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 

Abstract—This paper describes a music rhythm game called 

AutoRhythm, which can automatically generate the hit timing as 

game contents from a given piece of music, and identify 

user-defined percussion of real objects in real time for gameplay. 

More specifically, AutoRhythm can generate the hit timing of a 

piece of music based on onset detection, so the user can use any 

music from their own collection for the rhythm game. Moreover, 

to make the game more realistic, AutoRhythm also allows the user 

to interact with the game via any object that can produce 

percussion sounds, such as a pen or a chopstick hitting against a 

table. AutoRhythm can identify the percussions in real time to 

replace tapping on the screen. This real-time user percussion 

identification is achieved based on the frame-based power 

spectrum of the filtered recording after background music 

reduction, which is performed based on the concept of active noise 

cancellation, with the estimated noisy playback music being 

subtracted from the original recording. Based on a test dataset of 

100 recordings, our experiment indicates that our system can 

achieve an F-measure of 78.22%, which outperforms other 

well-known classifiers and is quite satisfactory for the purpose of 

gameplay. 

 
Index Terms—Active noise cancellation, Automatic hit-timing 

generation, Music game, Rhythm game, Percussion identification  

 

I. INTRODUCTION 

usic-based games are quite popular on mobile platforms 

since they can create close and intense interactions 

between the user and the device. Recently, music rhythm games 

have attracted considerable attention due to a wide variety of 

game types and rich interactivity. During such rhythm games, 

users usually respond to the onset events of a piece of music by 

pressing a button or tapping on the screen directly. Users can 

even compete with each other through LAN or internet. At the 

end of the game, the user is given a score and its ranking based 

on his/her accuracy and consistency in timing when compared 
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with the music’s pre-defined “hit timing”. 

As smartphones are becoming widely available, music 

rhythm games has appeared to be one of the most popular game 

genres due to the high interaction and immersion during 

gameplay. Starting from Tap Tap Revenge [1], a number of 

music rhythm games have been developed and widely spread 

since then, such as Cytus [2], Deemo [3], Jubeat Plus [4], Piano 

Tiles [5], Dream Piano [6], and Tiles Hop [7]. Recently, several 

music rhythm games claim to have automatic content 

generation from users’ music collection to deal with the lack of 

music for game contents, including BeatMp3 [8], TapTube [9], 

Melobeat [10], and Musiverse [11] These games can take 

user-owned mp3 files or YouTube music to generate the 

contents for gameplay. However, some of these games generate 

random hit timing with no correlation to music. On the other 

hand, some of the games do generate the hit timing based on the 

detected onsets in the music, but the assignment to tracks is 

randomly permutated. In an unformal discussion in Chinese1, 

this issue truly affected the players’ user experience since most 

music game players expected the hit timing to be permutated in 

a “reasonable” way, and most of the existing rhythm games 

which can automatically generate the game contents cannot 

satisfy these game players. 

Another trend of music rhythm games is to increase the 

interaction with users in order to create immersive experience. 

Instead of press buttons by fingers, this kind of rhythm games 

tend to interact with users by dummy instruments or body 

moves. For instance, Dance Dance Revolution [12] interacts 

with users by their footsteps. Samba de Amigo [13] lets users 

play the rhythm game through dummy maracas. Drummania 

[14] was developed with a whole dummy drum set to create an 

immersive environment that lets users feel like playing true 

drum sets in the game. The latest version of Guitar Hero [15] 

allows up to 4 players to play dummy keyboard, guitar, bass, 

and vocal simultaneously to render a complete song. With VR 

technology, BeatSaber [16] is the first successful rhythm game 

in the virtual space in which a user can hold two virtual 

lightsabers to slash the incoming notes and scores. Audioshield 

[17] is another VR music rhythm game that shares similar idea 

to BeatSaber. Moreover, there are several games combining the 

concepts of rhythm games and shooting games. Beat Hazard 

and Symphony [18][19] were two representative indie games of 
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this kind, which also support automatic content generation. 

These games indicate the importance and necessity to create a 

variety of interactions with users such that a seamless 

immersive game environment can be rendered.  

In this paper, we describe an innovative rhythm game called 

AutoRhythm that supports advanced content generation as well 

as use of physical objects for gameplay. More specifically, the 

game not only generates playable hit timing for any music but 

also groups the generated hit timing by its acoustic features. 

This grouping method is based on k-means clustering to assign 

onsets of similar timbre to the same track to create a more 

“structured” game contents. Moreover, the game supports 

real-time User Percussion Identification (UPI) that can 

recognize different kinds of users’ specific percussion input on 

the fly. The feature of the game creates a different interaction 

scenario, which allows the user to take two objects (such as a 

pen and a chopstick) to hit on a hard surface (such as a table or a 

plastic box) to generate the percussive inputs for gameplay. 

