some of the recent work on music
classification has focused on discovering long-term
discriminative features [28]–[30]. A representative ap-
proach is Lee et al.’s method [28] for analyzing the
modulation spectra of timbre features extracted from
short time frames. Fig. 3 shows how Lee et al. derived
modulation features from a music clip. Short-time
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statistical features to form a compact feature vector for each 
music clip. 

Our submission to the MIREX 2011 mood classification task 
was based on Lee et al.’s modulation spectral analysis of 
MFCC, OSC, and SFM/SCM, together with statistical 
descriptors of short-term timbre features for SVMs (see Section 
IV for more details). TABLE I shows the classification 
accuracy of the task from 2008 to 2012. From this table, we can 
observe that, for the mood classification task, our method not 
only won the first place at 2011 but also provides the best result 
from 2008 to 2012. 

However, in Lee et al.’s approach, the averaging process (to 
compute the representative feature spectrogram) and the 
summarization operation (to compute the mean and standard 
deviation of MSC/MSV matrices) are likely to smooth out 
useful modulation information, which may degrade 
classification performance. To deal with this problem, this 
paper proposes the use of joint frequency features computed 
from a joint frequency representation, which is defined as a 
two-dimensional representation of acoustic frequency and 
modulation frequency [19]. These joint frequency features, 
including acoustic-modulation spectral contrast/valley 
(AMSC/AMSV) and acoustic-modulation spectral 
flatness/crest measure (AMSFM/AMSCM), are computed 
from spectra of each joint frequency subband. Without taking 
the average of feature spectrograms and computing statistical 
descriptors of MSC/MSV matrices, the proposed features retain 
more modulation information for better classification. 

B. Contribution 

The contribution of this paper is twofold: 
1) We propose a new set of features that combine 

modulation spectral analysis of MFCC, OSC, and 
SFM/SCM, and statistical descriptors of short-term 
timbre features. By employing these features for SVMs, 
our submission was ranked #1 in the MIREX 2011 music 
mood classification task. In fact, the submission 
outperformed all the other submissions of the task from 
2008 to 2012. 

2) We also propose a new set of features that combines the 
proposed joint frequency features (including 
acoustic-modulation spectral contrast/valley, flatness 
measure and crest measure), together with the 
modulation spectral analysis of MFCC, and statistical 
descriptors of short-term timbre features. Experiments 
conducted on two other mood datasets demonstrate that 
the proposed feature set even outperforms our MIREX 
2011 submission. 

The remainder of this paper is organized as follows. Section 
II gives an overview of our MIREX 2011 submission and the 
proposed system. Audio features used in our MIREX 2011 
submission and the extended experiments performed for this 
paper are described in Section III. The method and results of 
our MIREX 2011 submission are respectively presented in 
Sections IV and V. Extended experiments for the proposed 
features are discussed in Section VI. Finally, we conclude this 
work and discuss future work in Section VII. 

II. SYSTEM OVERVIEW 

Fig. 2 shows a flowchart of the proposed music mood 
classification system. For the extraction of short-term timbre 
features, statistical spectrum descriptors (SSD), MFCC, OSC, 
and SFM/SCM are computed from audio frames. We then 
compute the mean and standard deviation along each feature 
dimension over all frames of a music clip to obtain a compact 
feature vector for each music clip. For the extraction of 
long-term modulation-based features, we either perform the 
modulation spectral analysis on MFCC, OSC, and SFM/SCM 
(which were used in our MIREX 2011 submission), or compute 
joint-frequency features from a joint frequency representation 
(which were used in the extended experiments reported here). 
Finally, we concatenate these statistical descriptors of 
short-term timbre features with long-term modulation-based 
features for SVMs. In the test stage, the same set of features is 
extracted from a test music clip; we then use the pre-trained 
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Fig. 1. Flowchart for extracting modulation features from a music clip 

 

TABLE I 
COMPARISON OF OUR MIREX 2011 SUBMISSION AND WINNERS OF MIREX 

GENRE(MIXED)/MOOD COMPETITIONS, 2008~2012* 

Participants 
Classification  
Task (Year) 

Accuracy 
(%) 

Rank  
(# of Submissions)

Wu and Jang  Genre (2012) 76.13 1 (16) 
Wu and Ren  Genre (2011) 75.57 1 (15) 

Our submission Genre (2011) 74.23 4 (15)
Seyerlehner et al.  Genre (2010) 73.64 1 (24)

Cao and Li  Genre (2009) 73.33 1 (31) 
Tzanetakis Genre (2008)  66.41 1 (13) 

Panda and Paiva Mood (2012) 67.83 1 (20) 
Our submission  Mood (2011) 69.50 1 (17)

Wang et al.  Mood (2010) 64.17 1 (36) 
Cao and Li  Mood (2009) 65.67 1 (33) 

Peeters  Mood (2008) 63.67 1 (13) 
*The results of these submissions are available at 
http://www.music-ir.org/mirex/wiki/20xx:MIREX20xx_Results, where xx 
denotes the year of submission (starting from 08 to 12). Note that the results of 
the same task are comparable since the committees of MIREX used the same 
training/test splits to evaluate the performance. (We have not listed 80.07% as 
the best result of the genre classification task at 2011 since the author of that 
submission has announced that the accuracy was unreliable due to unforeseen 
bug in his implementation.) 
 

Fig. 3. Flowchart for extracting modulation features
from a music clip.

timbre features, such as MFCC and OSC, are extracted
from audio frames. These frame-based timbre features
are segmented into texture windows. To capture tem-
poral variations of these music features, fast Fourier
transform (FFT) is applied along each feature dimen-
sion of a texture window to obtain a feature spec-
trogram. In this way music features with slow and
fast spectral changes are respectively represented as
non-zero terms at low and high modulation frequen-
cies. A representative feature spectrogram is further
created by averaging feature spectrograms obtained
from all texture windows. Modulation spectral con-
trasts/valleys (MSC/MSV) are then computed within
each modulation subband, reflecting the strength of
rhythm in the music. Finally, the mean and standard
deviation along each row and each column of the MSC
and MSV matrices are computed. We can then con-
catenate these statistical features to form a compact
feature vector for each music clip.

