
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Backpropagation with N -D Vector-Valued Neurons
Using Arbitrary Bilinear Products

Zhe-Cheng Fan, Tak-Shing T. Chan, Member, IEEE, Yi-Hsuan Yang, Senior Member,
and Jyh-Shing R. Jang, Member, IEEE

Abstract—Vector-valued neural learning has emerged as a
promising direction in deep learning recently. Traditionally,
training data for neural networks (NNs) are formulated as a
vector of scalars; however, its performance may not be optimal
since associations among adjacent scalars are not modeled. In this
paper, we propose a new vector neural architecture called the
Arbitrary BIlinear Product Neural Network (ABIPNN), which
processes information as vectors in each neuron, and the feed-
forward projections are defined using arbitrary bilinear products.
Such bilinear products can include circular convolution, seven-
dimensional vector product, skew circular convolution, reversed-
time circular convolution, or other new products not seen in
previous work. As a proof-of-concept, we apply our proposed
network to multispectral image denoising and singing voice
separation. Experimental results show that ABIPNN obtains
substantial improvements when compared to conventional NNs,
suggesting that associations are learned during training.

Index Terms—Vector neural learning, vector neural network,
bilinear products, vector products, backpropagation.

I. INTRODUCTION

VECTOR-valued neurons have received much attention
lately in different scientific fields, such as communi-

cation systems, biological processing, image processing, and
audio signal processing [1]–[5]. Each training sample of these
applications can be represented as a multidimensional vector,
which can be processed directly by vector-valued neurons.
These aforementioned works have shown that vector-valued
neurons have good performance in learning, association, and
generalization. In the meantime, an increasing number of
datasets [6]–[8] provide multidimensional data suitable for
vector-valued neural learning.

In real-valued neural network (NN) learning with multidi-
mensional data, the input is concatenated from a set of vectors
and reformulated as a long vector. A neuron takes only one
real value as its input and a network is configured to use
as many neurons as the dimension of the long vector. But
this configuration may not achieve satisfactory performance
for multidimensional problems since associations within each
vector are not learned. Therefore, multidimensional vector
neurons have received some attention in the literature and have
been proposed to address the associations among different
dimensions. A vector-valued neuron accepts and represents
information as a vector and elements in each vector are
processed together as a single unit.

There are several approaches to extend real-valued neurons
to vector-valued ones. Two-dimensional complex-valued NNs
[9] have been proven to have orthogonal decision boundaries
[10], [11] and the ability to solve exclusive-or (XOR) problem

[12] using only a single neuron. Another extension to two
dimensions is the hyperbolic neural network [13], in which
all parameters are hyperbolic numbers. Decision boundaries
of hyperbolic neurons are investigated in [14]. An alternative
hyperbolic backpropagation algorithm [15] is developed using
Wirtinger calculus. Three-dimensional neurons have been pro-
posed in two ways. The first is based on the vector product [16]
[17], in which inputs, outputs, weights and biases are all three-
dimensional vectors. The second [18] is similar to the first but
the weights are now three-dimensional orthogonal matrices.
Four-dimensional hypercomplex-valued neurons [16], [19]–
[21] are proposed by using the quaternion algebra. Eight-
dimensional octonion-valued neurons [22] represent a gen-
eralization of quaternion NNs. More recently, deep complex
networks [5] have been introduced using complex convolution
and complex batch normalization.

However, the dimensionality of a vector-valued neuron
should not be constrained to a particular number. For in-
stance, in the task of multispectral image denoising [23],
different bands of images are stacked into a tensor. Nonlinear
mapping between the noisy tensor and the clean tensor is
then performed. For singing voice separation [24], the data
structure of a temporal-frequency matrix input is flattened
into a high-dimensional vector in the traditional way, and
then reshaped as a matrix so that each neuron represents and
receives a vector. For EEG-based emotion recognition [7],
[25], the human brain wave is filtered into five main frequency
bands. Given the above observations, it seems important that
the dimensionality should be an arbitrary N . Thus, a good
extension of the real-valued neuron is the N -dimensional real-
valued neuron [16], [26], [27], which was proposed to have
N -dimensional vector inputs and outputs, but N -dimensional
orthogonal matrix weights. Nevertheless, we observe that this
formulation does not address the case of multiple neurons.
Other architectures have also been advanced to extend real-
valued neurons. For example, Clifford algebra has been em-
ployed to build vector-valued NNs with dimensionality 2N

[28]–[31]; however, we note that many datasets do not have
power-of-two dimensionalities. Matrix-valued NNs [32] have
been proposed in which the inputs, outputs, weights, and
biases are N×N square matrices. But it is not always easy to
formulate the inputs and outputs like this. Finally, for multiway
classification, the tensor-factorized NN [33] integrates Tucker
decomposition with neural learning, though its efficiency in
regression problems is yet unproven. A similar concept would
be the vector neuron models of associative memory [34],
which are vector formalisms of Potts-glass NN [35]–[37]

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

1

2

…

1

2

…

1

2

…

1

2

…

1

2

…

…

…

…

…

Input Layer Hidden Layers Output Layer

N

Input Tensor Output Tensor

Layer l Layer l+1Layer l-1

N

N

Layer LLayer 1

M

M

RL

R1

N

R1 Rl-1 Rl Rl+1 RL

Fig. 1: Architecture of ABIPNN (best viewed in color), where the inputs, outputs, weights, and biases are all N -dimensional
vectors. Cubes in the architecture represent scalars. Blue lines between hidden layers represent weights. M represents the
number of training data patterns. Rl represents the dimension at layer l, where 1 ≤ l ≤ L. Among them, R1 and RL are
respectively the dimensions of the input and output layers. From R2 to RL−1 are the dimensions of the hidden layers. X
and Y respectively represent the input and output tensors. When N equals one, each neuron represents a scalar, depicted as a
cube with solid lines. This architecture can be viewed as a conventional NN. When N > 1, each neuron represents a vector,
depicted as the concatenation of cubes connected by the dotted lines.

and parametrical NN (PNN) [38], but this concept does not
belong to supervised learning since there are no inputs and
corresponding targets for training.

In light of the above observations, we propose a new vector-
valued NN architecture consisting of N -dimensional vector-
valued neurons, where N is an arbitrary positive integer (as
shown in Fig. 1). For each neuron, the inputs, outputs, weights,
and biases are all N -dimensional vectors. Our key observation
is that the products used by the aforementioned vector-valued
NNs (such as the vector product [17] and quaternion multipli-
cation [19]) are bilinear products (defined in Section II). This
prompts us to propose a general form of bilinear neurons to
model the associations between the vector elements. We call
it the Arbitrary BIlinear Product Neural Network (ABIPNN).
When N equals one, each neuron represents a scalar and the
architecture performs matrix multiplications like a conven-
tional deep neural network (DNN). When N is larger than
one, each neuron represents a vector and the architecture uses
bilinear products for multiplications. In this way, the proposed
architecture not only allows for using vectors of arbitrary
dimensionality in vector-valued NNs, but also all the vector-
valued products that are bilinear.

The remainder of this paper is organized as follows. Section
II derives the feedforward and backpropagation processes
using the proposed bilinear neurons. Section III compares
the performance between ABIPNN and conventional NNs in
singing voice separation and multispectral image denoising.
We conclude the paper in Section IV.

II. VECTOR NEURAL LEARNING

The idea of ABIPNN is to extend the data type of each
neuron from scalars to vectors by replacing multiplications
with arbitrary bilinear products. Such products can be used to

…

1

2

3

…

Rl

N

1

Rl

(a) (b)

Rl

Rl

Fig. 2: Illustration of the operations employed by the (a)
conventional NNs and (b) ABIPNNs; best viewed in color. In
(a), vectors are concatenated together as a multidimensional
input. Each weight stands for a scalar, depicted as a cube.
Take the first entry of each vector for example, the associations
between the brown cubes are not learned since each hidden
neuron receives information by using its group of weights,
which are depicted in the same color. Hidden neurons do
not share identical weights when performing learning. In (b),
vectors are stacked into a Rl × 1 × N tensor (or lateral
matrix) and brown cubes are concatenated together. Each
neuron represents a vector and receives information by using
the weight vector, depicted as blue cubes. For example, when
we leverage circular convolution as the bilinear product in an
ABIPNN, the weight vector can be deemed as a linear kernel
mask which captures the associations between brown cubes
by rotating itself in the learning process.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

learn the associations between vector elements in the input
(see Fig. 2). In the following, tensors are represented by
bold uppercase calligraphic letters, matrices by bold uppercase
letters, and vectors by bold lowercase letters. Matrix slices
of tensors are represented as matrices and vector slices of
matrices are represented as vectors. The notational conventions
used in this paper are summarized in Table I.

A. Generalizing N-D Vector Neurons with Bilinear Products

To begin with, we identify a generalization of all the
products used in previous vector-valued NN literature, in-
cluding vector product [17], quaternion multiplication [19],
octonion multiplication [22], and so on. We have been able to
confirm that all of these products are bilinear (defined below).
Motivated by this important observation, we will extend the
vector-valued NN [26] to use any kind of bilinear product
between two N -dimensional vectors.

Assume an N -dimensional space with standard ba-
sis {e1, e2, . . . , eN} as column vectors. Let p =∑N

n=1 pnen = [p1, p2, . . . , pN]
T and q =

∑N
n=1 qnen =

[q1, q2, . . . , qN]
T be two vectors in this space. A product

• : RN × RN → RN is bilinear if and only if p • q is linear
when we hold one of p or q fixed. If • is bilinear, we have:

p • q = p •

(
N∑

n=1

qnen

)
, (1)

where we have expanded the second term. Due to bilinearity,

p • q =

N∑
n=1

(p • en) qn

=

p •


1
0
...
0

 , p •


0
1
...
0

 , . . . , p •


0
0
...
1




q1
q2
...
qN


= [p • e1, p • e2, . . . , p • eN]q.

(2)

If we let [p]• = [p • e1, p • e2, . . . , p • eN], then:

p • q = [p]• q. (3)

Similarly, if we expand the first term, we can write:

p • q =

(
N∑

n=1

pnen

)
• q =

N∑
n=1

pn (en • q)

= [e1 • q, e2 • q, . . . , eN • q]p.