Furthermore, we propose a novel Background Music Reduction 

(BMR) method based on the concept of Active Noise 

Cancellation (ANC) to strengthen the reliability of UPI. An 

example video that introduces this game is available through 

the link at footnote2. 

The rest of this paper is organized as follows. Section II 

introduces work related to the underlying approaches of the 

proposed system. Section III gives an overview of the proposed 

system. Section IV describes the technical details involved in 

the system, including the method for automatic hit-timing 

generation, the approach for music reduction in the recording, 

and the features and classifier for real-time UPI. Section V 

discusses experimental results and error analysis. Section VI 

concludes the paper with possible directions for future work. 

II. RELATED WORK 

In Section I, we have introduced a number of music rhythm 

games with various characteristics. Recently, more and more 

music rhythm games support game content generation based on 

the user’s music collection or online music source like 

YouTube. This procedure of automatic content generation, also 

known as procedural content generation [20], has been widely 

used in different game genres. Jordan et. al. [21] brought the 

concept of procedural content generation into the music-based 

game called BeatTheBeat. which utilized music’s audio 

features in creating game boards and game contents for various 

mini games such as rhythm games and tower defense, etc. 

However, no detailed experiments or analysis was reported 

regarding the quality of the generated contents, especially the 

generated rhythms and onsets. To generate an accurate list of 

hit timing, we use onset detection to identify the onset positions 

for a given piece of audio music. Traditional onset detection is 

based on spectral analysis [22][23][24]. Böck et al. surveyed 

the online capabilities of several onset detection methods [25]. 

More recently, Schlüter and Böck proposed the use of 

convolutional neural network for onset detection [26], which 

outperforms traditional one. Our system employs a fast yet 

reliable spectral-flux-based onset detection method, which will 

be briefly introduced in section IV.A. 

UPI is an essential part of the proposed AutoRhythm in order 

to support real-time identification of two types of percussion 

generated by the user via physical objects. Here we need to 

design a relatively fast and reliable method for UPI to achieve 

better user experience during gameplay. Wessel and Wright 

mentioned that a reasonable latency of interaction when using 

computational musical instrument is under 10 ms [27].  

Moreover, since the user may change their percussion objects 

right before each gameplay, we cannot use a pre-trained model 

for UPI to fit all users and all games. Instead, we need to invoke 

an efficient pre-game training on the device before each 

gameplay. Work on UPI is scarce in the literature. The most 

similar work is on drum sound identification in the literature, as 

explained next. 

 Herrera et al. [28] compared various combinations of 

features and classifiers for drum sound identification. 

Schloss [29] used the power of selected frequency bins 

and music structures to transcribe percussive music. 

However, both studies [28][29] can only classify 

monosyllabic and clear percussive sounds without 

 
2 https://www.youtube.com/watch?v=lkjEa1iV4P0 

 
 

Fig. 1.  System overview of our game. On the server side, the hit-timing list is 
generated by the extracted acoustic features, and stored in the Game Content 

Pool. On the client side, once the music is determined, the corresponding game 

contents (either generated or cached at the server) are downloaded from the 
server. Moreover, a pre-game training for UPI is invoked on the client device 

for identifying the models for users’ percussion. Once the game contents and 

the UPI models are ready, the use can proceed with the gameplay on the 
mobile device. 

 

 

 
(a)                              (b)                                 (c) 

Fig. 2. Screenshots of AutoRhythm during mode selection and gameplay. (a) 

Mode selection. (b) Main screen. (c) Gameplay. 
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background music. 

 Gouyon et al. [30] grouped percussive sounds into two 

classes (snare-like and bass-drum-like) via 

agglomerative clustering, with features related to 

attack time, spectrum, and zero-crossing rate. Yoshii et 

al. [31][32][33] used an iterative adaptation algorithm 

to obtain the adapted template of the power spectrum 

of percussive sounds in polyphonic signals. However, 

the methods employed in these studies require length 

computation and thus not suitable for online 

applications. 

 Dittmar and Gärtner [34] utilized a Non-negative 

Matrix Factorization (NMF)-based method to separate 

the signal source to distinguish high-hat, kick, and 

snare in real time. However, since the model must be 

pre-trained in advance and thus not suitable for our 

game scenario which requires fast pre-game training 

before each gameplay. 

