
2475-1502 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2936033, IEEE
Transactions on Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract—This paper describes a music rhythm game called

AutoRhythm, which can automatically generate the hit timing as

game contents from a given piece of music, and identify

user-defined percussion of real objects in real time for gameplay.

More specifically, AutoRhythm can generate the hit timing of a

piece of music based on onset detection, so the user can use any

music from their own collection for the rhythm game. Moreover,

to make the game more realistic, AutoRhythm also allows the user

to interact with the game via any object that can produce

percussion sounds, such as a pen or a chopstick hitting against a

table. AutoRhythm can identify the percussions in real time to

replace tapping on the screen. This real-time user percussion

identification is achieved based on the frame-based power

spectrum of the filtered recording after background music

reduction, which is performed based on the concept of active noise

cancellation, with the estimated noisy playback music being

subtracted from the original recording. Based on a test dataset of

100 recordings, our experiment indicates that our system can

achieve an F-measure of 78.22%, which outperforms other

well-known classifiers and is quite satisfactory for the purpose of

gameplay.

Index Terms—Active noise cancellation, Automatic hit-timing

generation, Music game, Rhythm game, Percussion identification

I. INTRODUCTION

usic-based games are quite popular on mobile platforms

since they can create close and intense interactions

between the user and the device. Recently, music rhythm games

have attracted considerable attention due to a wide variety of

game types and rich interactivity. During such rhythm games,

users usually respond to the onset events of a piece of music by

pressing a button or tapping on the screen directly. Users can

even compete with each other through LAN or internet. At the

end of the game, the user is given a score and its ranking based

on his/her accuracy and consistency in timing when compared

Manuscript received September 5, 2018. Copyright (c) 2018 IEEE. Personal

use of this material is permitted. However, permission to use this material for

any other purposes must be obtained from the IEEE by sending a request to

pubs-permissions@ieee.org.
T.-C. Yeh is with the Department of Computer Science, National Tsing Hua

University, Hsinchu 300, Taiwan (kenshincs@mirlab.org). J.-S. R. Jang is with

the Department of Computer Science and Information Engineering, National
Taiwan University, Taipei 106, Taiwan (jang@mirlab.org).

Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier ??.????/TC.2018.???????.

with the music’s pre-defined “hit timing”.

As smartphones are becoming widely available, music

rhythm games has appeared to be one of the most popular game

genres due to the high interaction and immersion during

gameplay. Starting from Tap Tap Revenge [1], a number of

music rhythm games have been developed and widely spread

since then, such as Cytus [2], Deemo [3], Jubeat Plus [4], Piano

Tiles [5], Dream Piano [6], and Tiles Hop [7]. Recently, several

music rhythm games claim to have automatic content

generation from users’ music collection to deal with the lack of

music for game contents, including BeatMp3 [8], TapTube [9],

Melobeat [10], and Musiverse [11] These games can take

user-owned mp3 files or YouTube music to generate the

contents for gameplay. However, some of these games generate

random hit timing with no correlation to music. On the other

hand, some of the games do generate the hit timing based on the

detected onsets in the music, but the assignment to tracks is

randomly permutated. In an unformal discussion in Chinese1,

this issue truly affected the players’ user experience since most

music game players expected the hit timing to be permutated in

a “reasonable” way, and most of the existing rhythm games

which can automatically generate the game contents cannot

satisfy these game players.

Another trend of music rhythm games is to increase the

interaction with users in order to create immersive experience.

Instead of press buttons by fingers, this kind of rhythm games

tend to interact with users by dummy instruments or body

moves. For instance, Dance Dance Revolution [12] interacts

with users by their footsteps. Samba de Amigo [13] lets users

play the rhythm game through dummy maracas. Drummania

[14] was developed with a whole dummy drum set to create an

immersive environment that lets users feel like playing true

drum sets in the game. The latest version of Guitar Hero [15]

allows up to 4 players to play dummy keyboard, guitar, bass,

and vocal simultaneously to render a complete song. With VR

technology, BeatSaber [16] is the first successful rhythm game

in the virtual space in which a user can hold two virtual

lightsabers to slash the incoming notes and scores. Audioshield

[17] is another VR music rhythm game that shares similar idea

to BeatSaber. Moreover, there are several games combining the

concepts of rhythm games and shooting games. Beat Hazard

and Symphony [18][19] were two representative indie games of

1 The original discussion is in Zhihu, a famous question-answering website

in China. Link: https://www.zhihu.com/question/26133992

AutoRhythm: A Music Game with Automatic

Hit-Timing Generation and Percussion

Identification

Tzu-Chun Yeh and Jyh-Shing Roger Jang, Member, IEEE

M

https://www.zhihu.com/question/26133992

2475-1502 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2936033, IEEE
Transactions on Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

this kind, which also support automatic content generation.

These games indicate the importance and necessity to create a

variety of interactions with users such that a seamless

immersive game environment can be rendered.

In this paper, we describe an innovative rhythm game called

AutoRhythm that supports advanced content generation as well

as use of physical objects for gameplay. More specifically, the

game not only generates playable hit timing for any music but

also groups the generated hit timing by its acoustic features.

This grouping method is based on k-means clustering to assign

onsets of similar timbre to the same track to create a more

“structured” game contents. Moreover, the game supports

real-time User Percussion Identification (UPI) that can

recognize different kinds of users’ specific percussion input on

the fly. The feature of the game creates a different interaction

scenario, which allows the user to take two objects (such as a

pen and a chopstick) to hit on a hard surface (such as a table or a

plastic box) to generate the percussive inputs for gameplay.

Furthermore, we propose a novel Background Music Reduction

(BMR) method based on the concept of Active Noise

Cancellation (ANC) to strengthen the reliability of UPI. An

example video that introduces this game is available through

the link at footnote2.

The rest of this paper is organized as follows. Section II

introduces work related to the underlying approaches of the

proposed system. Section III gives an overview of the proposed

system. Section IV describes the technical details involved in

the system, including the method for automatic hit-timing

generation, the approach for music reduction in the recording,

and the features and classifier for real-time UPI. Section V

discusses experimental results and error analysis. Section VI

concludes the paper with possible directions for future work.