However, in Lee et al.’s approach, the averaging
process (to compute the representative feature spec-
trogram) and the summarization operation (to com-
pute the mean and standard deviation of MSC/MSV
matrices) are likely to smooth out useful modula-
tion information, which may degrade classification
performance. To deal with this problem, this paper
proposes the use of joint frequency features com-
puted from a joint frequency representation, which
is defined as a two-dimensional representation of
acoustic frequency and modulation frequency [31].
These joint frequency features, including acoustic-
modulation spectral contrast/valley (AMSC/AMSV)
and acoustic-modulation spectral flatness/crest mea-
sure (AMSFM/AMSCM), are computed from spectra
of each joint frequency subband. Without taking the
average of feature spectrograms and computing statis-

tical descriptors of MSC/MSV matrices, the proposed
features retain more modulation information for bet-
ter classification.

1.4 Contribution
The main contributions of this paper can be
summarized as follows.

1) We have proposed a feature set for music
mood classification, which combine modulation
spectral analysis of MFCC, OSC, and SFM/SCM,
and statistical descriptors of short-term timbre
features. By employing these features for
SVMs, our submission to the MIREX 2011
audio mood classification task was ranked #1.
In fact, the submission outperformed all the
other submissions of the task from 2008 to
2014, indicating the superiority of the proposed
feature sets.

2) Moreover, based on a part of the aforementioned
feature sets, we have also proposed another
new feature set that combines the newly
proposed joint frequency features (including
AMSC/AMSV and AMSFM/AMSCM), together
with the modulation spectral analysis of MFCC,
and statistical descriptors of short-term timbre
features. Experiments conducted on three
mood datasets demonstrate that the proposed
feature set even outperforms our MIREX 2011
submission with statistical significance.

The remainder of this paper is organized as follows.
Section 2 gives an overview of the proposed music
mood classification system. The used audio features
are described in Section 3. Our submission to MIREX
2011 audio mood classification contest is presented in
Section 4, where the submission was based on Lee
et al.’s modulation spectral analysis, together with
statistical descriptors of short-term timbre features
for SVMs. The proposed joint frequency features are
introduced in Section 5. A visiualization of a music
clip for the proposed joint frequency features and
Lee et al.’s modulation features is shown in Section
5.2. Experimental results for the proposed features are
discussed in Section 6. Finally, we conclude this work
and discuss future work in Section 7.

2 SYSTEM OVERVIEW

Fig. 4 shows a flowchart of the proposed audio
mood classification system. For the extraction of short-
term timbre features, statistical spectrum descriptors
(SSD), MFCC, OSC, and SFM/SCM are computed
from audio frames. We then compute the mean and
standard deviation along each feature dimension over
all frames of a music clip to obtain a compact fea-
ture vector for each music clip. For the extraction



1949-3045 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TAFFC.2015.2427836, IEEE Transactions on Affective Computing

4> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3

feature vector for each music clip. For the extraction of 
long-term modulation-based features, we either perform the 
modulation spectral analysis on MFCC, OSC, and SFM/SCM 
(which were used in our MIREX 2011 submission), or compute 
joint-frequency features from a joint frequency representation 
(which were used in the extended experiments reported here). 
Finally, we concatenate these statistical descriptors of 
short-term timbre features with long-term modulation-based 
features for SVMs. In the test stage, the same set of features is 
extracted from a test music clip; we then use the pre-trained 
SVMs to classify the test music clip. 

III. AUDIO FEATURES EXTRACTION 

This section describes the audio features used in our MIREX 
2011 submission and the extended experiments reported here. 
We first introduce short-term timbre features, followed by 
modulation spectral analysis. The proposed joint acoustic 
frequency and modulation frequency features are then 
presented. 

A. Short-Term Timbre Features 

To reliably capture spectral characteristics of audio signals, 
music clips are usually divided into short-time frames within 
which the signals can be assumed to be stationary. In our 
MIREX 2011 submission as well as the extended experiments 
reported here, we segmented music clips into 46 ms frames 
(1,024 samples with a sample rate of 22,050 Hz) with 50% 
overlap. Each frame is pre-emphasized and then multiplied by a 
Hamming window to avoid the ringing effect. Spectral analysis 
using FFT was then applied to the Hamming-windowed frame. 
To measure the spectral distribution of audio signals, statistical 
spectrum descriptors are computed from the magnitude 
spectrum. In addition, the study also uses three types of timbre 
features (including MFCC, OSC, and SFM/SCM) that have 
been proven to be effective in music classification. 

1) SSD (Statistical Spectrum Descriptors): SSD consists 
of spectral centroid (SC), spectral flux (SF), spectral rolloff 
(SR), spectral skewness (SS), and spectral kurtosis (SK). These 
features are generally used to measure the spectral shape, 
spectral change, and spectral distribution of audio signals. 
More details about these features can be found in [1] and [7]. 

2) MFCC (Mel-Frequency Cepstral Coefficients): MFCC 
was originally proposed for speech processing, and now has 
been successfully used in both speech recognition and music 
classification due to its ability to model the subjective 
frequency contents of audio signals [20]. The steps for 
computing MFCC can be found in [10]. Note that, although 
typically 13 dimensions are utilized for MFCC in speech 
representation, here we used 20-dimension MFCC to follow the 
work of [10]. We also used the energy from each frame since it 
is found to be useful for classifying music contents [5]. 

3) OSC (Octave-Based Spectral Contrast): OSC was 
proposed to represent the spectral characteristics of music 
signals [5]. Compared to MFCC, which was computed by 
averaging the spectral distribution in each Mel-scale filter, 
OSC considers the spectral peak, spectral valley and their 
difference in each octave-scale filter. In general, the spectral 
peak represents the harmonic component and the spectral 
valley corresponds to the non-harmonic component or noise in 
the spectrum. The difference between the spectral peak and 
valley roughly reflects the relative spectral distribution in 
music signals.  

To compute OSC, we use the octave-based band-pass filters 
(as listed in TABLE II) to divide the spectrum into several 
subbands. Suppose the magnitude spectra within the a-th 
subband are ,1 ,2 ,( , ,..., ),

aa a a NP P P  where Na denotes the number 

of FFT frequency bins within the a-th subband, and 
1 a A  ( A is 8 in this study). Here, without loss of generality, 
we can assume that these spectra are sorted in a descending 
order. Afterwards, to ensure these extracted features are steady, 
we estimate the strength of the spectral peak and the spectral 
valley by averaging values in the largest  percentage spectra 
and that in the smallest  percentage spectra as follows [5], 
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Fig. 2. Flowchart for the proposed music genre/mood classification system. 
 