(4)

Let [q]†• = [e1 • q, e2 • q, . . . , eN • q], we also have:

p • q = [q]
†
• p. (5)

Eqs. 3 and 5 are the two possible matrix representations of the
bilinear product •. Here we call [p]• its matrix representation
and [q]

†
• its transmuted representation (the term transmuted is

originally used for quaternions [39] but here we extend it for
general bilinear products). In what follows, the feedforward
and backpropagation processes will be described by using the
above notations for bilinear products and their representations.
For convenience, in the rest of this paper, if p or q are not

TABLE I: NOTATIONAL CONVENTIONS

X Input tensor
Xm=X :m: Lateral slice from input tensor X
x Vector from input tensor X
Y Output tensor
Ym=Y :m: Lateral slice from output tensor X
W l Weight tensor in layer l
wl

ij = W l
ij: Vector from tensor W l

Bl Bias tensor in layer l
bl
i = Bl

im: Vector from tensor Bl

Z l Input hidden tensor in layer l
zli = Z l

im: Vector from tensor Z l

Al Output hidden tensor in layer l
al
i = Al

im: Vector from tensor Al

Dl Local gradient tensor in layer l
dl
i = Dl

km: Vector from tensor Dl

• : RN × RN → RN Arbitrary bilinear product
[·]• Matrix representation of • (Eq. 3)
[·]†• Transmuted representation of • (Eq. 5)

column vectors, then p•q will implicitly reshape them so that
the above equations make sense.

B. Feedforward Process in a Bilinear Product Neuron

As before, we assume the inputs, outputs, weights, and
biases are N -dimensional vectors. Suppose we have an L-
layer vector-valued NN. For hidden layer l (1 ≤ l ≤ L), the
input vector zli of the hidden neuron i is defined as:

zli =

Rl−1∑
j=1

wl
ij • al−1

j + bl
i , (6)

where • denotes an arbitrary bilinear product, wl
ij stands for

the weight vector connecting a neuron j (1 ≤ j ≤ Rl−1) in
layer l − 1 to a neuron i (1 ≤ i ≤ Rl) in layer l, and wl

ij =∑N
n=1 w

l
ijnen =

[
wl

ij1, wl
ij2, . . . ,wl

ijN

]T ∈ RN . The output
vector of neuron j in layer l − 1 is al−1

j =
∑N

n=1 a
l−1
jn en =[

al−1j1 , al−1j2 , . . . , al−1jN

]T
∈ RN , the bias vector of neuron i

in layer l is bl
i =

∑N
n=1 b

l
inen =

[
bli1, bli2, . . . , bliN

]T ∈ RN .
As a result, zli =

∑N
n=1 z

l
inen =

[
zli1, zli2, . . . , zliN

]T ∈ RN .
When l equals 1, the vector z is simply the input vector x.
After zli is calculated, the output vector al

i of the hidden neuron
i is as follows:

al
i =


ali1
ali2

...
aliN

 = φ(zli) =


φ(zli1)

φ(zli2)
...

φ(zliN)

 , (7)

where φ could be any differentiable activation function. Then
the output vector of neuron g (1 ≤ g ≤ RL) in output layer

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

L is defined as:

yL
g =


yLg1
yLg2

...
yLgN

 = φ(zLg) =


φ(zLg1)

φ(zLg2)
...

φ(zLgN)

 , (8)

where zLg is the input vector and yL
g is the output vector of a

neuron g. The objective of the training process is to estimate
the parameters that minimize the cost function, defined as:

C(Θ) =

M∑
m=1

loss(Ym, f(Xm;Θ)) , (9)

where M stands for the number of training data patterns,
Θ is the set of all training parameters (weights and biases),
and Ym is the training label related to the input Xm. The
output f(Xm;Θ) is the predicted version of Ym, made up of
yL
g mentioned in Eq. 9. The loss(Ym, f(Xm;Θ)) function

measures the difference between the predicted results and the
training labels.

C. Backpropagation Algorithm in a Bilinear Product Neuron

The bilinear product is also employed in the process of
backpropagation learning. Before we present the error back-
propagation process (Algorithm 1), we need to first derive:

1) The gradients of the biases bl
i.

2) The gradients of the weights wl
ij .

3) The backpropagation of local gradients dl+1
k → dl

i.

Following Eq. 3, the bilinear product can be viewed as matrix-
vector multiplication. Hence, Eq. 6 can be rewritten as

zli =

Rl−1∑
j=1

wl
ij • al−1

j + bl
i =

Rl−1∑
j=1

[
wl

ij

]
• al−1

j + bl
i

=

Rl−1∑
j=1

[
wl

ij • e1, wl
ij • e2, . . . ,wl

ij • eN

]
al−1
j + bl

i

=

Rl−1∑
j=1

(
al−1j1 wl

ij • e1 + · · ·+ al−1jN wl
ij • eN

)
+ bl

i.

(10)

Here, wl
ij can be formulated as the summation of scalar-vector

multiplications:

zli =

Rl−1∑
j=1

(
al−1j1

(
wl

ij1e1 + · · ·+ wl
ijNeN

)
• e1

+ al−1j2

(
wl

ij1e1 + · · ·+ wl
ijNeN

)
• e2 + . . .

+ al−1jN

(
wl

ij1e1 + · · ·+ wl
ijNeN

)
• eN

)
+ bl

i.

(11)

To estimate the first-order partial derivatives of a vector-valued
function, we apply the concept of Jacobian matrix, which is
a matrix containing all the partial derivatives. For the vector-
valued function f : RN → RM , the Jacobian matrix is defined
as
[
∂f
∂x

]
ij

= ∂
∂xj

f(x)i ∈ RN×M . The partial derivative of C

with respect to bl
i is as follows:

∂C

∂bl
i

=

[
∂C

∂bli1
,
∂C

∂bli2
, . . . ,

∂C

∂bliN

]

=



∂C

∂zli1

∂zli1
∂bli1

+
∂C

∂zli2

∂zli2
∂bli1

+ · · ·+ ∂C

∂zliN

∂zliN
∂bli1

...

∂C

∂zli1

∂zli1
∂bliN

+
∂C

∂zli2

∂zli2
∂bliN

+ · · ·+ ∂C

∂zliN

∂zliN
∂bliN



T

,

(12)

where ∂C
∂bl

i

stands for the gradient vector of bl
i belonging to

neuron i in layer l. The terms ∂C
∂zl

in

(1 ≤ n ≤ N) are extracted

into an N -dimensional local gradient vector ∂C
∂zl

i

and we call
it dl

i for convenience:

∂C

∂zli
=

[
∂C

∂zli1
,
∂C

∂zli2
, . . . ,

∂C

∂zliN

]
,
[
dli1, dli2, . . . , dliN

]
= dl

i.
(13)

The terms
{

∂zl
i1

∂blin
, ∂zl

i2

∂blin
, . . . , ∂zl

iN

∂blin

}
(1 ≤ n ≤ N) can be

obtained by differentiating Eq. 11:

∂zli
∂blin

=

[
∂zli1
∂blin

,
∂zli2
∂blin

, . . . ,
∂zliN
∂blin

]T
=

[
∂bli1
∂blin

,
∂bli2
∂blin

, . . . ,
∂bliN
∂blin

]T
=
[
0, . . . , 1, . . . , 0

]T
︸ ︷︷ ︸

the n-th entry is 1

.

(14)

By combining Eqs. 13 and 14, the derivative ∂C
∂blin

can be
formulated as a dot product:

∂C

∂blin
= dl

i

[
∂zli
∂blin

]
=
[
dli1, dli2, . . . , dliN

]︸ ︷︷ ︸
1×N


0
...
1
...
0


︸︷︷︸
N×1

= dlin.
(15)

Then, each entry of ∂C
∂bl

i

can be estimated by the same
procedure from Eqs. 14 and 15. After each entry is estimated,
Eq. 12 can be derived as follows:

∂C

∂bl
i

=

[
∂C

∂bli1
, . . . ,

∂C

∂bliN

]
=

[
dli1, . . . , dliN

]
= dl

i. (16)

As a result, it is evident that the derivative of bl
i is completely

equal to local gradient vector dl
i.

Next, we derive the partial derivative of C with respect to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

wl
ij as follows:

∂C

∂wl
ij

=

[
∂C

∂wl
ij1

,
∂C

∂wl
ij2

, . . . ,
∂C

∂wl
ijN

]

=



∂C

∂zli1

∂zli1
∂wl

ij1

+
∂C

∂zli2

∂zli2
∂wl

ij1

+ · · ·+ ∂C

∂zliN

∂zliN
∂wl

ij1

∂C

∂zli1

∂zli1
∂wl

ij2

+
∂C

∂zli2

∂zli2
∂wl

ij2

+ · · ·+ ∂C

∂zliN

∂zliN
∂wl

ij2

...

∂C

∂zli1

∂zli1
∂wl

ijN

+
∂C

∂zli2

∂zli2
∂wl

ijN

+ · · ·+ ∂C

∂zliN

∂zliN
∂wl

ijN



T

(17)

where ∂C
∂wl

ij

stands for the gradient vector of wl
ij connecting

neuron j to neuron i in layer l and it consists of N elements.
From Eq. 13, here the terms

{
∂C
∂zl

i1

, ∂C
∂zl

i2

, . . . , ∂C
∂zl

iN

}
are

extracted as the local gradient vector dl
i. Likewise, we can

obtain the terms
{

∂zl
i1

∂wl
ijn

, ∂zl
i2

∂wl
ijn

, . . . , ∂zl
iN

∂wl
ijn

}
(1 ≤ n ≤ N)

by differentiating Eq. 11:

∂zli
∂wl

ijn

=

[
∂zli1
∂wl

ijn

,
∂zli2
∂wl

ijn

, . . . ,
∂zliN
∂wl

ijn

]T
= al−1j1 en • e1 + al−1j2 en • e2 + · · ·+ al−1jN en • eN

=
[
en • e1, en • e2, . . . , en • eN

] [
al−1j1 , . . . al−1jN

]T
=
[
en • e1, en • e2, . . . , en • eN

]
al−1
j ,

(18)

which is formulated as a matrix-vector multiplication. Each
column in the matrix is the bilinear product of two standard
bases. Different bilinear products contribute to different re-
sults. Then, the derivative ∂C

∂wl
ijn

can be formulated as a dot
product by combining Eqs. 13 and 18:

∂C

∂wl
ijn

= dl
i

[
∂zli
∂wl

ijn

]
=
[
dli1, dli2, . . . , dliN

]︸ ︷︷ ︸
1×N[en • e1, en • e2, . . . , en • eN

]︸ ︷︷ ︸
N×N

al−1
j︸︷︷︸

N×1


= dl

i

[
N∑

h=1

al−1jh en • eh

]
.