II. RELATED WORK

In Section I, we have introduced a number of music rhythm

games with various characteristics. Recently, more and more

music rhythm games support game content generation based on

the user’s music collection or online music source like

YouTube. This procedure of automatic content generation, also

known as procedural content generation [20], has been widely

used in different game genres. Jordan et. al. [21] brought the

concept of procedural content generation into the music-based

game called BeatTheBeat. which utilized music’s audio

features in creating game boards and game contents for various

mini games such as rhythm games and tower defense, etc.

However, no detailed experiments or analysis was reported

regarding the quality of the generated contents, especially the

generated rhythms and onsets. To generate an accurate list of

hit timing, we use onset detection to identify the onset positions

for a given piece of audio music. Traditional onset detection is

based on spectral analysis [22][23][24]. Böck et al. surveyed

the online capabilities of several onset detection methods [25].

More recently, Schlüter and Böck proposed the use of

convolutional neural network for onset detection [26], which

outperforms traditional one. Our system employs a fast yet

reliable spectral-flux-based onset detection method, which will

be briefly introduced in section IV.A.

UPI is an essential part of the proposed AutoRhythm in order

to support real-time identification of two types of percussion

generated by the user via physical objects. Here we need to

design a relatively fast and reliable method for UPI to achieve

better user experience during gameplay. Wessel and Wright

mentioned that a reasonable latency of interaction when using

computational musical instrument is under 10 ms [27].

Moreover, since the user may change their percussion objects

right before each gameplay, we cannot use a pre-trained model

for UPI to fit all users and all games. Instead, we need to invoke

an efficient pre-game training on the device before each

gameplay. Work on UPI is scarce in the literature. The most

similar work is on drum sound identification in the literature, as

explained next.

 Herrera et al. [28] compared various combinations of

features and classifiers for drum sound identification.

Schloss [29] used the power of selected frequency bins

and music structures to transcribe percussive music.

However, both studies [28][29] can only classify

monosyllabic and clear percussive sounds without

2 https://www.youtube.com/watch?v=lkjEa1iV4P0

Fig. 1. System overview of our game. On the server side, the hit-timing list is
generated by the extracted acoustic features, and stored in the Game Content

Pool. On the client side, once the music is determined, the corresponding game

contents (either generated or cached at the server) are downloaded from the
server. Moreover, a pre-game training for UPI is invoked on the client device

for identifying the models for users’ percussion. Once the game contents and

the UPI models are ready, the use can proceed with the gameplay on the
mobile device.

(a) (b) (c)

Fig. 2. Screenshots of AutoRhythm during mode selection and gameplay. (a)

Mode selection. (b) Main screen. (c) Gameplay.

2475-1502 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2936033, IEEE
Transactions on Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

background music.

 Gouyon et al. [30] grouped percussive sounds into two

classes (snare-like and bass-drum-like) via

agglomerative clustering, with features related to

attack time, spectrum, and zero-crossing rate. Yoshii et

al. [31][32][33] used an iterative adaptation algorithm

to obtain the adapted template of the power spectrum

of percussive sounds in polyphonic signals. However,

the methods employed in these studies require length

computation and thus not suitable for online

applications.

 Dittmar and Gärtner [34] utilized a Non-negative

Matrix Factorization (NMF)-based method to separate

the signal source to distinguish high-hat, kick, and

snare in real time. However, since the model must be

pre-trained in advance and thus not suitable for our

game scenario which requires fast pre-game training

before each gameplay.

Instead, our system can train the detection model for the sounds

of user-specific percussion objects in 3~5 seconds on the device

before each gameplay, and identify the given percussion sounds

in around 2~5 ms during gameplay, for a common mobile

phone. The details of the algorithms for our system will be

described in section IV.B

ANC reduces noise by subtracting the noise source after

passing it through an appropriate transfer function implemented

as a filter. To use ANC, we need to be able to measure the noise

source precisely, and then use System Identification (SID)

techniques to identify the transfer function, where the desired

output is taken as the mixture of the clean signals and the

transformed noise. Since its debut in the 1930s [35], ANC has

been widely applied in various scenarios, such as to reduce

engine noise within helicopter cockpits [36], or to differentiate

fetal heartbeats from mothers’ [37]. Most of the recent research

on ANC is focused on hardware implementation, such as

headphones [38][39][40] with ANC. Our study, on the other

hand, is to utilize the concept of ANC to enhance the

recognition rate of UPI from our previous work [41]. In

particular, we use ANC to reduce recorded playback music

such that the user’s percussion input can be enhanced. In other

words, the original music is viewed as a noise source, requiring

a transfer function to convert the original music to the recorded

music. Once the transfer function is obtained via system

identification, we can subtract the predicted component of the

transformed music from the recording to enhance the user’s

percussion input. Section IV.C describes the proposed method

in detail.

III. SYSTEM OVERVIEW

Fig. 1 shows the basic blocks of the proposed system. This

game system is developed in an Android 4.4.2 OS with Java. A

user can upload any music to our server to generate the

hit-timing list. User can then start playing the game in two

different modes (to be explained later). Fig. 2 shows a

screenshot of AutoRhythm, with two streams of down falling

icons, where the hit timing coincides the time the icon meets the

horizontal bar.

AutoRhythm provides two modes for playing the game. In

the traditional playing mode, the user needs to tap the

horizontal bar on the screen when an icon hits the bar. To make

the game more realistic and fun, the proposed system allows

players to tapping on any solid surface instead of merely

tapping on the screen. For example, the user can create the

percussion by tapping a pencil on a desk. The game takes two

different percussion sounds obtained from two different objects

(tapping on potentially different surfaces) to account for the

tapping on the left and right streams of icons. These sounds are

recorded by the user before game playing, and the proposed

system can construct a classifier for real-time identification of

each percussion (see Section IV.A for details).

IV. FEATURES AND METHOD

A. Hit-Timing Generation

Fig. 3 illustrates the flowchart of hit-timing generation in

AutoRhythm. The hit timing of a given piece of music usually

coincides with onsets of either harmonic sources (such as string

instruments or human voices) or percussive sources (such as

drums or cymbals). As a result, in order to achieve a better

accuracy of onset detection, we need to separate the music into

harmonic and percussive sources by Harmonic/Percussive

Source Separation (HPSS) [42]. This step is especially

important for identifying soft onsets of harmonic sources. After

HPSS, a spectral-flux-based onset detection method is applied

to both sources to find the onsets. In particular, we partition the

spectrogram into four equal-divided parts according to their

frequency bins, and assign a weight for each part. These

weights (eight in total) are then fine-tuned by Nelder-Mead

Simplex search [43] to achieve the best performance for onset

detection. The goal of this improved onset detection is to find

different weighting among frequency bins in both sources in

order to approximate human’s perception (labeled as the

Fig. 3. Flowchart of hit-timing generation. The input audio file is separated

into harmonic and percussive sources in the HPSS block. Then we perform
onset detection on both sources, combine the result, remove redundant onsets,

and group remained onsets into two tracks with different degree of difficulty

for gameplay.

