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Abstract—We propose a new network architecture called deep
cyclic group network (DCGN) that uses the cyclic group algebra
for convolutional vector-neuron learning. The input to DCGN is a
three-way tensor, where the mode-3 dimension corresponds to the
dimensionality of the input data, e.g., three for RGB images. To
handle vector-valued inputs, we replace scalar multiplication with
circular convolution for the feedforward and backpropagation
processes. As a result, every feature map and kernel map is
a three-way tensor with the same mode-3 dimension as the
input data. This way, DCGN may capture more of the relations
among different data dimensions, especially for regression tasks
where the target output has the same dimensionality as the input
data. Moreover, DCGN can deal with input data of arbitrary
dimensions, a property that existing architectures such as deep
complex networks and deep quaternion networks (DQN) lack.
Experiments show that DCGN indeed performs better than
convolutional neural networks and DQN for two regression tasks,
namely color image inpainting and multispectral image denoising.

Index Terms—vector neural learning, deep cyclic group alge-
bra, deep neural networks, convolutional neural networks, deep
cyclic group networks

I. INTRODUCTION

Advanced network architectures such as batch normaliza-

tion [1], highway networks [2], and residual networks [3] have

been proposed in recent years to improve the performance

or training efficiency of deep learning models. Both highway

and residual networks reduce the risk of vanishing gradients

via gating-based mechanisms or shortcut paths to regularize

information flow. There have also been attempts to make

more fundamental changes to convolutional neural networks

(CNNs). In particular, vector-valued neural learning in CNNs

has received increased attention recently, where the inputs,

outputs, weights and biases are all extended from real values to

vector values. For instance, deep complex networks (DCN) [4]

extend each neuron from a real value to a two-dimensional

vector representing complex numbers, and deep quaternion

networks (DQN) [5], [6] make each neuron a four-dimensional

vector representing the so-called quaternions. Although DCN

and DQN show the promise of vector-neuron learning, the

dimensionality of their vector-valued inputs are restricted to

two or four only. Unfortunately, in EEG-based human emotion

recognition [7], the human brain wave is composed of five

frequency bands, and for multispectral image denoising [8],

the images can comprise of 30 bands or more. Therefore,

for these tasks and many others, it is desirable to have

a network that can deal with multi-dimensional data with

arbitrary dimension N .

Historically, an N -dimensional vector-valued neuron [9]–

[11] has previously been proposed to handle N -dimensional

vector inputs and outputs, with N -dimensional orthogonal

matrix weights. But, this is for a single neuron only and does

not support multiple neurons nor backpropagation. A bit more

earlier, Clifford algebra has been employed to construct vector-

valued neural networks with dimensionality 2N [12]–[15], but

it is not natural to reshape the dimensionality of most datasets

into powers-of-two. More recently, matrix-valued neural net-

works assume that the inputs, outputs, weights, and biases

are N × N square matrices [16]. Yet, again it is not always

appropriate to rearrange the inputs as such. More importantly,

convolutional architectures of the above works have not been

explored at all.

Considering the above, we propose a new CNN architecture

named Deep Cyclic Group Network (DCGN), which involves

the cyclic group algebra [17]. Our inputs, outputs, kernel maps,

and feature maps are three-way tensors [18] with the same

mode-3 dimension. The mode-3 dimension corresponds to the

prescribed dimensionality N of the input data, where N is an

arbitrary positive integer. The proposed architecture is shown

in Figure 1. Our contributions are summarized as follows:

• We proposed the DCGN model by using N -dimensional

vector-valued neurons with cyclic group algebras, where

N is an arbitrary positive integer.

• We derived its backpropagation learning algorithm,

weight initialization, and batch normalization.

• We demonstrated the potential of our architecture with

image inpainting and denoising experiments.

For reproducible research, we will make the code available at

https://github.com/zcfan-tw/vectorNNtoolbox.