(19)

Each entry of ∂C
∂wl

ij

can be estimated by the same procedure
from Eqs. 18 and 19. After each entry is estimated, Eq. 17

can be rewritten as:

∂C

∂wl
ij

=

[
∂C

∂wl
ij1

,
∂C

∂wl
ij2

, . . . ,
∂C

∂wl
ijN

]

=

[
dl
i

[
N∑

h=1

al−1jh e1 • eh

]
, . . . ,dl

i

[
N∑

h=1

al−1jh eN • eh

]]

= dl
i

[
e1 •

[
N∑

h=1

al−1jh eh

]
, . . . , eN •

[
N∑

h=1

al−1jh eh

]]
,

(20)

and referring to Eq. 4, we can rewrite Eq. 20 into:

∂C

∂wl
ij

= dl
i

[
e1 • al−1

j , e2 • al−1
j , . . . , eN • al−1

j

]
= dl

i

[
al−1
j

]†
• ,

(21)

which is a vector-matrix multiplication with the transmuted
representation.

After the derivative ∂C
∂wl

ij

is calculated, we derive the local

gradient vector dl
i from layer l + 1 by:

dl
i =

∂C

∂zli
=

Rl+1∑
k=1

∂C

∂zl+1
k

∂zl+1
k

∂al
i

∂al
i

∂zli

=

Rl+1∑
k=1

∂C

∂zl+1
k

∂zl+1
k

∂al
i

φ̇(zli),

(22)

which is a vector-matrix-matrix multiplication, where zl+1
k

stands for an N -dimensional input vector of neuron k in layer
l + 1 and al

i stands for an N -dimensional output vector of
neuron i in layer l. The vector ∂C

∂zl+1
k

is regarded as an N -

dimensional local gradient vector, defined as dl+1
k in layer

l+1. Referring to Eqs. 12 to 16, we can see that dl+1
k can be

regarded as the derivative of bl+1
k . The matrix φ̇(zli) represents

the derivative of the activation function, which is an N × N
diagonal matrix:

φ̇(zli) =
∂al

i

∂zli

=



∂ali1
∂zli1

0 . . . 0

0
∂ali2
∂zli2

. . . 0

...
...

. . .
...

0 0 . . .
∂aliN
∂zliN



=


φ̇(zli1) 0 . . . 0

0 φ̇(zli2) . . . 0
...

...
. . .

...

0 0 . . . φ̇(zliN)

 ,

(23)

where φ̇ can be an arbitrary differentiable activation function.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Next, the matrix ∂zl+1
k

∂al
i

is also a N ×N square matrix:

∂zl+1
k

∂al
i

=



∂zl+1
k1

∂ali1

∂zl+1
k1

∂ali2
. . .

∂zl+1
k1

∂aliN
∂zl+1

k2

∂ali1

∂zl+1
k2

∂ali2
. . .

∂zl+1
k2

∂aliN
...

...
. . .

...

∂zl+1
kN

∂ali1

∂zl+1
kN

∂ali2
. . .

∂zl+1
kN

∂aliN


. (24)

We calculate the above derivatives columnwise. The calcula-
tions are based on the feedforward process of zl+1

k :

zl+1
k =

Rl∑
i=1

wl+1
ki • al

i + bl+1
k

=

Rl∑
i=1

wl+1
ki •

[
ali1e1 + ali2e2 + · · ·+ aliNeN

]
+ bl+1

k .

(25)

Then, the derivative of the n-th column of Eq. 24 is derived
by differentiating Eq. 25:

∂zl+1
k

∂alin
=

[
∂zl+1

k1

∂alin
,
∂zl+1

k2

∂alin
, . . . ,

∂zl+1
kN

∂alin

]T
= wl+1

ki • en

=
(
wl+1

ki1 e1 + wl+1
ki2 e2 + · · ·+ wl+1

kiNeN

)
• en

=

N∑
h=1

wl+1
kiheh • en

= [e1 • en, e2 • en, . . . ,eN • en]︸ ︷︷ ︸
N×N

wl+1
ki︸ ︷︷ ︸

N×1

,

(26)

resulting in a column vector. Since each column of the matrix
∂zl+1

k

∂al
i

can be estimated by the same procedure mentioned
above, the derivatives of the matrix can be derived as:

∂zl+1
k

∂al
i

=

[[
N∑

h=1

wl+1
kiheh • e1

]
,

[
N∑

h=1

wl+1
kiheh • e2

]
,

. . . ,

[
N∑

h=1

wl+1
kiheh • eN

]]
=
[
wl+1

ki • e1, wl+1
ki • e2, . . . , wl+1

ki • eN

]
=
[
wl+1

ki

]
• ,

(27)

in which the matrix is made up of N vectors. After estimating
the matrix ∂zl+1

k

∂al
i

, Eq. 22 can be rewritten as follows:

dl
i =

Rl+1∑
k=1

dl+1
k

[
wl+1

ki

]
• φ̇(z

l
i), (28)

which becomes a vector-matrix-vector multiplication. It is ev-
ident that local gradient vector dl

i in layer l is backpropagated
from dl+1

k in layer l + 1. From this we see that the local
gradient can be inferred from the output layer. In the output

Algorithm 1 Arbitrary Bilinear Product Backpropagation

Input: Training inputs {Xm}Mm=1

Training targets {Ym}Mm=1

Bilinear product •
Activation function φ

Output: Parameters Θ =
{
W l,Bl

}L
l=1

1: while not converged do
2: for each minibatch ∈ {X}Mm=1 do
3: Compute

{
Z l,Al

}L
l=1

with Eqs. 6–8 (feedforward)
4: Compute

{
Dl
}L
l=1

with Eqs. 28 and 29 (backprop)
5: Update

{
W l
}L
l=1

with the gradients from Eq. 21
6: Update

{
Bl
}L
l=1

with the gradients from Eq. 16
7: end for
8: end while

layer L, the local gradient vector dL
g is defined as:

∂C

∂zLg
=

[
∂C

∂zLg1
,
∂C

∂zLg2
, . . . ,

∂C

∂zLgN

]
=

[
∂C

∂yLg1

∂yLg1
∂zLg1

,
∂C

∂yLg2

∂yLg2
∂zLg2

, . . . ,
∂C

∂yLgN

∂yLgN
∂zLgN

]

=

[
∂C

∂yLg1
φ̇(zLg1),

∂C

∂yLg2
φ̇(zLg2), . . . ,

∂C

∂yLgN
φ̇(zLgN)

]
,

(29)

where ∂C
∂yL

gn
(1 ≤ n ≤ N) is the derivative of the loss function

used in the feedforward process, and φ̇(zLgn) is the derivative
of the activation function. The above process is summarized
in Algorithm 1.

D. Example: Circular Convolution as The Bilinear Product

In the above, we generalized the vector NNs using arbitrary
bilinear products. This algorithm can be realized to train model
parameters for scalar neurons or vector neurons from training
data based on matrices or tensors. In this subsection, we derive[
al−1
j

]†
• and

[
wl+1

ki

]
• for circular convolution. The derivation

is described between layer l − 1 and layer l.
Suppose wl

ij • al−1
ij stands for the usual circular convo-

lution, wl
ij =

[
wl

ij1, wl
ij2, . . . , wl

ijN

]T ∈ RN and al−1
j =[

al−1j1 , al−1j2 , . . . , al−1jN

]T
∈ RN are both N -dimensional vec-

tors, and the matrix representation of wl
ij • al−1

ij is:

[
wl

ij

]
• =



wl
ij1 wl

ijN wl
ij(N−1) . . . wl

ij2

wl
ij2 wl

ij1 wl
ijN . . . wl

ij3

wl
ij3 wl

ij2 wl
ij1 . . . wl

ij4

...
...

...
. . .

...

wl
ijN wl

ij(N−1) wl
ij(N−2) . . . wl

ij1


,

(30)

where the weight vector is formulated as an N × N square
matrix with wl

ij1 on the main diagonal. The matrix
[
al−1
j

]†
•

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

for Eq. 21 is extended as follows:

[
al−1
j

]†
• =



al−1j1 al−1jN al−1j(N−1) . . . al−1j2

al−1j2 al−1j1 al−1jN . . . al−1j3

al−1j3 al−1j2 al−1j1 . . . al−1j4

...
...

...
. . .

...

al−1jN al−1j(N−1) al−1j(N−2) . . . al−1j1


, (31)

where the permutation of elements in the matrix
[
al−1
j

]†
• is

identical to the matrix
[
wl

ij

]
•. The matrix

[
wl+1

ki

]
• for circular

convolution is extended as:

[
wl+1

ki

]
• =



wl+1
ki1 wl+1

kiN wl+1
ki(N−1) . . . wl+1

ki2

wl+1
ki2 wl+1

ki1 wl+1
kiN . . . wl+1

ki3

wl+1
ki3 wl+1

ki2 wl+1
ki1 . . . wl+1

ki4

...
...

...
. . .

...

wl+1
kiN wl+1

ki(N−1) wl+1
ki(N−2) . . . wl+1

ki1


.

(32)

Note that when N equals two, this architecture becomes the
hyperbolic NN [13]. When N is larger than two, this product
is also known as polar complex multiplication [40], [41].
Detail investigations of more bilinear products are described
in Appendix A.