2475-1502 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2936033, IEEE
Transactions on Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

groundtruth for hit-timing) for both the percussive source (such

as human’s voices and percussive instruments) and the

harmonic source (mostly harmonic instruments). The final hit

timing is obtained by combining the onsets from both sources

and eliminating hit timings that are too close in time. Moreover,

based on their density in time, the hit timings are grouped into

various sets corresponding to different levels of difficulty in the

rhythm game.

The output is a hit-timing file shown in Fig. 3, where the first

column is the hit timings in seconds, the second column is the

channel ID of the falling icons, and the last column is the levels

of difficulty. The channel assignment is based on the result of

k-means clustering for MFCC (Mel-Frequency Cepstral

Coefficients) at the hit timings, such that different channels are

likely to correspond to onsets from different instruments. For

the example code of hit-timing generation, please refer to this

link: https://zenodo.org/record/3368941#.XVUqJegzaF4

B. User Percussion Identification

Due to the very nature of gameplay, our algorithm for UPI

must fulfill the following requirements:

1) Before gameplay: We need to perform fast pre-game

training based on the user’s percussion inputs from the

left and right hands.

2) During gameplay: We need to perform real-time

identification for the timing of the user’s percussions,

and classify it into two types, either from the left or the

right hand.

To fulfill these requirements, we propose a simple yet

effective method which classifies an incoming frame according

to spectrum-based features, as shown in Fig. 4. The features and

the classification algorithm are described in detail in sections

IV.B.1 and IV.B.2.

1) Features

After observing the magnitude spectra of percussive sounds

from different objects against different surfaces, we found that

different percussive sounds are likely to have different spectral

patterns with distinctive peaks at different frequencies, as

shown in Fig. 5. (a). Based on this observation, we can define

the salient frequencies as those frequencies with energy higher

than α percentile of all energy for a given type of percussion, as

shown in Fig. 5. (b). These salient frequencies are thus specific

to a percussion sound and they are unlikely to be interfered by

the music being played. Before users start to play the game,

they are asked to record two types of percussive sounds to be

used for the game. Each recording lasts for 5 seconds, and

energy-based endpoint detection is applied to locate the

percussions. After obtaining the frames containing the

percussive sounds, the first three frames of each percussion

sound are used to calculate the salient frequencies because the

timbre of a percussion sound may change over time and we

only care about the frames at percussion onset.

In this study, we consider only two types of percussions to be

used in the game, resulting in two sets of salient frequency bins

which are identified before each game. We use the total energy

within these salient frequency bins as the frame-based feature

for classifying a frame into PercussionA, PercussionB, or none

of the above. The determination of α will be described in

section V.C.

2) Proposed Algorithm

As mentioned above, the system needs to generate the

prediction almost immediately, so here we propose an efficient

and reliable method for prediction within a single frame time,

as follows. After obtaining the salient frequencies of each

percussion, the average energy at each salient frequency of 3

frames is calculated. Then, the average energy on salient

frequencies are summed up and multiplied by a given ratio β to

obtain the threshold pair, which respectively produce the

thresholds of two types of percussion, θa and θb.

Fig. 4. Flowchart of the proposed method for UPI.

(a)

(b)

Fig. 5 (a) Mean spectral energy of two different kinds of percussive sounds.

(b) Salient frequencies of PercussionA in Fig.5 a. The information of both
percussions are listed in Table II.

2475-1502 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2936033, IEEE
Transactions on Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Let SF(i,A) and SF(i,B) respectively denote the sum of

magnitude on salient frequencies of framei of percussionA and

percussionB. Our method needs to determine if there is a

percussion by the user or not within a single frame time, as

explained in the following three rules:

1) If both SF(i,A) and SF(i,B) are larger than their respective

thresholds θa and θb, then the bigger one makes the

call.

2) If either one of SF(i,A) or SF(i,B) is larger than its

corresponding threshold, then the surpassing one

makes the call.

3) Otherwise, there is no percussion at all.

Since the proposed method does not utilize any long-term

feature, the prediction of a frame can be returned almost

immediately. The pseudo code for the proposed method is

shown in Algorithm 1. The corresponding decision boundary of

the above method is also shown in Fig 6 for easy visualization.

The optimization of β will also be detailed in section V.

Since a percussion sound usually lasts for more than one

frame, some post-processing is necessary to prevent a sound

from being identified as two events. In fact, in the 1980s

Takahashi Meijin set the world record for triggering 16 times

per second in gameplay with a joystick. Therefore, it is unlikely

for a player to make two consecutive percussive sounds within

62.5 ms (1/16=0.0625). In this study, each frame lasts for 16 ms

(256/16000=0.016), so we set a rule that if framei is identified

as a percussion sound, then framei+1 to framei+3 are considered

as non-percussion. Furthermore, the energy of a percussion

sound decreases with time, so another rule states that the

percussion counts only when SF(i,X) > SF(i-1,X).

C. Background Music Reduction

Results in the UPI experiments indicate that more

undesirable false positives were generated, which was not

found in our previous work due to the data diversity [41]. After

examination, these additional false positives are most likely

induced by the background music while users perform

percussions. Thus, it becomes critical to reduce the background

music from the mixed recordings in order to improve the

overall UPI.

Fig. 7 shows the flowchart of the proposed method for BMR.

The goal of the method is to reduce the interference from the

background music such that the extracted percussive sounds, as

input by the user, are cleaner and thus easily identified by the

classifier proposed previously.