TABLE II 
FREQUENCY RANGES OF OCTAVE-SCALE BAND-PASS FILTERS 

(SAMPLE RATE 22,050 HZ) 

Filter Number Frequency Range (Hz) 

1 [0, 100] 
2 (100, 200] 
3 (200, 400] 
4 (400, 800] 
5 (800, 1600] 
6 (1600, 3200] 
7 (3200, 6400] 
8 (6400, 11025] 

 

Fig. 4. Flowchart of the proposed audio mood classifi-
cation system.

of long-term modulation-based features, we either
perform the modulation spectral analysis on MFCC,
OSC, and SFM/SCM (which were used in our MIREX
2011 submission), or compute joint-frequency features
from a joint frequency representation (which were
used in the extended experiments, as described in
Section 6). Finally, we concatenate these statistical
descriptors of short-term timbre features with long-
term modulation-based features for SVMs. In the test
stage, the same set of features is extracted from a
test music clip; we then use the pre-trained SVMs to
classify the test music clip.

3 AUDIO FEATURE EXTRACTION

This section first describes short-term timbre features,
followed by long-term modulation spectral analysis.

3.1 Short-Term Timbre Features

To reliably capture spectral characteristics of audio
signals, music clips are usually divided into short-
time frames within which the signals can be assumed
to be stationary. In this study, we segmented music
clips into 46 ms frames (1,024 samples with a sample
rate of 22,050 Hz) with 50% overlap. Each frame is
pre-emphasized and then multiplied by a Hamming
window to deal with the ringing effect. Spectral anal-
ysis using FFT was then applied to the Hamming-
windowed frame. To measure the spectral distribution
of audio signals, statistical spectrum descriptors are
computed from the magnitude spectrum. This study
also uses three types of timbre features (including
MFCC, OSC, and SFM/SCM) that have been proven
to be effective in music classification.

• SSD (Statistical Spectrum Descriptors)
SSD consists of spectral centroid (SC), spectral
flux (SF), spectral rolloff (SR), spectral skewness
(SS), and spectral kurtosis (SK). These features
are generally used to measure the spectral shape,
spectral change, and spectral distribution of au-
dio signals. More details about these features can
be found in [1] and [20].

TABLE 2
Frequency Ranges of Octave-Scale Band-Pass Filters

(Sample Rate 22 050 Hz)

Filter Number Frequency Range (Hz)
1 [0, 100]
2 (100, 200]
3 (200, 400]
4 (400, 800]
5 (800, 1600]
6 (1600, 3200]
7 (3200, 6400]
8 (6400, 11025]

• MFCC (Mel-Frequency Cepstral Coefficients)
MFCC was originally proposed for speech pro-
cessing, and now has been successfully used in
both speech recognition and music classification
due to its ability to model the subjective fre-
quency contents of audio signals [32]. The steps
for computing MFCC can be found in [28]. Note
that, although typically 13 dimensions are uti-
lized for MFCC in speech representation, here we
used 20-dimension MFCC to follow the work of
[28]. We also used the energy from each frame
since it is found to be useful for classifying music
contents [18].

• OSC (Octave-Based Spectral Contrast)
OSC was proposed to represent the spectral char-
acteristics of music signals [18]. Compared to
MFCC, which was computed by averaging the
spectral distribution in each Mel-scale filter, OSC
considers the spectral peak (SP), spectral valley
(SV) and their difference in each octave-scale
filter. In general, the SP represents the harmonic
component and the SV corresponds to the non-
harmonic component or noise in the spectrum.
The difference between the SP and SV roughly
reflects the relative spectral distribution in music
signals.
To compute OSC, we use the octave-based band-
pass filters (as listed in TABLE 2) to divide
the spectrum into several subbands. Suppose the
magnitude spectra within the a-th subband are
(Pa,1, Pa,2, ..., Pa,Na

), where Na denotes the num-
ber of FFT frequency bins within the a-th sub-
band, and 1 ≤ a ≤ A (A is 8 in this study). Here,
without loss of generality, we can assume that
these spectra are sorted in a descending order.
Afterwards, to ensure these extracted features are
steady, we estimate the strength of the spectral
peak and the spectral valley by averaging values
in the largest α percentage spectra and that in the
smallest α percentage spectra as follows [18],

Peak (a) = log

(
1

αNa

αNa∑
i=1

Pa,i

)
, (1)
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V alley (a) = log

(
1

αNa

αNa∑
i=1

Pa,Na−i+1

)
, (2)

where α is a neighborhood factor (0.2 in this
study, identical to that used in [28]). The spec-
tral contrast is then computed as the difference
between the spectral peak and the spectral valley:

SC(a) = Peak(a)− V alley(a). (3)

Following [18] and [28], a feature vector consist-
ing of the spectral valleys and spectral contrasts
of all subbands is used to represent the OSC
features extracted from an audio frame.

• SFM/SCM (Spectral Flatness Measure/Spectral Crest
Measure)
SFM/SCM are proposed to measure the degree
of noisiness (or flatness) and sinusoidality of
the spectra [20]. Similar to OSC, in this study
SFM/SCM are also computed within each octave-
scale subband. SFM is defined as the ratio of the
geometric mean to the arithmetic mean of the
magnitude spectra,

SFM (a) =

Na

√∏Na

i=1Ba,i
1
Na

∑Na

i=1Ba,i
, (4)

where Ba,i is the i-th magnitude spectrum in the
a-th subband. Audio signals with SFM close to 1
indicate a similar amount of power in all spectral
bands. An example of this case is white noise. For
tonal signals, e.g., a mixture of sine waves, SFM
will be close to 0. Similarly, SCM is defined as
the ratio of the maximum value within the a-th
subband to the arithmetic mean of the magnitude
spectra within the a-th subband,

SCM (a) =

max
i=1,...,Na

(Ba,i)

1
Na

∑Na

i=1Ba,i
. (5)

• Statistical Descriptors of Short-Term Timbre Features

To summarize short-term timbre features (includ-
ing SSD, MFCC, OSC, and SFM/SCM), we com-
pute the mean and standard deviation along each
feature dimension over all frames [1]. These sta-
tistical descriptors are then concatenated to form
a compact feature vector. Thus, we can construct
a feature vector of length 116(= 2× 5 + 2× 21 +
2 × 16 + 2 × 16) for each music clip of arbitrary
length.