Instead, our system can train the detection model for the sounds 

of user-specific percussion objects in 3~5 seconds on the device 

before each gameplay, and identify the given percussion sounds 

in around 2~5 ms during gameplay, for a common mobile 

phone. The details of the algorithms for our system will be 

described in section IV.B 

ANC reduces noise by subtracting the noise source after 

passing it through an appropriate transfer function implemented 

as a filter. To use ANC, we need to be able to measure the noise 

source precisely, and then use System Identification (SID) 

techniques to identify the transfer function, where the desired 

output is taken as the mixture of the clean signals and the 

transformed noise. Since its debut in the 1930s [35], ANC has 

been widely applied in various scenarios, such as to reduce 

engine noise within helicopter cockpits [36], or to differentiate 

fetal heartbeats from mothers’ [37]. Most of the recent research 

on ANC is focused on hardware implementation, such as 

headphones [38][39][40] with ANC. Our study, on the other 

hand, is to utilize the concept of ANC to enhance the 

recognition rate of UPI from our previous work [41]. In 

particular, we use ANC to reduce recorded playback music 

such that the user’s percussion input can be enhanced. In other 

words, the original music is viewed as a noise source, requiring 

a transfer function to convert the original music to the recorded 

music. Once the transfer function is obtained via system 

identification, we can subtract the predicted component of the 

transformed music from the recording to enhance the user’s 

percussion input. Section IV.C describes the proposed method 

in detail. 

III. SYSTEM OVERVIEW 

Fig. 1 shows the basic blocks of the proposed system. This 

game system is developed in an Android 4.4.2 OS with Java. A 

user can upload any music to our server to generate the 

hit-timing list. User can then start playing the game in two 

different modes (to be explained later). Fig. 2 shows a 

screenshot of AutoRhythm, with two streams of down falling 

icons, where the hit timing coincides the time the icon meets the 

horizontal bar.  

AutoRhythm provides two modes for playing the game. In 

the traditional playing mode, the user needs to tap the 

horizontal bar on the screen when an icon hits the bar. To make 

the game more realistic and fun, the proposed system allows 

players to tapping on any solid surface instead of merely 

tapping on the screen. For example, the user can create the 

percussion by tapping a pencil on a desk. The game takes two 

different percussion sounds obtained from two different objects 

(tapping on potentially different surfaces) to account for the 

tapping on the left and right streams of icons. These sounds are 

recorded by the user before game playing, and the proposed 

system can construct a classifier for real-time identification of 

each percussion (see Section IV.A for details). 

IV. FEATURES AND METHOD 

A. Hit-Timing Generation 

Fig. 3 illustrates the flowchart of hit-timing generation in 

AutoRhythm. The hit timing of a given piece of music usually 

coincides with onsets of either harmonic sources (such as string 

instruments or human voices) or percussive sources (such as 

drums or cymbals). As a result, in order to achieve a better 

accuracy of onset detection, we need to separate the music into 

harmonic and percussive sources by Harmonic/Percussive 

Source Separation (HPSS) [42]. This step is especially 

important for identifying soft onsets of harmonic sources. After 

HPSS, a spectral-flux-based onset detection method is applied 

to both sources to find the onsets. In particular, we partition the 

spectrogram into four equal-divided parts according to their 

frequency bins, and assign a weight for each part. These 

weights (eight in total) are then fine-tuned by Nelder-Mead 

Simplex search [43] to achieve the best performance for onset 

detection. The goal of this improved onset detection is to find 

different weighting among frequency bins in both sources in 

order to approximate human’s perception (labeled as the 

 
Fig. 3.  Flowchart of hit-timing generation. The input audio file is separated 

into harmonic and percussive sources in the HPSS block. Then we perform 
onset detection on both sources, combine the result, remove redundant onsets, 

and group remained onsets into two tracks with different degree of difficulty 

for gameplay. 
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groundtruth for hit-timing) for both the percussive source (such 

as human’s voices and percussive instruments) and the 

harmonic source (mostly harmonic instruments). The final hit 

timing is obtained by combining the onsets from both sources 

and eliminating hit timings that are too close in time. Moreover, 

based on their density in time, the hit timings are grouped into 

various sets corresponding to different levels of difficulty in the 

rhythm game. 

The output is a hit-timing file shown in Fig. 3, where the first 

column is the hit timings in seconds, the second column is the 

channel ID of the falling icons, and the last column is the levels 

of difficulty. The channel assignment is based on the result of 

k-means clustering for MFCC (Mel-Frequency Cepstral 

Coefficients) at the hit timings, such that different channels are 

likely to correspond to onsets from different instruments. For 

the example code of hit-timing generation, please refer to this 

link: https://zenodo.org/record/3368941#.XVUqJegzaF4 

B. User Percussion Identification 

Due to the very nature of gameplay, our algorithm for UPI 

must fulfill the following requirements: 

1) Before gameplay: We need to perform fast pre-game 

training based on the user’s percussion inputs from the 

left and right hands. 

2) During gameplay: We need to perform real-time 

identification for the timing of the user’s percussions, 

and classify it into two types, either from the left or the 

right hand. 

 

To fulfill these requirements, we propose a simple yet 

effective method which classifies an incoming frame according 

to spectrum-based features, as shown in Fig. 4. The features and 

the classification algorithm are described in detail in sections 

IV.B.1 and IV.B.2. 