Here we can apply the concept of ANC in this scenario,

where the noise source is the original music (available to us)

and we have the mixture recording which combines users’

percussion and playback of the background music. In particular,

the playback of the background music is a transformed version

of the original music, so if we can find a filter (or a transfer

function) that takes the original music and generate the

playback music, then we can subtract the playback music from

the mixture recording to obtain a clean version of the users’

percussion. In the framework of ANC, the users’ percussion

can be viewed as a random noise while we are performing SID

based on the original music (the input part to SID) and the

mixture recording (the ground-truth of SID) directly to derive

the transfer function (that accounts for the transformation from

the original music to the playback music). In other words, by

using the concept of ANC, we are able to find the transfer

function of the recording environment which converts the

original music to the playback music, and the percussive

sounds act as a random component that should be ignored

during the identification process. In practice, this SID process

should be performed immediately before each game session

ALGORITHM I

Pseudo code for classifying a frame

if SF(i,A) > θa and SF(i,B) > θb

if SF(i,A) > SF(i,B))

‘PercussionA at framei.’

else

‘PercussionB at framei.’

end

else if SF(i,A) > θa

‘PercussionA at framei.’

else if SF(i,B) > θb

‘PercussionB at framei.’

else

‘No percussion at framei.’

End

Fig. 6 Decision boundary for 3-class (PercussionA, PercussionB, and none)

classification based on energy of salient frequency pair (SF(i,A), SF(i,B))

(a)

(b)

Fig. 7. Flowchart of the proposed method for BMR. (a) Flowchart of transfer

function modeling. (b) Flowchart of background noise subtraction.

2475-1502 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2936033, IEEE
Transactions on Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

since environmental conditions and device positioning (e.g.,

lying on top of a table, or leaning against a wall) will

significantly affect the recording, and thus the transfer function.

We do not perform online SID during gameplay since it is time

consuming and the percussions in the recording (which acts as a

random component within the output part of SID) can

sometimes degrade the identified transfer function.

One way to make SID a transparent part of gameplay is to

incorporate a prompt stage in which the user hears an audio

prompt of “3, 2, 1, go” right before the game starts. We can

simply take the first 1 second of the audio prompt to perform

SID to obtain the transfer function of the recording

environment. The identified transfer function can thus be used

to estimate the music component in the mixture recording based

on the original music, such that the user’s percussion inputs can

be reliably extracted for better classification.

According to [44], several models, including linear and

nonlinear ones, have been proposed in the literature for SID.

Since efficient model construction is absolutely necessary for

our real-time application of gameplay, we adopted a linear

regression model of MA (Moving Average, which is a special

case of ARX model in [44]) of order n for SID, where the target

signal Yi,t at time t can be expressed as a linear combination of

the input signals at various time instants before t:

𝑌𝑖,𝑡 = 𝛾0 + ∑ 𝛾𝑖𝑋𝑖,𝑡−𝑗
𝑛
𝑗=1 + 𝜀𝑖 (1)

formula (1) can be re-written as a matrix form:

𝑌 = 𝑋𝛾 + 𝜀 (2)

where Y is the target signal, X is the original signal, ε is white

noise, and 𝛾 is the desired MA coefficients which can be

obtained by the least-squares method. The corresponding

experiments for this part will be described in detail in section

V.C.

Fig. 8 shows a typical example of BMR based on ANC,

where (a) and (b) respectively demonstrate the cases without

and with BMR. Specifically, Fig. 8 (a) shows the recorded

signals (upper) and the corresponding onset strength curve

when BMR is not invoked.

On the other hand, Fig. 8 (b) shows a similar example when

the BMR is turned on. It is obvious the recording with BMR

exhibits distinct percussions, which leads to a better feature set

for UPI. Moreover, the “purified” percussions in the recordings

can also facilitate better classification for the percussions.

V. EXPERIMENTS

A. Experiment on Hit-timing List Generation

The dataset for the experiment of hit-timing generation

consists of music in MP3 format and corresponding hit-timing

lists. All the music used in the experiment are collected from

the web site [45]. The hit-timing lists of the dataset in [45] are

labelled by music game players into 4 difficulties of “easy”,

“normal”, “hard”, and “extremely hard”, depending on the

density of the hit timing. Since each music piece may have

more than one hit-timing lists by different players, there are 977

human-labelled hit-timing lists in total based on a collection of

607 music pieces of 6 genres. The sample rate and the

resolution of the music clips are 44.1kHz and 16 bits,

respectively. The breakdown table of the hit-timing lists into

different genres and difficulty levels is shown in Table I.

Table I
Numbers of hit-timing lists for various genres and difficulty levels in our

dataset for the experiment of hit-timing generation.

Difficulty→

Genre (no.

of music

clips) ↓

Easy Normal Hard Extremely

Hard

#Total

Original (91) 31 31 32 60 154

Child (23) 8 9 11 21 49

Classical (56) 6 8 10 36 60
Game (84) 19 23 26 61 129

Pop (338) 84 105 129 238 556

Movie (15) 3 4 8 14 29
#Total (607) 151 180 216 430 977

(a)

(b)

Fig. 8. Comparison between signals without and with BMR. (a) A typical

example of recorded signals without using BMR. (b) The same signals with

BMR. Note that common to both (a) and (b), the upper plot is the signals
(without and with BMR) and the lower plot is the corresponding features

described in Section IV.B.1. Apparently with BMR, it becomes easier for us to

identify percussions.

2475-1502 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2936033, IEEE
Transactions on Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

The goal of the experiment is to evaluate the performance of

the proposed method when compared with the hit timing

labeled by human. We use the plots of precision-recall and

F-measures to evaluate the performance, with a tolerance of

0.05 second. The onset peak-picking threshold is set to a ratio

the max value of the onset strength curve, with the ratio being

0.04 to 0.4, with a step of 0.04. The precision-recall and

F-measure plots are illustrated in Fig. 9 (a) and (b),

respectively.

As shown in Fig 9 (a), most of the precision-recall curves

with HPSS are better than those without HPSS, indicating the

necessity of using HPSS for hit-timing generation. The

corresponding F-measure curves shown in Fig. 9 (b) also

demonstrate the effectiveness of HPSS, which enable us to

identify onsets based on different criteria for harmonic and

percussive sources. We have also performed Wilcoxon signed

rank test [46] on the pairwise results w/o HPSS. The test result

shows a p-value of 0.002 at the significance level α𝑝 = 0.05,

which indicates the significance of using HPSS. However,

although the onset detection with HPSS does improve the

performance, it does make more mistakes when dealing with

harmonic instruments and human vocals. One way to tackle this

problem is to use different weights for different frequency bins

when computing spectral flux. This will be a major direction of

our future work.