3.2 Long-Term Modulation Spectral Analysis of
MFCC, OSC, and SFM/SCM (MMFCC, MOSC, and
MSFM/MSCM)
Frame-based timbre features can only capture short
time spectral properties of audio signals. To character-

TABLE 3
Frequency Ranges of Each Modulaton Subband

Subband Number Modulation Frequency Range (Hz)
1 [0, 0.33)
2 [0.33, 0.66)
3 [0.66, 1.32)
4 [1.32, 2.64)
5 [2.64, 5.28)
6 [5.28, 10.56)
7 [10.56, 21.03]

* Given a frame duration of 46 ms and overlap of 23 ms, the
frame rate is 42.06 frames/sec. Thus the maximal modula-
tion frequency is 21.03 Hz.

ize long time spectral variations within a longer audio
segment, Lee el al. [28] first performed a long-term
modulation spectral analysis on short-term timbre fea-
tures (e.g., MFCC, OSC, and NASE). It is worth noting
that the same analysis has been successfully applied to
speech recognition [33], speaker recognition [34], and
sound classification [22], [27]. Typically, the modula-
tion spectral analysis is based on a two-dimensional
representation of acoustic frequency and modulation
frequency [31]. Here the acoustic frequency is the
standard frequency in FFT, while the modulation
frequency can be used to capture the time-varying
information through the temporal modulation of au-
dio signals. Previous work [31] has shown that the
periodicity of music signals will cause some nonzero
terms in the joint frequency representation. In general,
modulation spectra in the range of 1-2 Hz and 3-15
Hz respectively represent musical beat rates and the
order of speech syllabic rates [27].

Traditional modulation spectral analysis is usually
carried out in three steps [34]. First, a spectrogram
is computed using FFT on each pre-emphasized,
Hamming-windowed frame. Then, a modulation
spectrogram is obtained by performing FFT again on
the magnitude spectrum of each acoustic frequency
over a texture window of W frames. In this way
low and high modulation frequencies respectively
correspond to slow and fast spectral changes. Finally,
modulation spectrograms computed from all texture
windows of a music clip are averaged to obtain a
representative modulation spectrogram.

To perform modulation spectral analysis on
MFCC, OSC, and SFM/SCM to obtain new fea-
tures (respectively denoted as MMFCC, MOSC, and
MSFM/MSCM after modulation computation), we
adopted Lee et al.’s approach [28] as follows.

• Step 1:
Apply FFT on each feature dimension indepen-
dently within a texture window of W frames to
obtain the feature spectrogram. Here a texture
window is a two-dimensional matrix consisting
of either MFCC, OSC, or SFM/SCM features
extracted from W audio frames, and W/2 is the
number of modulation frequency bins. In our
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MIREX 2011 submission, W is 256 (around 6
seconds) with 50% overlap.

• Step 2:
Derive an averaged feature spectrogram of a
music clip by averaging all feature spectrograms
obtained from the previous step:

M (m, d) =
1

T

T∑
t=1

|Mt (m, d)|,

1 ≤ m ≤ W

2
, 1 ≤ d ≤ D,

(6)

where Mt (m, d) represents the feature spectro-
gram of the t-th texture window, m is the modu-
lation frequency index, and D is the length of the
feature vector, which is 21, 16, and 16 for MFCC,
OSC, and SFM/SCM, respectively.

• Step 3:
Decompose the averaged feature spectrum of
each feature value into logarithmically-spaced
modulation subbands (as listed in TABLE 3). This
operation is based on the observation that human
perception for modulation frequency follows a
logarithmic frequency scale with resolution con-
sistent with a constant-Q effect [35]. Then, for
each spectral/cepstral feature value, we compute
the modulation spectral peak/valley (MSP/MSV)
as follows:

MSP (b, d) = max
φb,l≤m<φb,h

(
M (m, d)

)
, (7)

MSV (b, d) = min
φb,l≤m<φb,h

(
M (m, d)

)
, (8)

where φb,l and φb,h denote the lowest and highest
modulation frequency indices of the b-th mod-
ulation subband, 1 ≤ b ≤ B, and B is the
number of modulation subbands (7 in this study).
Here MSP and MSV respectively correspond to
rhythmic and non-rhythmic components within
each modulation subband. Thus their difference
can be used to measure the modulation spectral
contrast (MSC) distribution, which can be defined
as

MSC (b, d) =MSP (b, d)−MSV (b, d) . (9)

Note that MSC, MSP and MSV are matrices of
the same size D ×B.

• Step 4:
Compute the mean and standard deviation along
each row and each column of the MSC and MSV
matrices to obtain a summarized modulation fea-
ture vector. These statistical descriptors of the
modulation features are then concatenated to-
gether to form a feature vector of length (4D+4B)
of MMFCC, MOSC, or MSFM/MSCM for a music
clip.

4 MIREX AUDIO MOOD CLASSIFICATION
(AMC) CONTEST

This section firstly describes the MIREX audio mood
classification contest, followed by our submission to
this contest and the result of our submission.

4.1 Introduction to the AMC Contest
The audio mood classification (AMC) contest was
first conducted within MIREX audio classification
(train/test) task in 2007. The goal of AMC is to sys-
tematically evaluate algorithms for predicting mood
from music. The contest provides a common platform
(with common datasets, mood labels, and criteria
for performance evaluation) such that different algo-
rithms can be evaluated objectively by the organizer.

The MIREX audio mood dataset involves five clus-
ters, each of which contains 120 clips to form a total
of 600 clips. The ground-truth set of this dataset
was built based on metadata analysis and human
assessments. For more details about how to create
the ground-truth set, readers with interest can see
[36]. Every clip has a duration of 30 seconds which
was encoded as a mono wav file with a sample
rate of 22,050 Hz. All submissions were evaluated
using three-fold cross-validation and artist filtering
was used to produce the training and test sets of
both datasets. The evaluation metric is the classifica-
tion accuracy which is computed as the number of
correct classifications divided by the number of test
music clips. For each submission, the accuracies of
three-fold evaluations are averaged to obtain the final
classification accuracy.