1) Features 

After observing the magnitude spectra of percussive sounds 

from different objects against different surfaces, we found that 

different percussive sounds are likely to have different spectral 

patterns with distinctive peaks at different frequencies, as 

shown in Fig. 5. (a). Based on this observation, we can define 

the salient frequencies as those frequencies with energy higher 

than α percentile of all energy for a given type of percussion, as 

shown in Fig. 5. (b). These salient frequencies are thus specific 

to a percussion sound and they are unlikely to be interfered by 

the music being played. Before users start to play the game, 

they are asked to record two types of percussive sounds to be 

used for the game. Each recording lasts for 5 seconds, and 

energy-based endpoint detection is applied to locate the 

percussions. After obtaining the frames containing the 

percussive sounds, the first three frames of each percussion 

sound are used to calculate the salient frequencies because the 

timbre of a percussion sound may change over time and we 

only care about the frames at percussion onset. 

In this study, we consider only two types of percussions to be 

used in the game, resulting in two sets of salient frequency bins 

which are identified before each game. We use the total energy 

within these salient frequency bins as the frame-based feature 

for classifying a frame into PercussionA, PercussionB, or none 

of the above. The determination of α will be described in 

section V.C. 

2) Proposed Algorithm 

As mentioned above, the system needs to generate the 

prediction almost immediately, so here we propose an efficient 

and reliable method for prediction within a single frame time, 

as follows. After obtaining the salient frequencies of each 

percussion, the average energy at each salient frequency of 3 

frames is calculated. Then, the average energy on salient 

frequencies are summed up and multiplied by a given ratio β to 

obtain the threshold pair, which respectively produce the 

thresholds of two types of percussion, θa and θb. 

 
Fig. 4.  Flowchart of the proposed method for UPI. 

 

 
(a) 

 
(b) 

Fig. 5 (a) Mean spectral energy of two different kinds of percussive sounds. 

(b) Salient frequencies of PercussionA in Fig.5 a. The information of both 
percussions are listed in Table II. 
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Let SF(i,A) and SF(i,B) respectively denote the sum of 

magnitude on salient frequencies of framei  of percussionA and 

percussionB. Our method needs to determine if there is a 

percussion by the user or not within a single frame time, as 

explained in the following three rules: 

1) If both SF(i,A) and SF(i,B) are larger than their respective 

thresholds θa and θb, then the bigger one makes the 

call. 

2) If either one of SF(i,A) or SF(i,B) is larger than its 

corresponding threshold, then the surpassing one 

makes the call. 

3) Otherwise, there is no percussion at all. 

Since the proposed method does not utilize any long-term 

feature, the prediction of a frame can be returned almost 

immediately. The pseudo code for the proposed method is 

shown in Algorithm 1. The corresponding decision boundary of 

the above method is also shown in Fig 6 for easy visualization. 

The optimization of β will also be detailed in section V. 

Since a percussion sound usually lasts for more than one 

frame, some post-processing is necessary to prevent a sound 

from being identified as two events. In fact, in the 1980s 

Takahashi Meijin set the world record for triggering 16 times 

per second in gameplay with a joystick. Therefore, it is unlikely 

for a player to make two consecutive percussive sounds within 

62.5 ms (1/16=0.0625). In this study, each frame lasts for 16 ms 

(256/16000=0.016), so we set a rule that if framei is identified 

as a percussion sound, then framei+1 to framei+3 are considered 

as non-percussion. Furthermore, the energy of a percussion 

sound decreases with time, so another rule states that the 

percussion counts only when SF(i,X) > SF(i-1,X). 

C. Background Music Reduction 

Results in the UPI experiments indicate that more 

undesirable false positives were generated, which was not 

found in our previous work due to the data diversity [41]. After 

examination, these additional false positives are most likely 

induced by the background music while users perform 

percussions. Thus, it becomes critical to reduce the background 

music from the mixed recordings in order to improve the 

overall UPI. 

Fig. 7 shows the flowchart of the proposed method for BMR.  

The goal of the method is to reduce the interference from the 

background music such that the extracted percussive sounds, as 

input by the user, are cleaner and thus easily identified by the 

classifier proposed previously. 

Here we can apply the concept of ANC in this scenario, 

where the noise source is the original music (available to us) 

and we have the mixture recording which combines users’ 

percussion and playback of the background music. In particular, 

the playback of the background music is a transformed version 

of the original music, so if we can find a filter (or a transfer 

function) that takes the original music and generate the 

playback music, then we can subtract the playback music from 

the mixture recording to obtain a clean version of the users’ 

percussion. In the framework of ANC, the users’ percussion 

can be viewed as a random noise while we are performing SID 

based on the original music (the input part to SID) and the 

mixture recording (the ground-truth of SID) directly to derive 

the transfer function (that accounts for the transformation from 

the original music to the playback music). In other words, by 

using the concept of ANC, we are able to find the transfer 

function of the recording environment which converts the 

original music to the playback music, and the percussive 

sounds act as a random component that should be ignored 

during the identification process. In practice, this SID process 

should be performed immediately before each game session 

ALGORITHM I 

Pseudo code for classifying a frame 

if SF(i,A) > θa and SF(i,B) > θb 

if SF(i,A) > SF(i,B)) 

‘PercussionA at framei.’ 

else 

‘PercussionB at  framei.’ 

end 

else if SF(i,A) > θa 

‘PercussionA at framei.’ 

else if SF(i,B) > θb 

‘PercussionB at framei.’ 

else 

‘No percussion at framei.’ 