B. Experiment on User Percussion Identification

In order to have a more objective result for UPI, we have

constructed a new dataset which is bigger than the one used in

our previous work [41]. This new dataset consists of 100

recordings obtained from 10 users during their gameplay. More

specifically, each user randomly selected 10 audio clips from

the GTZAN dataset [47], with one clip from each genre. The

percussive instrument pairs were also determined by the users

without specific restriction. The hit timing for each music piece

is generated by the proposed method, while the ground-truth

(locations and types of percussions by the user) are transcribed

by human. All of the recordings were obtained with an Android

pad with Android OS 4.4.2, with a single channel, a sample rate

of 44.1kHz, and a bit resolution of 16 bit. There are four

possible results after the classification of a frame, namely,

correct, insertion, deletion, and confusion. Assuming that there

are two types of percussion denoted as percussionX and

percussionY, we can define the following quantities:

 CorrectX: The number of percussionX frames which are

classified correctly. (A percussion sound is considered to

be classified correctly when the deviation from the

groundtruth is within 2 frames or 32 milliseconds.)

 InsertionX: The number of no-percussion frames which

are classified as percussionX.

 DeletionX: The number of percussionX frames which are

classified as background music.

 Confusion(X,Y): The number percussionX frames which are

classified as percussionY.

For comparison, we also applied several well-known

classifiers, including Support Vector Machine (SVM),

Gaussian Mixture Models (GMM), K-Nearest Neighbor

classifier (KNN), Naïve Bayes classifier (NB), and Quadratic

Classifier (QC), with the proposed features of energy in salient

frequency bins to classify each frame into three categories of

no-percussion, percussionX, and percussionY. For SVM, the

RBF kernel is used in this experiment since the performance is

better than linear and polynomial kernels for the validation test.

For KNN, we set k=1 as the number of nearest neighbors to be

picked since the performance is slightly better other values of k

which was tested from 1 to 10. For GMM, the number of

mixtures is equal to 2, and the type of the covariance matrix is

diagonal. 100 frames are randomly selected from the

no-percussion potions of the recordings to be our training data

of the no-percussion frames. The training data for percussions

is obtained from the percussion recordings recorded by the user

right before the gameplay.

The overall performance index is represented by F-measure,

with the F-measure of percussionX being defined as:

𝐹𝑥 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥×𝑟𝑒𝑐𝑎𝑙𝑙𝑥

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥+𝑟𝑒𝑐𝑎𝑙𝑙𝑥
 (3)

(a)

(b)

Fig. 9 (a) Precision-recall plot of hit-timing generation, with each point in a

curve corresponding to a value of peak-picking ratio. (b) F-measure plot of

hit-timing generation by different peak-picking ratios. Both plots indicate that
the use of HPSS can generally lead to better performance. The definitions of

the F-measure, precision and recall are shown in equation (3)(4)(5)

2475-1502 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2936033, IEEE
Transactions on Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥

= 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁄

= 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑥 (𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑥 + 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑥 + 𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛(𝑌,𝑋))⁄ (4)

𝑟𝑒𝑐𝑎𝑙𝑙𝑥

= 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁄

= 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑥 (𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑥 + 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑋 + 𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛(𝑋,𝑌))⁄ (5)

The user-specific and genre-specific F-measures are shown in

Fig. 10, respectively, indicating the proposed method outperforms

other classifiers in almost all recordings, with an average

F-measure of 78.22% which compares favorably with NB’s

67.21%, QC’s 67.02%, and SVM’s 66.58%. Additionally, we

performed Wilcoxon signed rank test on the results. For pairwise

results of the proposed method and other classifiers, the p-values

are all below 0.001 at the significance level α𝑝 = 0.05, indicating

the significance of the improvement. The Bonferroni-correction

p-values are also below 0.005 (5 comparisons) at the significance

level α𝑝 = 0.05.

In this experiment, we think there is at least one compelling

reason why all the other classifiers do not perform as well as the

proposed method. Note that these classifiers were constructed

from the training data obtained from the background music

which varies considerably from frame to frame. In other words,

the training set of the background music does not have stable

and consistent features since the background music is not

consistent through all recordings during gameplay. As a result,

a general good model of background music is thus difficult to

obtained, leading to undesirable performance.

It should be noted that SVM’s performance is highly influenced

by its parameters [48], and the optimum parameters vary

significantly for different percussive sounds. For example, the best

parameters for classifying percussion instruments of user index 1

with BGM-1 are gamma = 0.0001, cost = 1, while the best

parameters for classifying percussion instruments of user index 2

with BGM-2 are gamma = 0.0004, cost = 1. Therefore the

parameters which maximize the overall F-measure may not be the

best parameters for each user’s recording.

C. Experiment on Background Music Reduction

For the experiment of BMR, we have another set of 30

recordings with user-input percussions, which were created

during gameplay and transcribed by human to label the

ground-truth (locations and types of percussions). To create the

recordings, we first selected 10 background music clips

randomly from the GTZAN dataset, with one for each genre.

There are 3 different user-input percussions, as shown in table

II. For each piece of background music, we generated 3

recordings based on pairwise combinations of these 3 types of

percussions, leading to a total of 30 recordings. For each

recording, we picked the first second without user-input

percussions for identifying the transfer function of the device

from the source file to playback recording. All the other part of

the recording is used to test the performance of the identified

transfer function for percussion classification.

The goal of this experiment is to verify if the proposed

method of BMR can improve the recalls and precisions of the

previous percussive sounds identification. More importantly,

we also want to know if the proposed method can be used in

real-world scenarios. As mentioned in section V.A, for this

experiment, we need to separate each music clip in the dataset

into training and test segments. The training segment consists

of the first 1 second of each recording with no user-input

percussions, while the remaining part of each music clip is used

for testing the performance. In other words, the training

segment is used to construct the transfer function of the

recording environment (see Fig. 7 (a)), which is then used in the

test segment to reduce the background music. (see Fig. 7 (b)).

Here we choose to use an MA (moving average) model to

predict the transformed music after recording. Before

identifying the MA model, we need to determine its order to

achieve the best performance. This is accomplished by

leave-one-out cross validation on the training segment, where

the “one” (that was left for validation) refers to each sample

point in the training segment. A typical result of this

Table II
Detailed information of each type of user-input percussions for BMR

Name of the user-input

percussions

Object against which the steel stick

is tapped

percussionA A smaller ceramic cup

percussionB A larger ceramic cup
percussionC A plastic box

Fig. 10. User-specific and genre-specific F-measures for the proposed method
and various different classifiers.

Fig. 11. Result of leave-one-out validation test for the best order of AR model.

2475-1502 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2936033, IEEE
Transactions on Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

order-determination procedure for a given clip is shown in Fig.