4.2 Our MIREX 2011 Winning Method and Result
Our submission was based on Lee et al.’s modulation
spectral analysis ( long-term modulation spectral anal-
ysis) of MFCC, OSC, and SFM/SCM, together with
statistical descriptors of short-term timbre features for
SVMs. By concatenating these two types of features
together, we can represent each music clip as a fixed-
length feature vector. In the classifier construction
stage, SVMs with a radius basis function (RBF) kernel
were trained for classification [37]. Here we adopted
a grid search to tune the hyper-parameters of SVMs
(e.g., cost penalty and gamma) on a three-fold inner
cross-validation of the training data. The final tuned
parameters are used to train SVMs on the whole train-
ing data set. Note that z-normalization was employed
for each feature dimension prior to SVM training.

Fig. 5 shows the evaluation results of the MIREX
2011 audio mood classification contest. From this
figure, we can observe that our method (JR1) was
ranked first out of 16 submissions. TABLE 4 shows
the classification accuracy of the contest from 2008 to
2014. From this table, we can observe that, for the au-
dio mood classification contest, our method not only
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V. MIREX 2011 RESULTS 

This section first presents the datasets and the evaluation 
metric used in the MIREX 2011 genre/mood classification 
tasks, and then lists the evaluation results. The submissions for 
the genre classification task were evaluated on a US pop music 
dataset (drawn from the USPOP 2002 and USCRAP 
collections) whereas tThe submissions for the mood 
classification task were evaluated on a mood dataset [25]. The 
genre dataset includes ten genres, each of which has 700 clips 
to form a total of 7,000 clips. The mood dataset involves five 
clusters, each of which contains 120 clips to form a total of 600 
clips. For both datasets, eEvery clip has a duration of 30 
seconds which are encoded as a mono wav with a sample rate 
of 22,050 Hz. All submissions were evaluated using three-fold 
cross-validation and artist filtering was used to produce the 
training and test sets of both datasets. The evaluation metric is 
the classification accuracy which is computed as the number of 
correct classifications divided by the number of test music clips. 
For each submission, the accuracies of three-fold evaluations 
are averaged to obtain the final classification accuracy. 

Fig. 3 shows the evaluation results of the MIREX 2011 
genre/mood classification tasks. From this figure, we can 
observe that for the genre classification task, our method (JR1) 
was ranked 4th. For the mood classification task, our method 
(JR1) was ranked first out of 16 submissions. Details about the 
other submissions are available online3.  

VI. EXTENDED EXPERIMENTS 

This section presents the extended experiments conducted on 
two genre and two mood datasets, which are all publicly 
available. We compare the proposed joint frequency features 
with the modulation spectral analysis of OSC and SFM/SCM to 
show the strength of the proposed features. We also combine 
the proposed features with MMFCC and statistical descriptors 

 
3For the submissions to music genre/mood classification tasks, refer to 

http://www.music-ir.org/nema_out/mirex2011/results/act/mixed_report and 
http://www.music-ir.org/nema_out/mirex2011/results/act/mood_report. 

of short-term timbre features to demonstrate how this new set 
of features outperforms our MIREX 2011 submission. 

A. Music Genre/Mood Datasets 

Two publicly-available genre datasets are adopted here. The 
first one is a widely used dataset, GTZAN [1], which contains 
ten genres, namely blues, classical, country, disco, hiphop, jazz, 
metal, pop, reggae, and rock. Each genre contains 100 
30-second music clips for  a total of 1,000 clips. The second 
one is the Unique dataset [26], which covers 14 genres: blues, 
country, dance, electronica, hiphop, jazz, classical, reggae, 
rock, schlager, soul_rnb, volksmusik, world, and wort. The 
number of music clips in each genre is unbalanced (from 26 to 
766), and the total number of clips is 3,115, each lasting around 
30 seconds. 

To evaluate the performance of mood classification, we use 
the Soundtracks [27] dataset and our newly collected 
MIR-Mood [28] dataset. Soundtracks covers six discrete mood 
classes, including happiness, sadness, fear, anger, surprise, and 
tenderness. Each class includes 30 music clips lasting between 
18 and 30 seconds. Since, to the best of our knowledge no other 
public mood dataset for classification purpose exists, we 
followed ref. [29] to collect social tags from Last.fm4 and audio 
files from 7digital to form the MIR-Mood dataset. First, four 
basic mood classes (including angry, happy, relaxed, and sad), 
which cover the four quadrants of the two-dimensional mood 
model [29], are used as seeds to retrieve the top 30 tags with the 
most counts from Last.fm. We then obtained a list of music 
clips labeled with these retrieved tags. Given the retrieved titles 
and artists, we used the 7digital API to download preview files. 
After manually filtering for files overlapping two or more 
classes, we obtained 553, 587, 619, and 464 music clips, 
respectively, for the angry, happy, relaxed, and sad classes, 
totaling 2,223 music clips. The duration of each audio file is 
around either 30 or 60 seconds. Each music clip of these four 
two datasets is converted into mono with a sample rate of 
22,050 Hz. (Note that here we do not use Song et al.’s 
collection [29] to evaluate the performance since they did not 
provide any trackid, a unique identification of a music clip that 
allows us to download the audio file). 

B. Experimental Setup 

In our extended experiments, we used the same strategy as in 
our MIREX submission to train RBF SVMs. We evaluated the 
performance of genre/mood classification on ten randomly 
stratified ten-fold cross-validations of these four two datasets. 
Note that for the GTZAN dataset, we did not apply artist 
filtering to create training and test sets since no artist 
information is available for the music clips. For the Unique 
dataset, no artist filtering is needed since each music clip has a 
unique artist. To compare with [30] for evaluating the 
Soundtracks dataset, we did not apply artist filtering here. For 
the MIR-Mood dataset, we applied artist filtering to obtain 
training and test splits. 

C. Experimental Results 

TABLE IV shows the averaged classification accuracy of 

 
4 www.last.fm.com  

30

40

50

60

70

A
cc

u
ra

cy
 (

%
)

Genre classification

WR1

TCCP4
SSKS2 JR1

SSPK1
WR2

TCCP3 JR2
ES2

ES1
DM1

GDC2
EP2

GKC4

30

40

50

60

70

A
cc

u
ra

cy
 (

%
)

Mood classification

JR1

TCCP4
WR1

TCCP3
SSKS2

ES2
SSPK1

WR2
ES1 JR2

DM4
DM1

GDC1
EP2

GDC2
GKC4

 
Fig. 3. Evaluation results of the MIREX 2011 genre/mood classification tasks. 