End 
 

 

Fig. 6 Decision boundary for 3-class (PercussionA, PercussionB, and none) 

classification based on energy of salient frequency pair (SF(i,A), SF(i,B)) 

 

 
(a) 

 

 
(b) 

 

Fig. 7.  Flowchart of the proposed method for BMR. (a) Flowchart of transfer 

function modeling. (b) Flowchart of background noise subtraction. 
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since environmental conditions and device positioning (e.g., 

lying on top of a table, or leaning against a wall) will 

significantly affect the recording, and thus the transfer function.  

We do not perform online SID during gameplay since it is time 

consuming and the percussions in the recording (which acts as a 

random component within the output part of SID) can 

sometimes degrade the identified transfer function. 

One way to make SID a transparent part of gameplay is to 

incorporate a prompt stage in which the user hears an audio 

prompt of “3, 2, 1, go” right before the game starts. We can 

simply take the first 1 second of the audio prompt to perform 

SID to obtain the transfer function of the recording 

environment. The identified transfer function can thus be used 

to estimate the music component in the mixture recording based 

on the original music, such that the user’s percussion inputs can 

be reliably extracted for better classification. 

According to [44], several models, including linear and 

nonlinear ones, have been proposed in the literature for SID. 

Since efficient model construction is absolutely necessary for 

our real-time application of gameplay, we adopted a linear 

regression model of MA (Moving Average, which is a special 

case of ARX model in [44]) of order n for SID, where the target 

signal Yi,t at time t can be expressed as a linear combination of 

the input signals at various time instants before t: 

 

𝑌𝑖,𝑡 = 𝛾0 + ∑ 𝛾𝑖𝑋𝑖,𝑡−𝑗
𝑛
𝑗=1 +  𝜀𝑖                           (1) 

 

formula (1) can be re-written as a matrix form: 

 

𝑌 = 𝑋𝛾 + 𝜀                                 (2) 

 

where Y is the target signal, X  is the original signal, ε is white 

noise, and 𝛾  is the desired MA coefficients which can be 

obtained by the least-squares method. The corresponding 

experiments for this part will be described in detail in section 

V.C. 

Fig. 8 shows a typical example of BMR based on ANC, 

where (a) and (b) respectively demonstrate the cases without 

and with BMR. Specifically, Fig. 8 (a) shows the recorded 

signals (upper) and the corresponding onset strength curve 

when BMR is not invoked. 

On the other hand, Fig. 8 (b) shows a similar example when 

the BMR is turned on. It is obvious the recording with BMR 

exhibits distinct percussions, which leads to a better feature set 

for UPI. Moreover, the “purified” percussions in the recordings 

can also facilitate better classification for the percussions.  

V. EXPERIMENTS 

A. Experiment on Hit-timing List Generation 

The dataset for the experiment of hit-timing generation 

consists of music in MP3 format and corresponding hit-timing 

lists. All the music used in the experiment are collected from 

the web site [45]. The hit-timing lists of the dataset in [45] are 

labelled by music game players into 4 difficulties of “easy”, 

“normal”, “hard”, and “extremely hard”, depending on the 

density of the hit timing. Since each music piece may have 

more than one hit-timing lists by different players, there are 977 

human-labelled hit-timing lists in total based on a collection of 

607 music pieces of 6 genres. The sample rate and the 

resolution of the music clips are 44.1kHz and 16 bits, 

respectively. The breakdown table of the hit-timing lists into 

different genres and difficulty levels is shown in Table I. 

Table I 
Numbers of hit-timing lists for various genres and difficulty levels in our 

dataset for the experiment of hit-timing generation. 

Difficulty→ 

 

Genre (no. 

of music 

clips) ↓ 

Easy Normal Hard Extremely 

Hard 

#Total 

Original (91) 31 31 32 60 154 

Child (23) 8 9 11 21 49 

Classical (56) 6 8 10 36 60 
Game (84) 19 23 26 61 129 

Pop (338) 84 105 129 238 556 

Movie (15) 3 4 8 14 29 
#Total (607) 151 180 216 430 977 

 

 
(a) 

 

 
(b) 

 
Fig. 8.  Comparison between signals without and with BMR. (a) A typical 

example of recorded signals without using BMR. (b) The same signals with 

BMR. Note that common to both (a) and (b), the upper plot is the signals 
(without and with BMR) and the lower plot is the corresponding features 

described in Section IV.B.1. Apparently with BMR, it becomes easier for us to 

identify percussions. 
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The goal of the experiment is to evaluate the performance of 

the proposed method when compared with the hit timing 

labeled by human. We use the plots of precision-recall and 

F-measures to evaluate the performance, with a tolerance of 

0.05 second. The onset peak-picking threshold is set to a ratio 

the max value of the onset strength curve, with the ratio being 

0.04 to 0.4, with a step of 0.04. The precision-recall and 

F-measure plots are illustrated in Fig. 9 (a) and (b), 

respectively. 