E. Complexity Analysis

We compare below the computational cost of ABIPNN and
DNN by estimating both the number of parameters and the
number of multiplication operations. ABIPNN preserves the
three-way tensor structure all the way from the inputs to the
the outputs, while DNN uses the two-way matrix structure.
Let K =

∑L
l=2RlRl−1. The total number of parameters of

an ABIPNN model is determined by:

N (R2R1) +N (R3R2) + · · ·+N (RLRL−1)

= N

L∑
l=2

RlRl−1 = NK.
(33)

In contrast, to obtain the same internal dimensionality, the
number of parameters needed by the corresponding DNN is:

(NR2) (NR1) + (NR3) (NR2) + · · ·+ (NRL) (NRL−1)

= N2
L∑

l=2

RlRl−1 = N2K.

(34)

Obviously, the total number of parameters of DNN increases
much faster than that of ABIPNN.

We next compare the time complexity in terms of the num-
ber of multiplication operations. To simplify the expression,
the complexity analysis is based on processing M training
inputs. The multiplications come from three processes: the
feedforward (Tf), the backpropagation of local gradients (Tb),
and the derivations of the weight matrix (Tw). For ABIPNN,

the three terms are computed by applying Eqs. 6, 28 and 21
respectively, and they are:

Tf =

L∑
l=2

(
Rl−1N

2
)︸ ︷︷ ︸

Eq. 6

RlM = O
(
N2KM

)
, (35)

Tb =

L∑
l=2

Rl+1

(
N2 +N2

)︸ ︷︷ ︸
Eq. 28

RlM = O
(
N2KM

)
, (36)

Tw =

L∑
l=2

(
N2
)︸ ︷︷ ︸

Eq. 21

RlRl−1M = O
(
N2KM

)
. (37)

In contrast, to get identical internal dimensionality, for DNN
we have Tf =

∑L
l=2(NRl)(NRl−1)M = O(N2KM),

Tb =
∑L

l=2(NRl)(NRl−1)M = O(N2KM), and Tw =∑L
l=2(NRl)M(NRl−1) = O(N2KM). From the aforemen-

tioned discussion, we see that ABIPNN and DNN are com-
parable in terms of time complexity. This will be empirically
demonstrated in the next section.

III. EXPERIMENTS

To validate the effectiveness of ABIPNN, we consider
two regression problems that require learning a nonlinear
mapping between tensor inputs and tensor outputs. The first
is multispectral image denoising, which aims to recover the
original multispectral image from a noisy input, with N set to
10. The second is blind singing voice separation, which aims
to separate the singing voice and the accompaniment from a
monaural audio mixture, with N set to 1, 3, 5, 7.

We intend to empirically compare the performance of the
conventional DNNs with ABIPNN. In the first experiment,
we will investigate their performance using a similar number
of parameters. In the second one, the complexity analysis in
Section II will also be verified. For both DNNs and ABIPNN,
we use the mean-square error (MSE) as the objective function,
and Adam [42] for gradient optimizations. For ABIPNN,
we employ circular convolution as our bilinear product. The
experiments are performed in Python on a personal computer
equipped with an NVIDIA GeForce GTX 1080 Ti GPU and
a memory of 64 GB RAM. For reproducible research, we
will make the code of the experiments publicly available at
https://github.com/zcfan-tw/vectorNNtoolbox.

A. Experiment on Multispectral Image Denoising

Multispectral (a.k.a. hyperspectral) imaging systems are
usually employed to solve broadband color problems. A mul-
tispectral image is composed of a collection of monospectral
(or monochrome) images, each of which is captured with
a specific wavelength. These monospectral images can be
considered as different bands of the multispectral image. As
different spectral bands may exhibit some mutual associations,
we can leverage such associations to enhance the accuracy of
image processing applications.

In multispectral image denoising, we are given a noisy
version of a multispectral image with N bands, and are asked

https://github.com/zcfan-tw/vectorNNtoolbox

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Noisy Images Recovered Images

ABIPNN

10 Bands 10 Bands

Fig. 3: Illustration of multispectral image denoising using
ABIPNN. Noisy images are contaminated by Gaussian noise.
We take the last 10 bands for the experiments.

to recover the clean version (also N bands). In a recent
work presented by Zhang et al. [23], different supervised
multidimensional dictionary learning methods were evaluated
on the Columbia multispectral image database [6] for the
denoising task. By following their settings, we can compare
the performance of our models with these prior arts. These
methods include K-TSVD, K-SVD [43], 3D K-SVD [44],
LRTA [45], DNMDL [46] and PARAFAC [47].

The database [6] contains 32 real-world scenes and each
scene contains 31 monochrome images of size 512 × 512,
captured by varying the wavelength of a camera from 400 nm
to 700 nm with a step size of 10 nm. Following Zhang et
al. [23], we consider images in the “chart and stuffed toy”
scene, resize each image to 205× 205 and take images of the
last 10 bands (i.e., starting from 600 nm), making N = 10.
Moreover, we divide each image into 8× 8× 10 overlapping
tensor patches with a hop size of one. We randomly take
10 000 tensor patches as the training data and the rest for
testing. From the training data, 1000 tensor patches are held
out as the validation data. The maximal number of training
epochs is set to 3000. We also stop the training process if the
validation MSE does not decrease for 100 epochs.

For the noise model, we randomly select a certain number
of pixels from each band of an image and add to the pixels
Gaussian noise with specific sigma value. We refer to the ratio
of pixels corrupted per band as the sparsity level of the noise.
In our experiments, we vary the sigma value from 100 to 200,
and the sparsity level from 5% to 15%, to simulate different
degrees of corruption. The goal is to recover the corrupted
images, as illustrated in Fig. 3. As for the objective function in
model training, we compute the MSE between the recovered
and the original versions of the patches in the training set,
across all the 10 bands. As in Zhang et al. [23], we measure
the performance of denoising in terms of the peak signal-to-
noise ratio (PSNR). We calculate the PSNR for each test patch
and report the average result.

In our implementation, the ABIPNN consists of 3 hidden
layers with 512 neurons in each layer (i.e., R2 = · · · =
RL−1 = 512 in Fig. 1). Both the input and output layers
have 8 × 8 = 64 dimensions (i.e., R1 = RL = 64 in
Fig. 1)and the topology is denoted as 64-512-512-512-64. In
ABIPNN, each neuron represents a vector with size N = 10.
Hence, for each patch the 10 bands are processed at the same

TABLE II: PSNR (IN DB) OBTAINED BY DIFFERENT
METHODS FOR MULTISPECTRAL IMAGE DENOISING,

UNDER DIFFERENT SPARSITY AND SIGMA VALUES

Sparsity 5% 10% 15% 10% 10%

Sigma 100 100 100 150 200

Referenced from [23]

Noisy Image 20.96 18.18 16.35 14.75 12.10

K-SVD [43] 22.73 22.60 22.49 22.38 22.20

3DK-SVD [44] 22.61 22.53 22.47 22.41 22.20

LRTA [45] 23.54 26.84 26.65 23.90 22.03

DNMDL [46] 24.07 23.73 25.16 17.89 16.83

PARAFAC [47] 27.07 26.86 26.72 26.13 25.24

K-TSVD [23] 27.19 26.98 26.79 26.18 25.44

Our Experiments

Noisy Image 20.92 18.16 16.35 14.64 12.10

DNN-concat 25.06 24.80 24.93 24.59 24.03

DNN-parallel 30.18 28.88 28.06 27.17 25.88

ABIPNN 33.92 32.47 31.74 31.01 29.55

time. The activation function is sigmoid with a learning rate
of 5 × 10−4. To compare the performance of ABIPNN with
conventional DNNs using a similar number of parameters, we
consider the following two variants of DNNs as the baselines.
The first variant, DNN-concat, simply concatenates the 10
bands as a single vector to process them jointly, making
R1 = RL = 640. There are 3 hidden layers with 1, 450
neurons in each layer, so the topology is 640-1450-1450-
1450-640, where each neuron represents a scalar. The second
variant, DNN-parallel, processes the 10 bands separately using
10 DNNs, each with a 64-512-512-512-64 topology. In other
words, each DNN is trained for denoising a specific band.

Table II shows the experimental results. In the upper part of
the table, we cite the PSNR values reported in [23], and in the
lower part we report the results of our own implementation.1

Because we follow their experimental settings, the PSNR
values for the noisy images (i.e., before denoising) reported
in [23] are close to what we observe in our implementation.
Besides, Table II also shows that ABIPNN outperforms all
the other methods, including the two DNN baselines, by a
large margin across different values of sigma and sparsity. The
PSNRs are improved from 12.10–20.92 dB to 29.55–33.92 dB.
This result suggests the effectiveness of a neural network for
this task. Fig. 4 demonstrates the original, noisy, and denoised
versions of three images by using ABPINN.

Among the three NN-based methods, DNN-concat performs

1Each result we reported is the average of 10 simulations and the variance
of each result is low. For example, when the sparsity is 5% and the sigma
is 100, the variance of DNN-concat, DNN-paralled, and ABIPNN is 0.003,
0.014, and 0.011, respectively.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

“Chart and Stuffed Toy” Image

“Face” Image

“Paints” Image

“Fake and Real Peppers” Imagew

(a) Original (b) Noisy (c) Recovered

Fig. 4: Denoised images at the 700 nm band using the
proposed ABIPNN method. The sparsity of the noisy pixels
is 10% and the sigma value of the additive Gaussian noise is
set to 200.

the worst, and is even inferior to that of PARAFAC [47] and
K-TSVD [23], two non-deep learning based methods. This
suggests that concatenating inputs from different bands does
not make it easy for an NN to learn the association between
bands. In contrast, using multidimensional vector neurons,
ABIPNN learns the relations between bands by computing the
circular convolution of two vectors: one coming from a hidden
node and the other coming from a weight tensor. The vector
coming from a weight tensor can be regarded as a linear kernel
that captures interactions across bands, which may contribute
to enhanced results in denoising.