 Fig. 5. Evaluation results of the MIREX 2011 audio
mood classification contest.

TABLE 4
Comparison of Our MIREX 2011 Submission and

Winners of MIREX Audio Mood Classification
Contests

Participants Year Accuracy (%) Rank(# of
Submissions)

Panda and Paiva 2014 66.33 (%) 1 (12)
Wu and Jang 2013 68.33 (%) 1 (23)

Panda and Paiva 2012 67.83 (%) 1 (20)
Our submission 2011 69.50 (%) 1 (17)

Wang et al. 2010 64.17 (%) 1 (36)
Cao and Li 2009 65.67 (%) 1 (33)

Peeters 2008 63.67 (%) 1 (13)
* The results of these submissions are available at
http://www.music-ir.org/mirex/wiki/20xx:MIREX20xx Results,
where xx denotes the year of submission (starting from 08
to 14). Note that the results of the same task are comparable
since the committees of MIREX used the same training/test
splits to evaluate the performance in these years.

won the first place at 2011 but also provides the best
result from 2008 to 2014. This indicates the usefulness
of long-term modulation frequency analysis for music
mood classification.

5 PROPOSED JOINT FREQUENCY FEA-
TURES

This section firstly describes the proposed features,
followed by an illustration of the comparison of the
proposed and Lee et al.’s features.

5.1 Proposed Features

Although applying modulation spectral analysis on
music features can achieve good performance for
content-based music classification [28], [30], the av-
eraging and summarization operations (see Section
3.2 steps 2 and 4) are likely to smooth out important
modulation information, which may degrade the clas-
sification performance. To deal with this problem, in
this paper we propose the use of joint frequency fea-
tures computed from a joint frequency representation
of an entire music clip as follows. (It should be noted
that modulation spectral analysis (proposed by Sukki-
tanon et al. [31]) was used in both Lee et al.’s and our
approaches. Compared to Lee et al.’s approach [28],
we propose not to extract the modulation spectrum

on local basis for a texture window, but to compute
the modulation spectrum on the entire music clip. The
advantage of our approach is that there is no need to
average or summarize the local modulation features.
In contrast, Lee et al.’s approach is likely to smooth
out important modulation information, leading to a
feature set with less discriminative power.)

• Step 1:
Apply FFT on each pre-emphasized, Hamming-
windowed frame of a music clip to obtain a
conventional spectrogram.

• Step 2:
Perform FFT again for the magnitude spectrum
of each acoustic frequency of the entire spectro-
gram to obtain a joint acoustic and modulation
frequency spectrogram (referred to here as a joint
frequency representation). Such a representation
does not require the use of the texture win-
dows and thus increases modulation frequency
resolution so as to extract more discriminative
modulation features.

• Step 3:
For the joint acoustic-modulation spectrogram,
respectively decompose the modulation spectrum
along the acoustic frequency axis and the modu-
lation frequency axis into octave-based and log-
arithmically spaced modulation subbands. TA-
BLE 2 and TABLE 3 respectively list the fre-
quency ranges of the acoustic and modulation
subbands. This allows us to analyze the strength
of harmonic (or non-harmonic) components over
different musical beat rates in the music sig-
nals. To be more specific, for each joint acoustic-
modulation frequency subband, we compute the
acoustic-modulation spectral peak (AMSP) and
the acoustic-modulation spectral valley (AMSV)
as follows:

AMSP (a, b) = log

 1

αNa,b

αNa,b∑
i=1

Sa,b[i]

 , (10)

AMSV (a, b) =

log

 1

αNa,b

αNa,b∑
i=1

Sa,b [Na,b − i+ 1]

 .
(11)

Here, we assume Sa,b is the matrix of the magnitude
spectra of the joint a-th acoustic frequency and b-th
modulation frequency subbands. For simplicity, we
can assume Sa,b is a descending sorted vector in
which Sa,b [i] is the i-th element of Sa,b, Na,b is the
total number of elements in Sa,b, and α is a neighbor-
hood factor identical to that used in computing OSC.
The difference between AMSP and AMSV, denoted
as AMSC (acoustic-modulation spectral contrast), can
be used to reflect the spectral contrast over a joint
frequency subband:
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Fig. 6. An illustration of the proposed joint frequency features and Lee el al.’s modulation features.

AMSC (a, b) = AMSP (a, b)−AMSV (a, b) . (12)

To measure the noisiness and sinusoidality of the
modulation spectra, we further define the acoustic-
modulation spectral flatness measure (AMSFM) as the
ratio of the geometric mean to the arithmetic mean
of the modulation spectra within a joint frequency
subband:

AMSFM (a, b) =

Na,b

√∏Na,b

i=1 Ba,b [i]

1
Na,b

∑Na,b

i=1 Ba,b [i]
, (13)

where Ba,b [i] is the i-th modulation spectrum of
the joint a-th acoustic frequency and the b-th mod-
ulation frequency subbands. Similarly, the acoustic-
modulation spectral crest measure (AMSCM) can be
defined as the ratio of the maximum to the arithmetic
mean of the modulation spectra within a joint fre-
quency subband,

AMSCM (a, b) =

max
i=1,...,Na,b

(Ba,b [i])

1
Na,b

∑Na,b

i=1 Ba,b [i]
. (14)

In summary, for a joint acoustic-modulation spec-
trogram, we can compute four joint frequency fea-
tures, namely AMSC, AMSV, AMSFM, and AMSCM,
and each of them is a matrix of size A×B.

5.2 Illustration of The Proposed and Lee et al.’s
Features

Here we used an example of a music clip to show
the difference between the proposed joint frequency
features and Lee et al.’s modulation features. Fig. 6
shows the spectrogram of a 17-second music clip at
the top sub-panel, together with the proposed joint
frequency features (Figs. 6 (c), (e), (g), and (i)) and
Lee et al.’s modulation frequency features (Figs. 6 (b),
(d), (f), and (h)). The x-axis of these eight sub-panels
denotes seven modulation sub-bands (see TABLE 3)
and eight octave-based sub-bands (see TABLE 2). For
instance, a value computed from the n-th Modulation
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sub-band and the first Octave-based sub-band is denoted
as MnO1 in the x-axis label. O3, at the right-hand side
of MnO1, represents another value computed from
the same Modulation sub-band, but the third Octave-based
sub-band. Similar explanations apply to O5 and O7 as
well. For the sake of simplicity, we do not display the
labels O2, O4, O6 and O8 here.