As shown in Fig 9 (a), most of the precision-recall curves 

with HPSS are better than those without HPSS, indicating the 

necessity of using HPSS for hit-timing generation. The 

corresponding F-measure curves shown in Fig. 9 (b) also 

demonstrate the effectiveness of HPSS, which enable us to 

identify onsets based on different criteria for harmonic and 

percussive sources. We have also performed Wilcoxon signed 

rank test [46] on the pairwise results w/o HPSS. The test result 

shows a p-value of 0.002 at the significance level α𝑝 = 0.05, 

which indicates the significance of using HPSS. However, 

although the onset detection with HPSS does improve the 

performance, it does make more mistakes when dealing with 

harmonic instruments and human vocals. One way to tackle this 

problem is to use different weights for different frequency bins 

when computing spectral flux. This will be a major direction of 

our future work. 

B. Experiment on User Percussion Identification 

In order to have a more objective result for UPI, we have 

constructed a new dataset which is bigger than the one used in 

our previous work [41]. This new dataset consists of 100 

recordings obtained from 10 users during their gameplay. More 

specifically, each user randomly selected 10 audio clips from 

the GTZAN dataset [47], with one clip from each genre. The 

percussive instrument pairs were also determined by the users 

without specific restriction. The hit timing for each music piece 

is generated by the proposed method, while the ground-truth 

(locations and types of percussions by the user) are transcribed 

by human. All of the recordings were obtained with an Android 

pad with Android OS 4.4.2, with a single channel, a sample rate 

of 44.1kHz, and a bit resolution of 16 bit. There are four 

possible results after the classification of a frame, namely, 

correct, insertion, deletion, and confusion. Assuming that there 

are two types of percussion denoted as percussionX and 

percussionY, we can define the following quantities: 

 CorrectX: The number of percussionX frames which are 

classified correctly. (A percussion sound is considered to 

be classified correctly when the deviation from the 

groundtruth is within 2 frames or 32 milliseconds.) 

 InsertionX: The number of no-percussion frames which 

are classified as percussionX. 

 DeletionX: The number of percussionX frames which are 

classified as background music. 

 Confusion(X,Y): The number percussionX frames which are 

classified as percussionY. 

For comparison, we also applied several well-known 

classifiers, including Support Vector Machine (SVM), 

Gaussian Mixture Models (GMM), K-Nearest Neighbor 

classifier (KNN), Naïve Bayes classifier (NB), and Quadratic 

Classifier (QC), with the proposed features of energy in salient 

frequency bins to classify each frame into three categories of 

no-percussion, percussionX, and percussionY. For SVM, the 

RBF kernel is used in this experiment since the performance is 

better than linear and polynomial kernels for the validation test. 

For KNN, we set k=1 as the number of nearest neighbors to be 

picked since the performance is slightly better other values of k 

which was tested from 1 to 10. For GMM, the number of 

mixtures is equal to 2, and the type of the covariance matrix is 

diagonal. 100 frames are randomly selected from the 

no-percussion potions of the recordings to be our training data 

of the no-percussion frames. The training data for percussions 

is obtained from the percussion recordings recorded by the user 

right before the gameplay. 

The overall performance index is represented by F-measure, 

with the F-measure of percussionX being defined as: 

 

𝐹𝑥 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥×𝑟𝑒𝑐𝑎𝑙𝑙𝑥

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥+𝑟𝑒𝑐𝑎𝑙𝑙𝑥
                          (3) 

 
(a) 

 

 
(b) 

 
Fig. 9 (a) Precision-recall plot of hit-timing generation, with each point in a 

curve corresponding to a value of peak-picking ratio. (b) F-measure plot of 

hit-timing generation by different peak-picking ratios. Both plots indicate that 
the use of HPSS can generally lead to better performance. The definitions of 

the F-measure, precision and recall are shown in equation (3)(4)(5) 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥 

=  𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁄  

=  𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑥 (𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑥 + 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑥 + 𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛(𝑌,𝑋))⁄          (4) 

 

𝑟𝑒𝑐𝑎𝑙𝑙𝑥 

=  𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁄  

=  𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑥 (𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑥 + 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑋 + 𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛(𝑋,𝑌))⁄            (5) 

 

The user-specific and genre-specific F-measures are shown in 

Fig. 10, respectively, indicating the proposed method outperforms 

other classifiers in almost all recordings, with an average 

F-measure of 78.22% which compares favorably with NB’s 

67.21%, QC’s 67.02%, and SVM’s 66.58%. Additionally, we 

performed Wilcoxon signed rank test on the results. For pairwise 

results of the proposed method and other classifiers, the p-values 

are all below 0.001 at the significance level α𝑝 = 0.05, indicating 

the significance of the improvement. The Bonferroni-correction 

p-values are also below 0.005 (5 comparisons) at the significance 

level α𝑝 = 0.05. 