Fig. 5(a) displays the changes in MSE values as a function
of the training epochs in the training procedure for ABIPNN
and DNN-concat. We find that the MSE values converge to a
certain value for both methods, but ABIPNN converges much
faster. We conjecture that this is because the error propagation
in ABIPNN is not only optimized for each dimension (i.e.,
band) but also between different dimensions. It is also known
that gradient variance reduction helps achieve better conver-
gence in stochastic gradient descent (SGD) [48], [49]. Fig. 5(b)
shows the changes in gradient variance during SGD training.
Here ABIPNN provides lower variance at convergence (after
2000 epochs).

0 500 1000 1500 2000 2500 3000

Number of Epochs

0

1

2

3

C
o

s
t

(a)

ABIPNN

DNN-concat

0 500 1000 1500 2000 2500 3000

Number of Epochs

0

0.5

1

G
ra

d
ie

n
t

V
a

ri
a

n
c
e

10
-5 (b)

ABIPNN

DNN-concat

Fig. 5: (a) Mean square error with Adam and (b) gradient
variance with SGD in the training procedure of ABIPNN and
DNN-concat, for the case when the sparsity of the noisy pixels
is 5% and the sigma value is set to 100.

B. Experiment on Blind Singing Voice Separation

Separating the singing voice and the accompaniment from
a monaural audio mixture is challenging, because there are
more unknowns than equations. Unsupervised methods such
as robust principal component analysis [50]–[52] assume no
labeled data are available and rely on assumptions on the
characteristics of the sources for separation. For example, the
spectrogram of the accompaniment part is assumed to have
lower rank than that of the vocal part. If we are given the
original sources of some audio mixtures, we can take these
clean sources as the supervisory signal and employ supervised
methods such as non-negative matrix factorization (NMF) [53]
for source separation. Naturally, supervised methods usually
outperform unsupervised methods, as the former can learn
from the pairs of mixtures and sources. Recently, NN-based
methods have been introduced to this task [54], [55], showing
better result than non-NN based methods such as NMF. This
can be done by taking the spectrogram of an audio mixture
as the input and requiring the network to reproduce the
spectrograms of the corresponding two sources at the output.
NNs work better because they can learn a nonlinear mapping
between the input and the outputs.

A spectrogram is a 2-D time-frequency representation. It is
computed by the short time Fourier transform (STFT), which
divides a given time signal into short segments of equal length
and then computes the Fourier transform separately on each
short segment. We call each short segment a ‘frame,’ and the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

result of Fourier transform per frame as a ‘spectrum.’ The
spectrogram considers only the magnitude part of STFT.

A naı̈ve DNN approach for source separation, referred to as
DNN-simple below, takes the spectrum of each frame of the
mixture as input, and estimates the spectra of that frame for the
vocal and the accompaniment parts respectively. This is done
frame-by-frame, finally leading to the estimated (recovered)
spectrograms Ỹ1 and Ỹ2 of the two sources. Then, we use
the Weiner filter to compute the following soft time-frequency
mask to smooth the source separation results.

m(f) =
|Ỹ1(f)|

|Ỹ1(f)|+ |Ỹ2(f)|
, (38)

where f = 1, 2, ...,F denotes different frequency bins. The
estimated spectra s̃1 and s̃2, respectively corresponding to
vocals and accompaniments, are produced by:

s̃1(f) = m(f)z(f),
s̃2(f) = (1−m(f))z(f),

(39)

where z(f) is the magnitude spectra of the input mixture. The
estimated spectra s̃1 and s̃2 are finally transformed back to
the time-domain by the inverse short time Fourier transform
(ISTFT), assuming that the mixture and the two sources share
the same phase. Parameters of the NN are learned by using
the MSE between the estimated spectra and the groundtruth
source spectra.

We can improve the performance of DNN-simple by adding
the temporal context of each frame to the input [56]. Specifi-
cally, in addition to the current frame, we add the spectra of the
previous-f and subsequent-f frames to compose a real-valued
matrix. For a conventional NN, we can take the vectorized
version of the matrix (which amounts to concatenating the
spectra of these 2f + 1 frames) as the input. We refer to this
method as DNN-concat. Alternatively, we can view the 2f+1
frames as different dimensions and use a vector NN to model
the interaction between different frames. Please see Fig. 6 for
an illustration.

Because ABIPNN can deal with input of arbitrary dimen-
sions, in principle f can take any values. In this experiment, we
compare the performance of ABIPNN with the classic vector
product neural network (VPNN) [17] (i.e., where f = 1 and
only two neighboring frames are considered), and the con-
ventional DNNs (i.e., where f = 1–3). The major difference
between ABIPNN (with N = 3) and VPNN is that the former
uses circular convolutions.

In our experiments, we use the Demixing Secret Database
(DSD100), which was used in the Signal Separation Evalu-
ation Campaign (SiSEC) in 2016 [57], [58]. It is made up
of 100 full-track professionally-produced music recordings of
different styles. It can be used for training and testing for
source separation algorithms, because it includes both the
stereophonic mixtures and the original stereo sources. The
database is divided into a development set and a test set by
the organizers of SiSEC 2016, each consisting of 50 songs.
The duration of the songs ranges from 2’22” to 7’20”, and the
average duration is 4’10”. All the songs are sampled at 44 100
Hz. To reduce computational cost, all songs are downsampled

Mixture

spectrogram

Predicted

voice

spectrogram

Predicted

accompaniment

spectrogram

ABIPNNF

F

N

N N

N

Fig. 6: Illustration of singing voice separation using ABIPNN
(best seen in color), where F represents the number of frames
and N the number of temporal context frames. Here, N = 3.
We use red to indicate the previous frames, yellow for the
current frames, and green for the subsequent frames. After
training, we extract the second dimension (i.e., the yellow one)
for soft-time frequency masking.

to 8000 Hz. For each song, we compute STFT with a 1024-
point window and a 512-point hop size. We set the activation
function to the rectified linear unit (ReLU) and the learning
rate to 3 × 10−5 with exponentially decay reduced by 10%
every 300 epochs.

Then we map each t-f unit of the magnitude spectrum to
an N -dimensional vector to serve as the input to ABIPNN.
Among the training frames, 5% of the tensor frames are
randomly picked as the validation data. The training epoch
is set to 1000 and the training process is stopped if the
MSE of the validation set does not decrease for 20 epochs.
The performance is measured in terms of source to distortion
ratio (SDR), source to interferences ratio (SIR), and source
to artifact ratio (SAR), as calculated by the Blind Source
Separation (BSS) Eval Toolbox v3.0 [59].

Table III shows some details of the evaluated methods and
their results. Each model has three hidden layers. In order to
obtain the same internal dimensionality corresponding to real-
valued neurons of DNN-concat and vector-valued neurons of
ABIPNN, we use N times more neurons per layer for DNN-
concat than ABIPNN.

In Table III, the two vector NNs (i.e., VPNN and ABIPNN)
indeed outperform the conventional DNN methods (i.e., DNN-
simple and DNN-concat), demonstrating the effectiveness of
considering the interactions between frames. DNN-concat1,
VPNN and ABIPNN all outperform DNN-simple by a great
margin in SDR. And, in terms of SAR, we see VPNN and
ABIPNN perform much better than DNN-concat1, despite that
DNN-concat1 has more parameters. This shows that vector
neurons can take better advantage of the information provided
by the temporal context.

Furthermore, we also compare the computation times of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE III: COMPARISON OF SDR, SIR, SAR VALUES AND COMPUTATION TIME (SECONDS PER EPOCH) OBTAINED
BY DIFFERENT METHODS FOR SINGING VOICE SEPARATION OVER THE DSD100 DATA SET, UNDER DIFFERENT

VALUES OF N AND NUMBER OF NEURONS PER LAYER.

Model N
Neurons Number Time (second SDR SIR SAR

per layer of params per epoch) Vocal Accomp. Vocal Accomp. Vocal Accomp.

DNN-simple 1 513 1.31M 4.2 4.37 9.98 8.38 12.89 5.81 13.89

DNN-concat1 3 1539 8.68M 7.1 4.63 10.25 8.29 13.34 6.17 14.14

VPNN [24] 3 513 3.95M 9.1 4.64 10.17 8.37 12.97 6.59 14.57

ABIPNN1 3 513 3.95M 9.2 4.67 10.08 8.39 12.76 6.67 14.24

DNN-concat2 5 2565 22.36M 14.1 4.68 10.19 8.86 12.53 6.78 15.07

ABIPNN2 5 513 6.59M 17.5 4.97 10.50 9.45 13.63 6.88 14.78

DNN-concat3 7 3591 42.37M 23.3 4.73 10.30 10.67 12.45 6.28 15.19

ABIPNN3 7 513 9.22M 30.6 5.13 10.70 9.41 13.93 7.20 14.87

Fig. 7: Vocal and accompaniment results (in SDR) for the
development part and test part of the DSD100 dataset. The
methods are sorted by the median SDR for the test part. For
the result of ABIPNN, the value of N is set to 7. Please
note that we only consider methods that did not use any data
augmentation here, for fair comparison.

Vocal SDR

Dev

Test
H

U
A

K
O

N

D
U

R

C
H

A

O
Z

E

R
A

F

K
A

M

J
E

O

S
T

O

N
U

G

A
B

IP
N

N

ABIPNN

NUG

STO

JEO

KAM

RAF

OZE

CHA

DUR

KON

HUA
0

1e-04

1

p
-v

a
lu

e

Accompaniment SDR

Dev

Test

D
U

R

K
O

N

C
H

A

H
U

A

R
A

F

O
Z

E

K
A

M

J
E

O

S
T

O

N
U

G

A
B

IP
N

N

ABIPNN

NUG

STO

JEO

KAM

OZE

RAF

HUA

CHA

KON

DUR
0

1e-04

1

p
-v

a
lu

e

Fig. 8: Wilcoxon signed-rank test results for SDR vocals and
accompaniments. The upper triangle represents the comparison
of the test set and the lower triangle is for the development
part. For the result of ABIPNN, the value of N is set to 7.
Values of p−value > 1e−04 indicate no significant difference
between the two group results.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

DNN-concat, VPNN and ABIPNN with an NVIDIA 1080 Ti
GPU. It is obvious that the computation time of ABIPNN
is comparable with DNN-concat given the same value of N .
While we can only use N = 3 for VPNN, we can use larger
N for ABIPNN. From Table III, we see that the performance
difference between ABIPNN and DNN-concat increases as
N goes larger, despite that the latter architecture has more
total parameters. With N = 7, the SDR obtained by ABIPNN
reaches 5.13 dB for the vocal part, which outperforms DNN-
simple by 0.76 dB. As can be seen later from Fig. 7, such a
performance gap is remarkable.