II. PROPOSED MODEL

In previous work, DCN and DQN extend each neuron and

weight to two- and four-dimensions respectively, using com-

plex and quaternion algebras. However, they lack the ability to

deal with input data of arbitrary dimensions. The idea of our

proposed DCGN is to extend the capacity of each neuron from

scalars to vectors with cyclic group algebras. Here, the scalar

multiplications in the conventional convolutional procedure are

changed into vector multiplications along mode-3 fibers with

the help of circular convolutions, which can also be formulated

as vector-matrix multiplications with circulant matrices [17],

https://github.com/zcfan-tw/vectorNNtoolbox
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Fig. 1: Illustration of the proposed DCGN model for regression problems (best viewed in color). Orange and blue squares

represent the convolved and pooled feature maps, respectively, and green squares represent the kernel maps. All feature maps

across all the layers have the same mode-3 dimension (i.e., N ). When N = 1, the model reduces to the conventional CNNs,

and we will not have those dashed squares. The kernel maps perform convolution with scalar multiplications. When N > 1,

each feature map and kernel map becomes three-way tensors. It is a regression problem since we have tensor input and tensor

output. But, the model can be extended to deal with classification problems, by discarding the last convolutional layer and

adding fully-connected layers after DCGN. In such a case, DCGN would perform the function of feature learning.

[19]. In other words, our work replaces scalar multiplications

with vector multiplications through circulant matrices.

In DCGNs, both the kernel and feature maps are three-

way tensors comprising N -dimensional mode-3 fibers. Each

fiber in a feature map stands for a N -dimensional vector-

valued neuron and its output is also a N -dimensional fiber.

The circular convolution is operated between a vector-valued

neuron and a fiber coming from a weight kernel map. The

convolution procedure is illustrated in Figure 2.

In what follows, we firstly derive the learning algorithm

from the point of view of a vector neuron, and then present

the application of DCGN for regression and classification

problems. Below, matrices are represented by bold uppercase

letters, and vectors by bold lowercase letters. Matrix slices

of tensors are represented as matrices and vector slices of

matrix are represented as vectors. Also, we treat vectors as

row vectors.

A. Operation of Circular Convolutions

Given two N -dimensional vectors, p = [p1, p2, . . . ,pN ] ∈
R

N and q = [q1, q2, . . . ,qN ] ∈ R
N , we can compute the

circular convolution between them, denoted as p ∗ q, with

vector-matrix multiplication by using the circulant matrix

[q]∗ = circ(q) associated to q as follows:

p ∗ q = p[q]∗ =















p1
p2
p3
...

pN















T 













q1 q2 q3 . . . qN
qN q1 q2 . . . qN−1

qN−1 qN q1 . . . qN−2

...
...

...
. . .

...

q2 q3 q4 . . . q1















. (1)

We note that [q]∗ ∈ R
N×N and p ∗ q ∈ R

N .

B. Feedforward Process for Vector Neurons

In vector neural learning with cyclic group algebras, the

inputs, outputs, weights and biases are all N -dimensional

vectors. Specifically, for a network with L layers, the relation

between the output of a neuron i in layer l (1 ≤ l ≤ L),

ali ∈ R
N , and the output of a neuron j in the preceding layer

l − 1, al−1
j ∈ R

N , can be written as:

ali , φ(zli) = φ





Jl−1

∑

j=1

wl
ij ∗ al−1

j + bl
i



 , (2)

where φ(·) is a differentiable activation function, wl
ij ∈ R

N

the weight vector connecting the two neurons, J l−1 the

number of neuron in layer l − 1, and bl
i ∈ R

N a bias vector.

For l = 1, we have J l−1 = 1 and al−1 , x ∈ R
N , the input

data vector of the network. For l = L, we have J l = 1, and

we define y ∈ R
N as aL, the output of the network.

C. Backpropagation Learning Algorithm

During the training phase, we are given the target output

ŷ ∈ R
N for every input data instance, so that we can compare

ŷ and y via some cost function ǫ(y, ŷ) to know how good

the model parameters Θ , {wl
ij ,b

l
i} are. Here, we use Θ to

denote the collection of all the trainable parameters across the

L layers. Given the empirical cost C calculated over all the

training data instances, we can use backpropagation to update

the model parameters Θ.

To use backpropagation, we need to take the derivative of

C with respect to each parameter wl
ij or bl

i. Unlike ordinary

CNNs, all the parameters here are vectors. Therefore, in calcu-

lating the derivatives we need to compute the Jacobian matrix.
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Fig. 2: Illustration of the convolution procedure when using

cyclic group algebra (best viewed in color). Each cube repre-

sents a scalar. Collectively, the N matrices of cubes represent

a three-way tensor of mode-3 dimension N , each matrix is

a frontal slice of the tensor, and each mode-3 fiber is an

N -dimensional vector. The feature map and the kernel map

are composed of blue cubes and green cubes, respectively. In

the convolution procedure, each mode-3 fiber of the kernel

map performs circular convolution with a mode-3 fiber of the

feature map, by rotating itself along the mode-3 dimension, as

the green textured cubes represent. Therefore, via the kernel

map we can learn the association between the elements across

the N dimensions by using a linear kernel and weighted sum.