In this experiment, we think there is at least one compelling 

reason why all the other classifiers do not perform as well as the 

proposed method. Note that these classifiers were constructed 

from the training data obtained from the background music 

which varies considerably from frame to frame. In other words, 

the training set of the background music does not have stable 

and consistent features since the background music is not 

consistent through all recordings during gameplay. As a result, 

a general good model of background music is thus difficult to 

obtained, leading to undesirable performance. 

It should be noted that SVM’s performance is highly influenced 

by its parameters [48], and the optimum parameters vary 

significantly for different percussive sounds. For example, the best 

parameters for classifying percussion instruments of user index 1 

with BGM-1 are gamma = 0.0001, cost = 1, while the best 

parameters for classifying percussion instruments of user index 2 

with BGM-2 are gamma = 0.0004, cost = 1. Therefore the 

parameters which maximize the overall F-measure may not be the 

best parameters for each user’s recording. 

C. Experiment on Background Music Reduction 

For the experiment of BMR, we have another set of 30 

recordings with user-input percussions, which were created 

during gameplay and transcribed by human to label the 

ground-truth (locations and types of percussions). To create the 

recordings, we first selected 10 background music clips 

randomly from the GTZAN dataset, with one for each genre. 

There are 3 different user-input percussions, as shown in table 

II. For each piece of background music, we generated 3 

recordings based on pairwise combinations of these 3 types of 

percussions, leading to a total of 30 recordings. For each 

recording, we picked the first second without user-input 

percussions for identifying the transfer function of the device 

from the source file to playback recording. All the other part of 

the recording is used to test the performance of the identified 

transfer function for percussion classification. 

The goal of this experiment is to verify if the proposed 

method of BMR can improve the recalls and precisions of the 

previous percussive sounds identification. More importantly, 

we also want to know if the proposed method can be used in 

real-world scenarios. As mentioned in section V.A, for this 

experiment, we need to separate each music clip in the dataset 

into training and test segments. The training segment consists 

of the first 1 second of each recording with no user-input 

percussions, while the remaining part of each music clip is used 

for testing the performance. In other words, the training 

segment is used to construct the transfer function of the 

recording environment (see Fig. 7 (a)), which is then used in the 

test segment to reduce the background music. (see Fig. 7 (b)). 

Here we choose to use an MA (moving average) model to 

predict the transformed music after recording. Before 

identifying the MA model, we need to determine its order to 

achieve the best performance. This is accomplished by 

leave-one-out cross validation on the training segment, where 

the “one” (that was left for validation) refers to each sample 

point in the training segment. A typical result of this 

Table II 
Detailed information of each type of user-input percussions for BMR 

Name of the user-input 

percussions 

Object against which the steel stick 

is tapped 

percussionA A smaller ceramic cup 

percussionB A larger ceramic cup 
percussionC A plastic box 

 

 
 

Fig. 10. User-specific and genre-specific F-measures for the proposed method 
and various different classifiers. 

 

 

 
Fig. 11. Result of leave-one-out validation test for the best order of AR model. 
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order-determination procedure for a given clip is shown in Fig. 

11, where the best MA order of 380 is obtained at the lowest 

validation RMSE (root mean squared error).  

For the proposed method, the optimal values of α (percentile 

for determining salient frequencies) and β (ratio for 

determining θa and θb) have to be identified in advance. Since 

the energy distribution may change during BMR, the optimal 

values of α and β may change before and after BMR. To 

determine the parameter pair (α, β) of original clips and (α', β') 

of clips after BMR, we employ Nelder-Mead simplex method 

[48] for gradient-free optimization. Through leave-one-file-out 

cross validation, the ratio pairs (α, β) and (α', β') are set to 

(24.10%, 89.41%) and (24.80%, 89.70%), respectively. 

By using the above order-determination procedure, we can 

identify the best AR model order and perform model 

identification for each recording based on its training segment. 

The results of the experiment are shown in Fig. 12. By applying 

the proposed method for BMR and optimizing the ratio pair, the 

percussion-only F-measure is improved from 97.49% to 

98.18%, and the overall F-measure is improved from 93.30% to 

94.34%. A breakdown analysis, shown in Fig. 12, indicates that 

the F-measures for most music clips are improved, especially 

for Hiphop (for improvements from 87.66% to 100% in 

percussion-only F-measure and from 80.47% to 93.33% in 

overall F-measure).  