In Fig. 7, we compare the median SDR of the vocal and
accompaniment parts of ABIPNN with the methods that have
been evaluated for SiSEC 2016 [58], including NUG [60],
STO [61], OZE [62], KON [63], KAM [64], JEO [65],
HUA [50], DUR [66], CHA [67], and RAF [68]. Among them,
CHA is based on CNN, and KON, STO, NUG are based on
DNNs. For fair comparison, we only select those submissions
that are not trained with augmentation data. Moreover, we
show the vocal and accompaniment SDR here instead of other
metrics, for saving space (following [58]) and because SDR
is usually considered to be more important than the other
metrics. It is also a convention in SiSEC to show the result
for both the development and the test sets. From Fig. 7, we
see that ABIPNN outperforms all the other methods. From
the report [58], our results of ABIPNN are comparable to
UHL [69], which applies data augmentation and a complicated
NN architecture.

In order to show the effect of different methods on SDR
values, we follow [70] and apply the Wilcoxon signed-rank
test (two-tailed and Bonferroni corrected) for pairwise com-
parisons. From Fig. 8, we can see that the group of results
from ABIPNN has significant differences over other methods.

Finally, Fig. 9 shows the spectrograms of the input mixture,
the separation results by ABIPNN, and the original sources,
for two songs randomly picked from the test set of DSD100.
We see that the separation results (marked as “predicted vocal”
or “predicted accompaniment”) resemble the original sources.

IV. CONCLUSION

This paper proposes a novel vector-valued neuron which
employs arbitrary bilinear products for feedforward and back-
propagation. The proposed architecture generalizes and ex-
tends all existing vector-valued neurons and is useful for
datasets where each training sample is a multidimensional
vector. Through bilinear products, the vector neural network
captures the associations among different entries in the same
position in each vector. The model can be trained efficiently
by using vector error backpropagation through the Adam
algorithm. Experimental results on multispectral denoising
and singing voice separation show that our proposed model
performs better than conventional NNs. Future work involves
three directions. First, we will apply the technique of vector
neural learning with bilinear product on convolutional neural
network (CNN) to deal with spatial data such as images.
Next, we will compare the performance of vector neural
learning on CNN to other deep models with classification or

(a) 009 - Bobby Nobody - Stitch Up

Mixture

100 200 300 400 500

Frames

100

200

300

400

500

F
re

q
u
e
n
c
y
 (

H
z
)

Predicted Vocal

100 200 300 400 500

Frames

100

200

300

400

500

F
re

q
u
e
n
c
y
 (

H
z
)

Clean Vocal

100 200 300 400 500

Frames

100

200

300

400

500

F
re

q
u
e
n
c
y
 (

H
z
)

Predicted Accompaniment

100 200 300 400 500

Frames

100

200

300

400

500

F
re

q
u
e
n
c
y
 (

H
z
)

Clean Accompaniment

100 200 300 400 500

Frames

100

200

300

400

500

F
re

q
u
e
n
c
y
 (

H
z
)

(b) 039 - Swinging Steaks - Lost My Way

Mixture

100 200 300 400 500

Frames

100

200

300

400

500

F
re

q
u
e
n
c
y
 (

H
z
)

Predicted Vocal

100 200 300 400 500

Frames

100

200

300

400

500

F
re

q
u
e
n
c
y
 (

H
z
)

Clean Vocal

100 200 300 400 500

Frames

100

200

300

400

500

F
re

q
u
e
n
c
y
 (

H
z
)

Predicted Accompaniment

100 200 300 400 500

Frames

100

200

300

400

500

F
re

q
u
e
n
c
y
 (

H
z
)

Clean Accompaniment

100 200 300 400 500

Frames

100

200

300

400

500

F
re

q
u
e
n
c
y
 (

H
z
)

Fig. 9: Examples of singing voice separation employing
ABIPNN on the test part of the DSD100 dataset.

regression tasks. Finally, we observe that the training time of
the proposed network grows quadratically as a function of the
dimensionality N . Future work has to be done to make the
training more scalable to higher values of N .

APPENDIX A
BILINEAR PRODUCTS FOR ABIPNN

In Section II-D, we use circular convolution as the bilinear
product in ABIPNN and briefly derive the results of matrices[
al−1
j

]†
• and

[
wl+1

ki

]
• used in the backpropagation process. In

this section, we will derive some more bilinear products in
detail. The feedforward connection is still described between
layer l − 1 and layer l.

A. Vector Product

Here wl
ij • al−1

j stands for the usual vector product,
wl

ij =
[
wl

ij1, wl
ij2, wl

ij3

]T ∈ R3, and the input al−1
j =[

al−1j1 , al−1j2 , al−1j3

]T ∈ R3 are all three-dimensional vectors
(N = 3). The matrix representation of wl

ij • al−1
j is:

[
wl

ij

]
• =


0 −wl

ij3 wl
ij2

wl
ij3 0 −wl

ij1

−wl
ij2 wl

ij1 0

 , (40)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

where the weight vector is formulated as a 3×3 square matrix
with zeros on the main diagonal. When calculating ∂C

∂wl
ij

, the

matrix
[
al−1
j

]†
• in Eq. 21 can be extended as follows:

[
al−1
j

]†
• =


0 al−1j3 −al−1j2

−al−1j3 0 al−1j1

al−1j2 −al−1j1 0

 . (41)

ABIPNN with this product is identical to the three-dimensional
vector product neural network [17].

B. Quaternion Multiplication

Quaternions are four-dimensional numbers a+ bi+ cj+dk
with the multiplication rule i2 = j2 = k2 = ijk = −1.
Here wl

ij • al−1
j stands for quaternion multiplication, the

weight wl
ij =

[
wl

ij1, wl
ij2, wl

ij3, wl
ij4

]T ∈ R4 and the

input al−1
j =

[
al−1j1 , al−1j2 , al−1j3 , al−1j4

]T ∈ R4 are all four-
dimensional vectors (N = 4). The matrix representation of
wl

ij • al−1
j is:

[
wl

ij

]
• =


wl

ij1 −wl
ij2 −wl

ij3 −wl
ij4

wl
ij2 wl

ij1 −wl
ij4 wl

ij3

wl
ij3 wl

ij4 wl
ij1 −wl

ij2

wl
ij4 −wl

ij3 wl
ij2 wl

ij1

 , (42)

where the weight vector is formulated as a 4×4 square matrix
with wl

ij1 on the main diagonal. The matrix
[
al−1
j

]†
• for the

calculation of ∂C
∂wl

ij

in Eq. 21 can be extended as follows:

[
al−1
j

]†
• =


al−1j1 −al−1j2 −al−1j3 −al−1j4

al−1j2 al−1j1 al−1j4 −al−1j3

al−1j3 −al−1j4 al−1j1 al−1j2

al−1j4 al−1j3 −al−1j2 al−1j1

 . (43)

With quaternion multiplication, the ABIPNN is equivalent to
the quaternion-valued neural network [19].

C. Seven-Dimensional Vector Product

The seven-dimensional vector product is defined as per
[71]. Here wl

ij • al−1
j stands for the seven-dimensional vector

product, wl
ij =

[
wl

ij1, wl
ij2, . . . , wl

ij7

]T ∈ R7 and al−1
j =[

al−1j1 , al−1j2 , . . . , al−1j7

]T ∈ R7 are both seven-dimensional

vectors (N = 7), and the matrix representation of wl
ij •al

j is:[
wl

ij

]
• =

0 −wl
ij4 −wl

ij7 wl
ij2 −wl

ij6 wl
ij5 wl

ij3

wl
ij4 0 −wl

ij5 −wl
ij1 wl

ij3 −wl
ij7 wl

ij6

wl
ij7 wl

ij5 0 −wl
ij6 −wl

ij2 wl
ij4 −wl

ij1

−wl
ij2 wl

ij1 wl
ij6 0 −wl

ij7 −wl
ij3 wl

ij5

wl
ij6 −wl

ij3 wl
ij2 wl

ij7 0 −wl
ij1 −wl

ij4

−wl
ij5 wl

ij7 −wl
ij4 wl

ij3 wl
ij1 0 −wl

ij2

−wl
ij3 −wl

ij6 wl
ij1 −wl

ij5 wl
ij4 wl

ij2 0


,

(44)

where the weight vector is formulated as a 7×7 square matrix
in a similar way as the vector product one. The matrix

[
al−1
j

]†
•

in Eq. 21 becomes:[
al−1
j

]†
• =

0 al−1j4 al−1j7 −al−1j2 al−1j6 −al−1j5 −al−1j3

−al−1j4 0 al−1i5 al−1j1 −al−1j3 al−1j7 −al−1j6

−al−1j7 −al−1j5 0 al−1j6 al−1j2 −al−1j4 al−1j1

al−1j2 −al−1j1 −al−1j6 0 al−1j7 al−1j3 −al−1j5

−al−1j6 al−1j3 −al−1j2 −al−1j7 0 al−1j1 al−1j4

al−1j5 −al−1j7 al−1j4 −al−1j3 −al−1j1 0 al−1j2

al−1j3 al−1j6 −al−1j1 al−1j5 −al−1j4 −al−1j2 0


,

(45)

where the signs are flipped when compared to the matrix[
wl

ij

]
• above.