11, where the best MA order of 380 is obtained at the lowest

validation RMSE (root mean squared error).

For the proposed method, the optimal values of α (percentile

for determining salient frequencies) and β (ratio for

determining θa and θb) have to be identified in advance. Since

the energy distribution may change during BMR, the optimal

values of α and β may change before and after BMR. To

determine the parameter pair (α, β) of original clips and (α', β')

of clips after BMR, we employ Nelder-Mead simplex method

[48] for gradient-free optimization. Through leave-one-file-out

cross validation, the ratio pairs (α, β) and (α', β') are set to

(24.10%, 89.41%) and (24.80%, 89.70%), respectively.

By using the above order-determination procedure, we can

identify the best AR model order and perform model

identification for each recording based on its training segment.

The results of the experiment are shown in Fig. 12. By applying

the proposed method for BMR and optimizing the ratio pair, the

percussion-only F-measure is improved from 97.49% to

98.18%, and the overall F-measure is improved from 93.30% to

94.34%. A breakdown analysis, shown in Fig. 12, indicates that

the F-measures for most music clips are improved, especially

for Hiphop (for improvements from 87.66% to 100% in

percussion-only F-measure and from 80.47% to 93.33% in

overall F-measure).

Another breakdown analysis demonstrates that the average

F-measure improves, as shown in Fig. 12(b). Specifically, we

can see that the percussion-only F-measure of percussionA and

percussionB improves from 95.59% to 96.24%, while that of the

pair percussionA and percussionC slightly degrades from

97.77% to 96.96% and the pair percussionB and percussionC

slightly degrades from 99.11% to 98.43%. The overall

F-measure has the same trend that percussionA and percussionB

improves from 92.27% to 96.24%, while that of the pair

percussionA and percussionC slightly degrades from 91.82% to

91.39% and the pair percussionB and percussionC slightly

degrades from 95.80% to 95.40%. Moreover, we performed

Wilcoxon signed rank test on the overall results. The test result

shows p-value is equal to 0.0428 at the significance level α𝑝 =
0.05, indicating the significance of the proposed ANC method.

As shown in Fig. 12 (a)(c), the improvement in the genre

Hiphop is the most obvious since in the original music, the

user-input percussions are highly interfered by the background

music, and the background music is also louder than music of

other genres. In particular, a typical example of Hiphop is

shown in Fig. 8(a), where the volume of the background music

is much louder than the user percussion inputs. By applying the

proposed method, the volume of the background music as

shown in Fig. 8(b), is much less than the one in Fig. 8(a),

leading to a better accuracy. However, several cases show that

the reduction of the background music energy may also

interfere the energy of the salient frequency bins, resulting

misclassification. A typical example is shown in Fig. 13. In Fig.

13(b), several percussions are misclassified in the first phrase

(frame indices of 1 to 700 or so) of the clip due to the energy

ratio changed in both salient frequency bins. For the different

percussion pairs, there is a slightly degrade in both percussionA

and percussionC and percussionB and percussionC due to the

interference of the energy in the salient frequency by the

background noise reduction. A possible reason for degradation

is the similarity of the salient frequency between percussionC

and the ones in the percussion sound of the reference music,

Fig. 12. F-measures with/without BMR using ANC for (a), (c) different genres

of background music and (b), (d) different percussion pairs.

(a)

(b)

Fig. 13. (a) A typical misclassified example after BMR. The first and third

estimated percussions in (b) are misclassified to left-class after BMR due to the

energy change.

2475-1502 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2936033, IEEE
Transactions on Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

leading to the misclassification between the percussion pair or

the silence. For more details, Fig. 14 shows the distribution of

the salient frequencies for each percussion. The salient

frequencies of percussionC are mostly around 0~1500 Hz. Half

of them are overlapped with the salient frequencies of

percussionA and percussionB. From the other observation, the

energy of the lower frequency (below 1000Hz) is interfered by

the BMR the most, leading to the degrade of the classification

of percussionA and percussionB and percussionA and

percussionC.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we improved the previously proposed music

rhythm game “AutoRhythm” [41], with the introduction of the

newly proposed method for BMR, together with extensive

experiments with larger datasets for reliable and convincing

findings. Moreover, we have provided comprehensive

comparisons with existing rhythm games to pinpoint and

distinguish our game in the game spectrum. More specifically,

AutoRhythm has two unique and innovative features that make

it stand out when compared with similar games in the literature:

 Our system can automatically locate the hit timing of

user-provided music and assign notes to different

tracks in a “structural” way instead of random

assignment. Such a meaningful assignment can

minimize the discrepancy from manually generated

game contents, and thus greatly increase user

experience.

 The user can tap 2 physical objects (e.g., a pen, a

chopstick, etc.) against any other object (e.g., a table

top, a cup rim, etc.) to produce clear and distinct

percussive sounds to engage in the gameplay rather

than touching or tapping the screen. The process of

UPI is further improved by the proposed method of

BMR based on the concept of ANC. Experimental

results show that the proposed method for UPI can

achieve an F-measure of 78.22%, which is better than

other classifiers and quite satisfactory for gameplay

purposes.

Future work will be focused on two directions. First, a more

advanced method is called for to produce better hit-timing, not

only to approximate human-labeled ground-truth, but also to

increase playability and fun. To achieve this short-term goal, a

reliable vocal and melody onset detection in polyphonic music

should be designed to perform vocal detection and melody

pitch extraction in polyphonic audio music, and note

segmentation for the onset of each note in the extracted pitch

vector. The second direction is a long-term goal that aims to

render the proposed game content generation compatible to

other advanced multi-modal music games with various

interaction and gameplay modes, such as music-based dancing

or shooting games. To achieve this goal, a more general method

for game content generation is needed for closer interaction,

with supervised or semi-supervised learning to automate the

whole process, thus creating a better user experience for music

game players.