Compared to Lee et al.’s features (modulation spec-
tral analysis of SP and SFM, see Figs. 6 (b) and (f)),
the proposed features (AMSP and AMSFM, see Figs.
6 (c) and (g)) have more obvious peaks and valleys
for better classification. On the other hand, Lee et
al.’s features (Figs. 6 (b) and (f)) have relatively larger
spectrums in modulation sub-band one (M1O1 to O8)
than in the other modulation sub-bands (from M2O1
to the last label O8), indicating the high-frequency
components are smoothed out. The main reason for
this difference is that the proposed method performs
modulation analysis on the entire music clip, result-
ing in more obvious peaks and valleys (especially
at higher modulation frequencies) than Lee et al.’s
features where the modulation spectral analysis is
only performed on a local texture window. A similar
phenomenon can be observed in the comparison of
Lee et al.’s features (modulation spectral analysis of
SV and SCM, see Figs. 6 (d) and (h)) and the proposed
features (AMSV and AMSCM, see Figs. 6 (e) and (i)).

6 EXPERIMENTAL RESULTS

This section presents the experiments conducted on
three mood datasets. We compare the proposed joint
frequency features with the modulation spectral anal-
ysis of OSC and SFM/SCM to show the strength of
the proposed features. We also combine the proposed
features with MMFCC and statistical descriptors of
short-term timbre features to demonstrate how this
new set of features outperforms our MIREX 2011
submission.

6.1 Datasets

To evaluate the performance of mood classification,
we use the Soundtracks [5] dataset, the MIREX-like
mood dataset, and our newly collected MIR-Mood
dataset.4 Soundtracks covers six discrete mood classes,
including happiness, sadness, fear, anger, surprise,
and tenderness. Each class includes 30 music clips
lasting between 18 and 30 seconds. Panda et. al.
[38] followed the same organization as the one used
in MIREX audio mood classification to create the
MIREX-like mood dataset. This dataset has a total of
903 30-second clips, each of which belongs to one
of the five clusters (as shown in TABLE 1). Each
cluster contains different numbers of clips, say, 170

4. MIREX-like mood and MIR-Mood datasets can be
downloaded from http://mir.dei.uc.pt/downloads.html and
http://mirlab.org/dataSet/public, respectively

clips in cluster 1,164 clips in cluster 2,215 clips in
cluster 3,191 clips in cluster 4, and 163 clips in cluster
5. In addition to these two datasets, we followed ref.
[39] to collect social tags from Last.fm5 and audio
files from 7digital to form the MIR-Mood dataset.
First, four basic mood classes (including angry, happy,
relaxed, and sad), which cover the four quadrants
of the two-dimensional mood model [39], are used
as seeds to retrieve the top 30 tags with the most
counts from Last.fm. We then obtained a list of music
clips labeled with these retrieved tags. Given the
retrieved titles and artists, we used the 7digital API
to download preview files. After manually filtering
for files overlapping two or more classes, we obtained
553, 587, 619, and 464 music clips, respectively, for the
angry, happy, relaxed, and sad classes, totaling 2,223
music clips. The duration of each audio file is around
either 30 or 60 seconds. Each music clip of these three
datasets is converted into mono with a sample rate of
22,050 Hz. (Note that here we do not use Song et al.’s
collection [39] to evaluate the performance since they
did not provide any trackid, a unique identification
of a music clip that allows us to download the audio
file).

6.2 Experimental Setup
In our experiments, we used the same strategy as
in our MIREX submission to train RBF SVMs. We
evaluated the performance of mood classification via
ten randomly stratified ten-fold cross-validations of
these three datasets. To compare with [40] for evalu-
ating the Soundtracks dataset, we did not apply artist
filtering here. For the MIREX-like mood dataset, no
artist filtering is applied. For the MIR-Mood dataset,
we applied artist filtering to obtain training and test
splits.

6.3 Results
TABLE 5 shows the averaged classification accuracy
and standard deviation of various feature sets for
these three mood datasets. The first column lists the
used feature sets, where the proposed feature sets are
in italics. Friedman’s test was used to evaluate the
significance of the improvements on the same cell
consisting of the proposed feature set and Lee el al.’s
modulation feature (in the column of feature set). The
accuracy figures are underlined if the improvement is
significant based on Friedman’s test.

Three observations for this experiment are as fol-
lows.

1) Adding short term timbre features (rows 8 and
9) further improves the classification accuracy.
This indicates that MuStd (denoting the concate-
nation of summarized features of SSD, MFCC,
OSC, and SFM/SCM) feature set can effectively

5. www.last.fm.com
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TABLE 5
Averaged Classification Accuracy (%) and Standard Deviation (in parentheses) of Various Feature Sets on the

Soundtracks, MIR-Mood and MIREX-like Mood Datasets
Row Index Feature Set Feature Dimension Soundtracks MIR-Mood MIREX-like Mood

1 MuStda 116 39.28 (1.74) 50.38 (0.64) 40.66 (0.93)
2 MOSC 92 37.94 (1.94) 50.68 (0.38) 39.44 (0.57)
3 AMSC/AMSV 112 38.56 (2.13) 51.32 (0.63) 41.95 (0.72)
4 MSFM/MSCM 92 32.11 (2.09) 48.84 (0.28) 37.09 (1.15)
5 AMSFM/AMSCM 112 32.94 (1.46) 49.11 (0.46) 38.53 (0.72)
6 MOSC+MSFM/MSCM 184 38.33 (2.58) 51.14 (0.36) 39.50 (0.80)
7 AMSC/AMSV+AMSFM/AMSCM 224 38.72 (1.78) 51.74 (0.78) 40.71 (0.69)
8 MuStd+MMFCC+MOSC+MSFM/MSCMb 412 41.06 (1.58) 52.87 (0.55) 43.22 (0.47)
9 MuStd+MMFCC+AMSC/AMSV+AMSFM/AMSCMc 452 43.56d(1.80) 53.01 (0.66) 44.74 (0.79)

a MuStd denotes the concatenation of summarized features of SSD, MFCC, OSC, and SFM/SCM.
b This feature sed was used in our MIREX 2011 submission.
c The best feature set among all.
d The underlined numbers indicate that the proposed feature set outperforms the other in the same cell with statistical significance, that is,
with p<0.05.