D. Skew Circular Convolution

The skew-circular convolution is obtained by replacing the
circulant matrix in Eq. 30 by a skew-circulant one [72]. The
matrix representation of wl

ij • al−1
j then becomes:

[
wl

ij

]
• =



wl
ij1 −wl

ijN −wl
ij(N−1) . . . −wl

ij2

wl
ij2 wl

ij1 −wl
ijN . . . −wl

ij3

wl
ij3 wl

ij2 wl
ij1 . . . −wl

ij4

...
...

...
. . .

...

wl
ijN wl

ij(N−1) wl
ij(N−2) . . . wl

ij1


,

(46)

where the weight vector is formulated as an N × N square
matrix with wl

ij1 on the main diagonal and the upper triangular
part of the weight matrix is multiplied by minus one. When

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

we compute ∂C
∂wl

ij

in Eq. 21,
[
al−1
j

]†
• is extended as follows:

[
al−1
j

]†
• =



al−1j1 −al−1jN −al−1j(N−1) . . . −al−1j2

al−1j2 al−1j1 −al−1jN . . . −al−1j3

al−1j3 al−1j2 al−1j1 . . . −al−1j4

...
...

...
. . .

...

al−1jN al−1j(N−1) al−1j(N−2) . . . al−1j1


.

(47)

If N = 2, then ABIPNN becomes a complex-valued neural
network [9]. For even N ≥ 2, the skew circular convolution
is also known as planar complex multiplication [40].

E. Reverse-Time Circular Convolution
The reversed-time circular convolution is obtained by flip-

ping the circulant matrix upside down (see also [73]). The
matrix representation of wl

ij • al−1
j becomes:[

wl
ij

]
• =

wl
ijN wl

ij(N−1) wl
ij(N−2) . . . wl

ij1

wl
ij(N−1) wl

ij(N−2) wl
ij(N−3) . . . wl

ijN

wl
ij(N−2) wl

ij(N−3) wl
ij(N−4) . . . wl

ij(N−1)
...

...
...

. . .
...

wl
ij1 wl

ijN wl
ij(N−1) . . . wl

ij2


,

(48)

where the weight vector is formulated as an N × N square
matrix which is the same as the weight matrix for circular
convolution rotated by 90 degrees. The matrix

[
al−1
j

]†
• in

Eq. 21 is extended as follows:[
al−1
j

]†
• =

al−1jN al−1j(N−1) al−1j(N−2) . . . al−1j1

al−1j(N−1) al−1j(N−2) al−1j(N−3) . . . al−1jN

al−1j(N−2) al−12(N−3) al−1j(N−4) . . . al−1j(N−1)
...

...
...

. . .
...

al−1j1 al−1jN al−1j(N−1) . . . al−1j2


.

(49)

REFERENCES

[1] D. P. Mandic and V. S. L. Goh, Complex Valued Nonlinear Adaptive
Filters: Noncircularity, Widely Linear and Neural Models. New York,
NY: Wiley, 2009.

[2] T. Nitta, Complex-Valued Neural Networks: Utilizing High-Dimensional
Parameters. Hershey, PA: Information Science Reference, 2009.

[3] A. Hirose, Complex-Valued Neural Networks. Berlin: Springer, 2013.
[4] ——, Complex-Valued Neural Networks: Advances and Applications.

New York: John Wiley and Sons, 2013.
[5] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J.-F.

Santos, S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal, “Deep
complex networks,” in Proc. Int. Conf. Learn. Representations (ICLR),
2018.

[6] F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted
pixel camera: postcapture control of resolution, dynamic range, and
spectrum,” IEEE Trans. Image Process., vol. 19, no. 9, pp. 2241–2253,
Mar. 2010, [Online]. Available: http://www1.cs.columbia.edu/CAVE/
databases/multispectral/.

[7] S. Koelstra, C. Mühl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi,
T. Pun, A. Nijholt, and I. Patras, “DEAP: A database for emotion
analysis; using physiological signals,” IEEE Trans. Affective Comput.,
vol. 3, no. 1, pp. 18–31, 2012.

[8] E. Vincent, S. Watanabe, J. Barker, and R. Marxer, “The third CHiME
speech separation and recognition challenge: Dataset, task and base-
lines,” in Proc. IEEE Workshop Automat. Speech Recognition and
Understanding (ASRU), 2015, pp. 504–511.

[9] T. Nitta, “An extension of the back-propagation algorithm to complex
numbers,” Neural Netw., vol. 10, no. 8, pp. 1391–1415, 1997.

[10] ——, “An analysis of the fundamental structure of complex-valued
neurons,” Neural Process. Lett., vol. 12, no. 3, pp. 239–246, 2000.

[11] ——, “Orthogonality of decision boundaries in complex-valued neural
networks,” Neural Comput., vol. 16, no. 1, pp. 73–97, Jan. 2004.

[12] ——, “Solving the XOR problem and the detection of symmetry using a
single complex-valued neuron,” Neural Netw., vol. 16, no. 8, pp. 1101–
1105, 2003.

[13] S. Buchholz and G. Sommer, “A hyperbolic multilayer perceptron,” in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2000, pp. 129–133.

[14] T. Nitta and S. Buchholz, “On the decision boundaries of hyperbolic
neurons,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2008, pp.
2974–2980.

[15] T. Nitta and Y. Kuroe, “Hyperbolic gradient operator and hyperbolic
back-propagation learning algorithms,” IEEE Trans. Neural Netw. Learn.
Syst., no. 99, pp. 1–14, Mar. 2017.

[16] B. K. Tripathi, High Dimensional Neurocomputing. India: Springer,
New Delhi, 2015.

[17] T. Nitta, “A backpropagation algorithm for neural networks based an 3D
vector product,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), 1993,
pp. 589–592.

[18] ——, “Three-dimensional vector valued neural network and its general-
ization ability,” in Neural Information Processing–Letters and Reviews,
2006, pp. 237–242.

[19] P. Arena, L. Fortuna, L. Occhipinti, and M. Xibilia, “Neural networks
for quaternion-valued function approximation,” in Proc. IEEE Int. Symp.
Circuits and Syst., 1994, pp. 307–310.

[20] P. Arena, L. Fortuna, G. Muscato, and M. Xibilia, “MLP in quaternion
algebra,” in Neural Networks in Multidimensional Domains. London:
Springer-Verlag London, 1998, vol. 234, pp. 49–75.

[21] T. Nitta, “A quaternary version of the back-propagation algorithm,” in
Proc. IEEE Int. Conf. Neural Netw., 1995, pp. 2753–2756.

[22] C.-A. Popa, “Octonion-valued neural networks,” in Proc. Int. Conf.
Artificial Neural Netw., 2016, pp. 435–443.

[23] Z. Zhang and S. Aeron, “Denoising and completion of 3D data via
multidimensional dictionary learning,” in Proc. Int. Joint Conf. Artificial
Intelligence (IJCAI), 2016, pp. 2371–2377.

[24] Z.-C. Fan, T.-S. T. Chan, Y.-H. Yang, and J.-S. R. Jang, “Music signal
process using vector product neural network,” in Proc. Int. Workshop
Deep Learning for Music, 2017.

[25] S. Jirayucharoensak, S. Pan-Ngum, and P. Israsena, “EEG-based emotion
recognition using deep learning network with principal component based
covariate shift adaptation,” The Scientific World J., vol. 2014, 2014.

[26] T. Nitta, “N-dimensional vector neuron,” in Proc. Int. Joint Conf.
Artificial Intelligence (IJCAI), 2007, pp. 2–7.

[27] ——, “N-dimensional vector neuron and its application to the N-bit
parity problem,” in Complex-valued neural networks: Advances and
applications. New York: John Wiley and Sons, 2013, pp. 59–74.

[28] J. K. Pearson and D. L. Bisset, “Back propagation in a Clifford algebra.”
in Proc. IEEE Int. Conf. Neural Netw., vol. 2, 1992, pp. 413–416.

[29] ——, “Neural networks in the Clifford domain,” in Proc. IEEE Int. Conf.
Neural Netw., vol. 3, 1994, pp. 1465–1469.

[30] E. J. Bayro-Corrochano, “Geometric neural computing,” IEEE Trans.
Neural Netw., vol. 12, no. 5, pp. 968–986, 2001.

[31] S. Buchholz and G. Sommer, “Clifford algebra multilayer perceptrons,”
in Geometric Computing with Clifford Algebras: Theoretical Founda-
tions and Applications in Computer Vision and Robotics. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 315–334.

[32] C.-A. Popa, “Matrix-valued neural networks,” in Mendel 2015. Cham:
Springer International Publishing, 2015, pp. 245–255.

[33] J.-T. Chien and Y.-T. Bao, “Tensor-factorized neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., no. 99, pp. 1–14, Apr. 2017.

[34] B. V. Kryzhanovsky, L. B. Litinskii, and A. L. Mikaelian, “Vector-neuron
models of associative memory,” in Proc. IEEE Int. Joint Conf. Neural
Netw., vol. 2. IEEE, 2004, pp. 909–914.

[35] I. Kanter, “Potts-glass models of neural networks,” Physical Review A,
vol. 37, no. 7, p. 2739, 1988.

http://www1.cs.columbia.edu/CAVE/databases/multispectral/
http://www1.cs.columbia.edu/CAVE/databases/multispectral/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[36] D. Bollé, P. Dupont, and J. van Mourik, “Stability properties of Potts
neural networks with biased patterns and low loading,” Journal of
Physics A: Mathematical and General, vol. 24, no. 5, p. 1065, 1991.

[37] D. Bollé, P. Dupont, and J. Huyghebaert, “Thermodynamic properties
of the Q-state Potts-glass neural network,” Phys. Rew. A, vol. 45, no. 6,
p. 4194, 1992.

[38] B. V. Kryzhanovsky, L. B. Litinskii, and A. Fonarev, “An effective as-
sociative memory for pattern recognition,” in Int. Symposium Intelligent
Data Anal. Springer, 2003, pp. 179–186.

[39] T. A. Ell, “On systems of linear quaternion functions,” arXiv preprint
arXiv:math/0702084, 2007.

[40] S. Olariu, Complex Numbers in N Dimensions. Amsterdam: Elsevier,
2002.