REFERENCES

[1] Tapulous, (2008) Tap Tap Revenge. Since the game is not available, a
brief reference from Wikipedia is here:

https://en.wikipedia.org/wiki/Tap_Tap_Revenge

[2] Rayark, (2011) Cytus. Available: https://www.rayark.com/
[3] Rayark, (2013) Deemo. Available: https://www.rayark.com/

[4] Konami (2012) Jubeat Plus. Available:

http://www.konami.jp/jubeatplus/index.php5
[5] Cheetar Technology Co. Ltd., (2014) Piano Tiles. Available on App Store:

https://itunes.apple.com/uz/app/piano-tiles/id848160327?mt=8

[6] Tap Lab, (2017) Dream Piano. Available on Google Play:
https://play.google.com/store/apps/details?id=com.eyu.piano&hl=en_US

[7] Amanotes, (2018) Tiles Hop. Available on Google Play:

https://play.google.com/store/apps/details?id=com.amanotes.beathopper
&hl=en

[8] CreApptive, (2013) BeatMp3. Available on Google Play:

https://play.google.com/store/apps/details?id=com.studio7775.BeatMP3
&hl=en

[9] SmartPlayland, (2015) TapTube. Available on Google Play:

https://play.google.com/store/apps/details?id=com.joylol.taptube&hl=en

[10] Float32, (2017) Melobeat. Available on Google Play:

https://play.google.com/store/apps/details?id=com.float32.themelobeat&

hl=en
[11] Pocket Games, (2015) Musiverse. Available on Google Play:

https://play.google.com/store/apps/details?id=com.pocketgames.musiver

se
[12] Konami, (1998) Dance Dance Revolution. A newest version (A20) is

available at:

https://p.eagate.573.jp/game/ddr/ddra20/p/?___REDIRECT=0
[13] Sega, (1999) Samba de Amigo. Since the game is not available, a brief

reference from Wikipedia is here:

https://en.wikipedia.org/wiki/Samba_de_Amigo
[14] Konami (1999) DrumMania. Available:

https://p.eagate.573.jp/game/gfdm/gitadora_matixx/p/index.html?___RE

DIRECT=0
[15] Activision (2006) Guitar Hero. Available: https://www.guitarhero.com/

[16] Beat Games, (2018) BeatSaber. Available on Steam:

https://store.steampowered.com/app/620980/Beat_Saber/
[17] Audio Surf LLC. (2016) AudioSurf. Available on Steam:

https://store.steampowered.com/app/412740/Audioshield/

[18] Cold Beam Games, (2009) Beat Hazard. Available on Steam:
https://store.steampowered.com/app/49600/Beat_Hazard/

[19] Empty Clip Studios, (2012) Symphony. Available on Steam:

https://store.steampowered.com/app/207750/Symphony/
[20] N. Shaker, J. Togelius, and M. J. Nelson, “Procedural Content Generation

in Games: A Textbook and an Overview of Current Research,” Springer,
2016

[21] A. Jordan, D. Scheftelowitsch, J. Lahni, J. Hartwecker, M. Kuchem, M.

WalterHuber, N. Vortmeier, T. Delbr ügger, U. G üler, I. Vatolkin, and M.
Preuß. BeatThe- “Beat: Music-based procedural content generation in a

mobile game,” In Proceedings of the IEEE Conference on Computational

Intelligence and Games (CIG), pp. 320–327, 2012

Fig. 14. The distribution of the salient frequency for each percussion,

respectively.

https://en.wikipedia.org/wiki/Tap_Tap_Revenge
https://www.rayark.com/
https://www.rayark.com/
http://www.konami.jp/jubeatplus/index.php5
https://itunes.apple.com/uz/app/piano-tiles/id848160327?mt=8
https://play.google.com/store/apps/details?id=com.eyu.piano&hl=en_US
https://play.google.com/store/apps/details?id=com.amanotes.beathopper&hl=en
https://play.google.com/store/apps/details?id=com.amanotes.beathopper&hl=en
https://play.google.com/store/apps/details?id=com.studio7775.BeatMP3&hl=en
https://play.google.com/store/apps/details?id=com.studio7775.BeatMP3&hl=en
https://play.google.com/store/apps/details?id=com.joylol.taptube&hl=en
https://play.google.com/store/apps/details?id=com.float32.themelobeat&hl=en
https://play.google.com/store/apps/details?id=com.float32.themelobeat&hl=en
https://play.google.com/store/apps/details?id=com.pocketgames.musiverse
https://play.google.com/store/apps/details?id=com.pocketgames.musiverse
https://p.eagate.573.jp/game/ddr/ddra20/p/?___REDIRECT=0
https://en.wikipedia.org/wiki/Samba_de_Amigo
https://p.eagate.573.jp/game/gfdm/gitadora_matixx/p/index.html?___REDIRECT=0
https://p.eagate.573.jp/game/gfdm/gitadora_matixx/p/index.html?___REDIRECT=0
https://www.guitarhero.com/
https://store.steampowered.com/app/620980/Beat_Saber/
https://store.steampowered.com/app/412740/Audioshield/
https://store.steampowered.com/app/49600/Beat_Hazard/
https://store.steampowered.com/app/207750/Symphony/

2475-1502 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2019.2936033, IEEE
Transactions on Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

[22] S. Dixon, "Simple Spectrum-Based Onset Detection," Extended Abstract

on 2nd Music Information Retrieval Evaluation eXchange (MIREX
2006).

[23] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M.

Sandler, "A tutorial on onset detection in musical signals," IEEE
Transactions on Speech and Audio Processing, vol. 13, no. 5, pp. 1035–

1047, 2005.

[24] J. P. Bello, C. Duxbury, M. Davies, and M. Sandler, "On the use of phase
and energy for musical onset detection in the complex domain," IEEE

Signal Processing Letters, vol. 11, no. 6, pp. 553–556, 2004.

[25] S. Böck, F. Krebs, and M. Schedl, "Evaluating the online capabilities of
onset detection methods," in Proc. of the 14th International Conference on

Music Information Retrieval (ISMIR), Porto, 2012.

[26] J. Schlüter and S. Böck, “Improved musical onset detection with
convolutional neural networks,” in Proc. IEEE Int. Conf. Acoust. Speech

Signal Process., 2014, pp. 6979–6983.

[27] D. Wessel and M. Wright, “Problems and prospects for intimate musical
control of computers,” Computer Music J., vol. 26, no. 3, pp. 11–22, 2002.

[28] P. Herrera, A. Yeterian, and F. Gouyon, "Automatic Classification of

Drum Sounds: A Comparison of Feature Selection Methods and
Classification Techniques," in The International Conference on Music and

Artificial Intelligence (ICMAI), 2002.

[29] W. A. Schloss, "On the Automatic Transcription of Percussive Music," in
Acoustic Signal to High-level Analysis. STAN-M-27, Stanford, CA,

CCRMA, Department of Music, Stanford University, 1985.