TABLE 6
Comparison of the Proposed System with Other
Recent Approaches on the Soundtracks Dataset

Approach Accuracy
The proposed system 43.56

Our MIREX 2011 submission 41.06
Panagakis and Kotropoulos [40] 39.44

complement the modulation based feature sets
for the classification task.

2) The proposed features, AMSC/AMSV (row
3) and AMSFM/AMSCM (row 5), outper-
form modulation spectral analysis of OSC
and SFM/SCM (e.g., MOSC in row 2 and
MSFM/MSCM in row 4) in three datasets by
small margins. After applying Friedman’s test
to these results, we found that the proposed
features do not have significant improvement in
Soundtracks dataset. This phenomenon may be
caused by the relatively short duration of the
music clips in this dataset (72 out of 180 music
clips with durations less than 18 seconds), lead-
ing to the difficulty in obtaining effective long-
term modulation information. The same obser-
vation also applies to MOSC+MSFM/MSCM
(row 6) and AMSC/AMSV+AMSFM/AMSCM
(row 7).

3) The proposed system that combines MuStd,
MMFCC, AMSC/AMSV and AMSFM/AMSCM
(row 9) outperforms our MIREX 2011 submis-
sion (row 8) on all three datasets with statistical
significance (p<0.05).

Here we also compared the proposed system with
other approaches. As shown in TABLE 6, the proposed
system outperforms Panagakis and Kotropoulos’ ap-
proach [40] which, as far as we know, is the only ap-
proach to have evaluated performance on this dataset
to classify six moods. This indicates the effectiveness

TABLE 7
Comparison of the Feature Set

(AMSC/AMSV+AMSFM/AMSCM) With and Without a
Pre-emphasis Filter (in Averaged Accuracy (%) and

Standard Deviation)
Feature Set Accuracy (Standard Deviation)

With a Pre-emphasis Filtera 50.91b(0.76)
Without a Pre-emphasis Filter 49.23 (0.38)

a The classification system that uses the feature set with a pre-
emphasis filter outperforms the other with statistical significance
(p<0.05).
b Since we performed another ten runs of randomly stratified ten-
fold cross-validations of MIR-Mood dataset in TABLE 7, a different
average accuracy (compared to the row 7 of TABLE 5 on the same
dataset) is obtained here due to the randomness in stratified ten
folds.

of the proposed joint frequency features.
In addition, to verify the validity of the

pre-emphasis filter (required by the reviewer),
we used the proposed feature set (i.e.,
AMSC/AMSV+AMSFM/AMSCM) with and without
a pre-emphasis filter for the classification task, and
briefly discuss the results. Here we only conducted
experiments on the MIR-Mood dataset, since this
dataset is the largest collection available. The same
experimental setup as mentioned in Section 6.2 was
used here. TABLE 7 shows the results of averaged
accuracy (%) and standard deviation (in parentheses).
It is clear that the feature set with a pre-emphasis
filter provides improved performance.

The confusion table of this experiment is shown
in TABLE 8, where rows denote the ground truth
of music moods, and columns denote the computed
result of music moods. From this table, we can ob-
serve that the use of the pre-emphasis filtering leads
to better accuracy for all moods. The pre-emphasis
filter is commonly used in speech recognition since
it can compensate for the high-frequency part of the
speech signal that was suppressed by the human voice
production mechanism. For music, most instruments



1949-3045 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TAFFC.2015.2427836, IEEE Transactions on Affective Computing

11

TABLE 8
Confusion Table of the Feature Set (AMSC/AMSV+AMSFM/AMSCM) With and Without a Pre-emphasis Filter

(%)

Preprocess With a Pre-emphasis Filter Without a Pre-emphasis Filter

Mood Angry Happy Relaxed Sad Angry Happy Relaxed Sad

Angry 57.1 22.2 11.4 9.2 54.7 24.1 12.1 9.1

Happy 21.5 51.4 18.9 8.2 22.4 50.6 18.3 8.7

Relaxed 6.9 17.0 54.7 21.4 8.4 16.2 53.4 22.1

Sad 13.8 12.6 35.7 37.9 13.1 15.0 36.4 35.4

can still be modeled by the source-filter model (just
like human voice production mechanism), so we sup-
pose that the pre-emphasis filter can be used for both
speech and music.

7 CONCLUSION AND LIMITATION OF THIS
WORK

In this paper, we found that two operations (which
compute the representative feature spectrogram and
the mean and standard deviation of the MSC/MSV
matrices) in the modulation spectral analysis of short-
term timbre features are likely to smooth out useful
modulation information, so we propose the use of
a joint frequency representation of an entire music
clip to extract joint frequency features. These joint fre-
quency features, including acoustic-modulation spec-
tral contrast/valley, acoustic-modulation spectral flat-
ness measure and acoustic-modulation spectral crest
measure, outperform the modulation spectral analysis
of OSC and SFM/SCM (used in Lee et al.’s approach)
in three mood datasets by small margins. On the other
hand, by combining the proposed features with the
modulation spectral analysis of MFCC and statistical
descriptors of SSD, MFCC, OSC and SFM/SCM as a
new feature set, we found that the set can outperform
our MIREX submission on all three datasets with
statistical significance (confirmed by Friedman’s test).

The advantage of the proposed features is that
they can have a better discriminative power due their
operation on the entire music, with no averaging over
the local modulation features. (In contrast, Lee et al.’s
approach is likely to smooth out important modula-
tion information, leading to a feature set with less
discriminative power.) On the other hand, a drawback
of the propose features is that for a music clip with
a short duration (e.g., 6 seconds or so), the extracted
modulation features are similar to Lee et al.’s approach
without too much improvement. Future work will
explore the possibility of using dimensionality reduc-
tion techniques to extract a compact feature set that
can achieve equal or better performance. We will also
apply these features to multi-label tasks such as auto-
tagging and tag-based retrieval.
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