[41] T.-S. T. Chan and Y.-H. Yang, “Polar n-complex and n-bicomplex
singular value decomposition and principal component pursuit,” IEEE
Trans. Signal Process., vol. 64, no. 24, pp. 6533–6544, 2016.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[43] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[44] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[45] N. Renard, S. Bourennane, and J. Blanc-Talon, “Denoising and dimen-
sionality reduction using multilinear tools for hyperspectral images,”
IEEE Trans. Geosci. Remote Sens., vol. 5, no. 2, pp. 138–142, Apr.
2008.

[46] Y. Peng, D. Meng, Z. Xu, C. Gao, Y. Yang, and B. Zhang, “De-
composable nonlocal tensor dictionary learning for multispectral image
denoising,” in Proc. IEEE Conf. Comput. Vision Pattern Recognition
(CVPR), 2014, pp. 2949–2956.

[47] X. Liu, S. Bourennane, and C. Fossati, “Denoising of hyperspectral
images using the parafac model and statistical performance analysis,”
IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3717–3724, Oct.
2012.

[48] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Advances Neural Info. Process.
Systems (NIPS), 2013, pp. 315–323.

[49] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. J. Smola, “On variance
reduction in stochastic gradient descent and its asynchronous variants,”
in Advances Neural Info. Process. Systems (NIPS), 2015, pp. 2647–2655.

[50] P.-S. Huang, S. D. Chen, P. Smaragdis, and M. Hasegawa-Johnson,
“Singing-voice separation from monaural recordings using robust prin-
cipal component analysis,” in Proc. IEEE Int. Conf. Acoust., Speech and
Signal Process. (ICASSP), 2012, pp. 57–60.

[51] Y.-H. Yang, “Low-rank representation of both singing voice and music
accompaniment via learned dictionaries,” in Proc. Int. Soc. Music Info.
Retrieval Conf. (ISMIR), 2013, pp. 427–432.

[52] T.-S. Chan, T.-C. Yeh, Z.-C. Fan, H.-W. Chen, L. Su, Y.-H. Yang, and
R. Jang, “Vocal activity informed singing voice separation with the iKala
dataset,” in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process.
(ICASSP), 2015, pp. 718–722.

[53] D. D. Lee and H. S. Seung, “Learning the parts of objects by nonnegative
matrix factorization,” Nature, vol. 401, pp. 788–791, 1999.

[54] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis,
“Singing-voice separation from monaural recordings using deep recur-
rent neural networks,” in Proc. Int. Soc. Music Info. Retrieval Conf.
(ISMIR), 2014, pp. 477–482.

[55] J. R. Hershey, Z. Chen, J. L. Roux, and S. Watanabe, “Deep clustering:
Discriminative embeddings for segmentation and separation,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2016, pp.
31–35.

[56] X.-L. Zhang and D. Wang, “A deep ensemble learning method for
monaural speech separation,” IEEE Trans. Audio, Speech, Language
Process., vol. 24, no. 5, pp. 967–977, 2016.

[57] “SiSEC MUS Homepage,” 2016, [Online] https://sisec.inria.fr/sisec-
2016/2016-professionally-produced-music-recordings/.

[58] A. Liutkus, F.-R. Stöter, Z. Rafii, D. Kitamura, B. Rivet, N. Ito,
N. Ono, and J. Fontecave, “The 2016 signal separation evaluation
campaign,” in Proc. Int. Conf. Latent Variable Anal. Signal Separation.
Springer, 2017, pp. 323–332, [Online]. Available: https://www.sisec17.
audiolabs-erlangen.de/.

[59] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement in
blind audio source separation,” IEEE Trans. Audio, Speech, Language
Process., vol. 14, no. 4, pp. 1462–1469, July 2006.

[60] A. A. Nugraha, A. Liutkus, and E. Vincent, “Multichannel audio source
separation with deep neural networks,” IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 24, no. 9, pp. 1652–1664, 2016.

[61] F.-R. Stöter, A. Liutkus, R. Badeau, B. Edler, and P. Magron, “Common
fate model for unison source separation,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), 2016, pp. 126–130.

[62] A. Ozerov, E. Vincent, and F. Bimbot, “A general flexible framework
for the handling of prior information in audio source separation,” IEEE
Trans. Audio, Speech, Language Process., vol. 20, no. 4, pp. 1118–1133,
2012.

[63] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis, “Joint
optimization of masks and deep recurrent neural networks for monaural
source separation,” IEEE/ACM Trans. Audio, Speech, Language Pro-
cess., vol. 23, no. 12, pp. 2136–2147, 2015.

[64] A. Liutkus, D. Fitzgerald, and Z. Rafii, “Scalable audio separation
with light kernel additive modelling,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), 2015, pp. 76–80.

[65] I.-Y. Jeong and K. Lee, “Singing voice separation using rpca with
weighted l {1} -norm,” in Proc. Int. Conf. Latent Variable Anal. Signal
Separation, 2017, pp. 553–562.

[66] J. L. Durrieu, B. David, and G. Richard, “A musically motivated
mid-level representation for pitch estimation and musical audio source
separation,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 6, pp. 1180–
1191, Oct. 2011.

[67] P. Chandna, M. Miron, J. Janer, and E. Gómez, “Monoaural audio source
separation using deep convolutional neural networks,” in Proc. Int. Conf.
Latent Variable Anal. Signal Separation. Springer, 2017, pp. 258–266.

[68] Z. Rafii and B. Pardo, “REpeating Pattern Extraction Technique
(REPET): A simple method for music/voice separation,” IEEE Trans.
Audio, Speech, Language Process., vol. 21, no. 1, pp. 73–84, Jan 2013.

[69] S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp, N. Takahashi, and
Y. Mitsufuji, “Improving music source separation based on deep neural
networks through data augmentation and network blending,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2017, pp.
261–265.

[70] A. J. Simpson, G. Roma, E. M. Grais, R. D. Mason, C. Hummersone,
A. Liutkus, and M. D. Plumbley, “Evaluation of audio source separation
models using hypothesis-driven non-parametric statistical methods,” in
2016 24th European Signal Processing Conference (EUSIPCO). IEEE,
2016, pp. 1763–1767.

[71] P. Lounesto, Clifford Algebras and Spinors. Cambridge: Cambridge
University Press, 2001.

[72] P. J. Davis, Circulant Matrices. American Mathematical Society; 2
edition, 2012.

[73] S. R. Powell and P. M. Chau, “Time reversed filtering in real-time,” in
Proc. IEEE Int. Symp. Circuits Syst., 1990, pp. 1239–1243.

Zhe-Cheng Fan was born in 1987. He received
the M.S. degree in computer science and infor-
mation engineering from National Taiwan Normal
University and the Ph.D. degree in computer science
and information engineering from National Taiwan
University, Taipei, Taiwan, in 2012 and 2019, re-
spectively. His research interests include machine
learning, deep learning, audio signal processing, and
audio source separation.

Tak-Shing T. Chan (M’15) received the Ph.D.
degree from the University of London in 2008. From
2006 to 2008, he was a Scientific Programmer at
the University of Sheffield. In 2011, he worked as a
Research Associate at the Hong Kong Polytechnic
University. From 2014 to 2018, he was a Post-
doctoral Fellow at Academia Sinica, Taiwan. Since
April 2019, he is appointed as a Research Officer at
Swansea University. His research interests include
signal processing, cognitive informatics, distributed
computing, pattern recognition, hypercomplex anal-

ysis, and topological data analysis.

https://www.sisec17.audiolabs-erlangen.de/
https://www.sisec17.audiolabs-erlangen.de/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Yi-Hsuan Yang (M’11–SM’17) is an Associate
Research Fellow/Professor with Academia Sinica.
He is also the Chief Music Scientist at the Tai-
wan AI Labs. He received his Ph.D. degree in
communication engineering from National Taiwan
University in 2010. His research interests include
music information retrieval, affective computing, and
machine learning. He was an Associate Editor for the
IEEE Transactions on Affective Computing and the
IEEE Transactions on Multimedia, both from 2016
to 2019.

Jyh-Shing Roger Jang (M’93) received his Ph.D.
from EECS Department at UC Berkeley, where
he studied fuzzy logic and neural networks with
Lotfi Zadeh, the father of fuzzy logic. As of Aug.
2019, Google Scholar shows over 15,000 citations
for Dr. Jang’s seminal paper on ANFIS published
in 1993. After obtaining his Ph.D., he joined the
MathWorks to coauthor the Fuzzy Logic Toolbox
(for MATLAB). He has since cultivated a keen
interest in implementing industrial software for ma-
chine learning. He was a professor in the CS Dept.

of National Tsing Hua Univ., Taiwan, from 1995 to 2012. Since August
2012, he has been a professor in the CSIE Dept. of National Taiwan Univ.
(NTU), Taiwan. He has published one book entitled Neuro-Fuzzy and Soft
Computing by Prentice Hall. He has also maintained toolboxes for Machine
Learning and Speech/Audio Processing. He was the general chair of ISMIR
(International Society for Music Information Retrieval) Conference, Taipei,
2014 and was a general co-chair of ISMIR Conference, Suzhou, 2017.
He is currently serving as the director for FinTech Center at NTU. His
research interests include machine learning in practice, with wide applications
to speech recognition/assessment/synthesis, music analysis/retrieval, image
classification, medical/healthcare data analytics, and FinTech.

	Introduction
	Vector neural learning
	Generalizing N-D Vector Neurons with Bilinear Products
	Feedforward Process in a Bilinear Product Neuron
	Backpropagation Algorithm in a Bilinear Product Neuron
	Example: Circular Convolution as The Bilinear Product
	Complexity Analysis

	Experiments
	Experiment on Multispectral Image Denoising
	Experiment on Blind Singing Voice Separation

	Conclusion
	Appendix A: Bilinear Products for ABIPNN
	Vector Product
	Quaternion Multiplication
	Seven-Dimensional Vector Product
	Skew Circular Convolution
	Reverse-Time Circular Convolution

	References
	Biographies
	Zhe-Cheng Fan
	Tak-Shing T. Chan
	Yi-Hsuan Yang
	Jyh-Shing Roger Jang