[30] F. Gouyon, F. Pachet, and O Delerue, "On the Use of Zero-Crossing Rate
for and Application of Classification of Percussive Sounds," in the Proc.

of the COST G-6 Conference on Digital Audio Effect, 2000.
[31] K. Yoshii, M. Goto, and H. G. Okuno, "Automatic Drum Sound

Description For Real-world Music Using Template Adaptation and

Matching Methods," in Proc. of International Conference on Music
Information Retrieval, 2004.

[32] K. Yoshii, M. Goto, and H. Okuno, “AdaMast: a Drum Sound Recognizer

based on Adaptation and Matching of Spectrogram Templates,” in Proc.
Music Information Retrieval Evaluation eXchange (MIREX), 2005.

[33] K. Yoshii, M. Goto, and H. Okuno, “Drum Sound Recognition for

Polyphonic Audio Signals by Adaptation and Matching of Spectrogram
Templates with Harmonic Structure Suppression,” IEEE Transactions on

Audio, Speech and Language Processing, vol. 15, no. 1, pp. 333–345,

2007.
[34] C. Dittmar and D. Gartner, “Real-time Transcription and Separation of

Drum Recordings based on NMF Decomposition. In Proc. of the 17th

International Conference on Digital Audio Effects (DAFX), 2014
[35] P. Lueg, "Process of silencing sound oscillations," U.S. Patent No.

2043416, Filed March 8th, 1934, Issued June 9th, 1936.

[36] L. J. Fogel, "Method of improving intelligence under random noise
interference," U.S. Patent No. 2866848, Filed April 2nd, 1954, Issued

December 30th, 1958.

[37] B. Widrow and M. A. Lehr, "Noise Canceling and Channel Equalization,"
in The Handbook of Brain Theory and Neural Networks. Michael A.

Arbib (Ed.). The MIT Press, Cambridge, Massachusetts, London,

England. 648-650, 1995.
[38] A. V. Oppenheim, E. Weinstein, K. Zangi, M. Feder, and D. Gauger,

"Single-Sensor Active Noise Cancellation," in the IEEE Transaction on

Speech and Audio Processing, vol. 2, no. 2, pp. 285-290, 1994.
[39] B. Benoit, C. Camastra, M. Kenny, K. Li, R. Romanowski, and S. Kevin,

"Engineering Silence: Active Noise Cancellation," Published by the North

Carolina State University, 2012
[40] S. Liebich, C. Anemüller, P. Vary, P. Jax, D. Rüschen, and S. Leonhardt,

"Active noise cancellation in headphones by digital robust feedback

control," in Proc. of the 24th European Signal Processing Conference
(EUSIPCO), 2016.

[41] P.-P. Chen, T.-C. Yeh, and J.-S. R. Jang, "AutoRhythm: A Music Game

with Automatic Hit-Timing Generation and Percussion Identification", in
Proc. of IEEE International Conference on Multimedia & Expo 2015.

[42] N. Ono, K. Miyamoto, J. L. Roux, H. Kameoka, and S. Sagayama,

"Separation of a monaural audio signal into harmonic/percussive
components by complementary diffusion on spectrogram," in Proc. of the

European Signal Processing Conference, 2008.

[43] J. Nelder and R. Mead, "A simplex method for function minimization".
Computer Journal. 7: 308–313. doi:10.1093/comjnl/7.4.308, 1965.

[44] M. Galrinho, "Least Squares Methods for System Identification of

Structured Models", Licentiate Thesis, published by KTH School of
Electrical Engineering, 2016.

[45] Taiko Jiro’s Dataset. Available: http://tieba.baidu.com/p/1736272776

[46] I. C. A. Oyeka, "An Introduction to Applied Statistical Methods", 8th

Edition, Nobern Avocation Publishing Company, Enugu, pp. 496-533,
2009.

[47] G. Tzanetakis and P. Cook, "Musical genre classification of audio

signals," in IEEE Transactions on Audio and Speech Processing, Vol 10,
No. 5, 2002. Dataset available at

http://opihi.cs.uvic.ca/sound/genres.tar.gz

[48] C.-C. Chang, and C.-J. Lin, "LIBSVM : a library for support vector
machines," in ACM Transactions on Intelligent Systems and Technology.

2:27:1--27:27, 2011. Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Tzu-Chun Yeh was born in Taipei,

Taiwan in 1985. He received the B.S.

degree in 2008 and now is persuing

Ph.D degree in the computer science at

National Tsing Hua University

(Hsinchu, Taiwan.) His research

interests include query by

singing/humming, audio melody

extraction, onset detection,

automatically music-game-content generation, and percussion

identification.

Jyh-Shing Roger Jang (M’93)

received his Ph.D. from the EECS

Department at the University of

California, Berkeley. He studied

fuzzy logic and artificial neural

networks with Prof. Lotfi Zadeh, the

father of fuzzy logic. As of Aug. 2019,

Google Scholar shows over 15,000

citations for Dr. Jang’s seminal paper

on adaptive neuro-fuzzy inference

systems (ANFIS), published in 1993. After obtaining his Ph.D.,

he joined the MathWorks to coauthor the Fuzzy Logic Toolbox

(for MATLAB). He has since cultivated a keen interest in

implementing industrial software for pattern recognition and

computational intelligence. He was a professor in the CS Dept.

of National Tsing Hua Univ., Taiwan, from 1995 to 2012. Since

August 2012, he has been a professor in the CSIE Dept. of

National Taiwan Univ. (NTU), Taiwan. He has published one

book entitled Neuro-Fuzzy and Soft Computing by Prentice

Hall. He has also maintained toolboxes for Machine Learning

and Speech/Audio Processing, and online tutorials on Data

Clustering and Pattern Recognition and Audio Signal

Processing and Recognition. He was the general chair of

ISMIR (International Society for Music Information Retrieval)

Conference, Taipei, 2014 and was a general co-chair of ISMIR

Conference, Suzhou, 2017. He is currently serving as the

director for FinTech Center at NTU. His research interests

include machine learning and pattern recognition, with

applications to speech recognition/assessment/synthesis, music

analysis/retrieval, image classification, medical/healthcare data

analytics, and FinTech. For further information about Prof.

Jang, visit http://mirlab.org/jang.

http://tieba.baidu.com/p/1736272776
http://opihi.cs.uvic.ca/sound/genres.tar.gz
http://www.csie.ntu.edu.tw/~cjlin/libsvm