Another breakdown analysis demonstrates that the average 

F-measure improves, as shown in Fig. 12(b).  Specifically, we 

can see that the percussion-only F-measure of percussionA and 

percussionB improves from 95.59% to 96.24%, while that of the 

pair percussionA and percussionC slightly degrades from 

97.77% to 96.96% and the pair percussionB and percussionC 

slightly degrades from 99.11% to 98.43%. The overall 

F-measure has the same trend that percussionA and percussionB 

improves from 92.27% to 96.24%, while that of the pair 

percussionA and percussionC slightly degrades from 91.82% to 

91.39% and the pair percussionB and percussionC slightly 

degrades from 95.80% to 95.40%. Moreover, we performed 

Wilcoxon signed rank test on the overall results. The test result 

shows p-value is equal to 0.0428 at the significance level α𝑝 =
0.05, indicating the significance of the proposed ANC method. 

As shown in Fig. 12 (a)(c), the improvement in the genre 

Hiphop is the most obvious since in the original music, the 

user-input percussions are highly interfered by the background 

music, and the background music is also louder than music of 

other genres. In particular, a typical example of Hiphop is 

shown in Fig. 8(a), where the volume of the background music 

is much louder than the user percussion inputs. By applying the 

proposed method, the volume of the background music as 

shown in Fig. 8(b), is much less than the one in Fig. 8(a), 

leading to a better accuracy. However, several cases show that 

the reduction of the background music energy may also 

interfere the energy of the salient frequency bins, resulting 

misclassification. A typical example is shown in Fig. 13. In Fig. 

13(b), several percussions are misclassified in the first phrase 

(frame indices of 1 to 700 or so) of the clip due to the energy 

ratio changed in both salient frequency bins. For the different 

percussion pairs, there is a slightly degrade in both percussionA 

and percussionC and percussionB and percussionC due to the 

interference of the energy in the salient frequency by the 

background noise reduction. A possible reason for degradation 

is the similarity of the salient frequency between percussionC 

and the ones in the percussion sound of the reference music, 

 
Fig. 12. F-measures with/without BMR using ANC for (a), (c) different genres 

of background music and (b), (d) different percussion pairs. 

 
 

 

 
(a) 

 
(b) 

Fig. 13. (a) A typical misclassified example after BMR. The first and third 

estimated percussions in (b) are misclassified to left-class after BMR due to the 

energy change. 
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leading to the misclassification between the percussion pair or 

the silence. For more details, Fig. 14 shows the distribution of 

the salient frequencies for each percussion. The salient 

frequencies of percussionC are mostly around 0~1500 Hz. Half 

of them are overlapped with the salient frequencies of 

percussionA and percussionB. From the other observation, the 

energy of the lower frequency (below 1000Hz) is interfered by 

the BMR the most, leading to the degrade of the classification 

of percussionA and percussionB and percussionA and 

percussionC. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we improved the previously proposed music 

rhythm game “AutoRhythm” [41], with the introduction of the 

newly proposed method for BMR, together with extensive 

experiments with larger datasets for reliable and convincing 

findings. Moreover, we have provided comprehensive 

comparisons with existing rhythm games to pinpoint and 

distinguish our game in the game spectrum. More specifically, 

AutoRhythm has two unique and innovative features that make 

it stand out when compared with similar games in the literature: 

 Our system can automatically locate the hit timing of 

user-provided music and assign notes to different 

tracks in a “structural” way instead of random 

assignment. Such a meaningful assignment can 

minimize the discrepancy from manually generated 

game contents, and thus greatly increase user 

experience. 

 The user can tap 2 physical objects (e.g., a pen, a 

chopstick, etc.) against any other object (e.g., a table 

top, a cup rim, etc.) to produce clear and distinct 

percussive sounds to engage in the gameplay rather 

than touching or tapping the screen. The process of 

UPI is further improved by the proposed method of 

BMR based on the concept of ANC. Experimental 

results show that the proposed method for UPI can 

achieve an F-measure of 78.22%, which is better than 

other classifiers and quite satisfactory for gameplay 

purposes. 

Future work will be focused on two directions. First, a more 

advanced method is called for to produce better hit-timing, not 

only to approximate human-labeled ground-truth, but also to 

increase playability and fun. To achieve this short-term goal, a 

reliable vocal and melody onset detection in polyphonic music 

should be designed to perform vocal detection and melody 

pitch extraction in polyphonic audio music, and note 

segmentation for the onset of each note in the extracted pitch 

vector. The second direction is a long-term goal that aims to 

render the proposed game content generation compatible to 

other advanced multi-modal music games with various 

interaction and gameplay modes, such as music-based dancing 

or shooting games. To achieve this goal, a more general method 

for game content generation is needed for closer interaction, 

with supervised or semi-supervised learning to automate the 

whole process, thus creating a better user experience for music 

game players. 
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