The kernel map moves along the (mode-1, mode-2) plane, each

time at a distance of a stride.

For the bias vectors bl
i, this amounts to calculating the N -

dimensional gradient vector, ∂C
∂bl

i

=
[

∂C
∂bl

i1

, ∂C
∂bl

i2

, . . . , ∂C
∂bl

iN

]

,

where ∂C
∂bl

ik

=
∑N

n=1
∂C
∂zl

in

∂zl

in

∂bl
ik

. It can be shown that
∂zl

in

∂bl
ik

= 1

only when n = k, otherwise it is zero. It will become

apparent later that it is more convenient to denote ∂C
∂zl

in

simply as dlin and accordingly define the local gradient vector

dl
i =

[

dli1, d
l
i2, . . . , d

l
iN

]

as follows:

dl
i ,

∂C

∂zli
=

[

∂C

∂zli1
,
∂C

∂zli2
, . . . ,

∂C

∂zliN

]

. (3)

It can be shown that ∂C
∂bl

ik

= dlik and accordingly,

∂C

∂bl
i

=

[

. . . ,
N
∑

n=1

∂C

∂zlin

∂zlin
∂blik

, . . .

]

= dl
i . (4)

We can calculate the derivative of C w.r.t. the weight vector

wl
ij similarly. With some algebra, it can be shown that

∂C

∂wl
ij

=

[

. . . ,

N
∑

n=1

∂C

∂zlin

∂zlin
∂wl

ijk

, . . .

]

= dl
i

∂zli
∂wl

ij

= dl
i[a

l−1
j ]T

∗
.

(5)

Algorithm 1 Backpropagation Algorithm for Updating Deep

Cyclic Group Networks

Input: Training inputs x and related targets ŷ; activation

function φ; cost function ǫ
Output: Parameters Θ of weights and biases

1: while not converged do

2: for each minibatch do

3: Perform feedforward process with Eq. (2) to get z

4: Perform backpropagation with Eqs. (7) and (9) to get

local gradient vector d per neuron per layer

5: Update biases b with Eq. (4)

6: Update weights w with Eq. (5)

7: end for

8: end while

From Eq. (2), we see that the last equality holds because
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=
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j ]T

∗
, (6)

where [al−1
j ]∗ is the circulant matrix associated to al−1

j .

We now show how to calculate dl
i, which requires back-

propagation from the upper layer l + 1 and is therefore more

complicated. According to the chain rule, we have

dl
i ,

∂C

∂zli
=

Jl+1

∑

j=1

∂C

∂zl+1
j

∂zl+1
j

∂ali

∂ali
∂zli

, (7)

which involves vector-matrix-matrix multiplications. From Eq.

(4), we see that the first term in the summation is equal to

dl+1
j . From Eq. (2), and with some algebra, it can be shown

that the middle term is equal to [wl+1
ji ]∗ ∈ R

N×N , and the

last term is equal to the following N ×N diagonal matrix:

Φ(zli) ,
∂ali
∂zli

= diag
([

φ̇(zli1), φ̇(z2i1), . . . , φ̇(zNi1 )
])

, (8)

where φ̇(·) denotes the derivative of the activation function.

From the above description, we see that the update of dl
i

depends on dl+1
j and we can do this layer-by-layer in the

backward direction starting from the last layer. In the output

layer L, the local gradient vector dL can be computed by:

dL ,
∂C

∂zL
=

∂C

∂y

∂y

∂zL
=

∂C

∂y

∂aL

∂zL
=

∂C

∂y
Φ(zL) , (9)

where the last term involves computing the derivative of the

cost function ǫ(·, ·).
We summarize the aforementioned process in Algorithm 1.

We note that the proposed learning algorithm can be applied to

vector neurons with arbitrary dimensions N . If the complexity

of CNN is O(C), then the complexity of DCGN is O(NC).
In other words, the time complexity of DCGN is N times the



complexity of CNN. However, if we view N as a constant,

the complexity of DCGN and CNN becomes the same.

D. Weight Initialization

Proper weight initialization can reduce the risk of gradi-

ent vanishing or exploding when the architecture of neural

networks is deep. Below, we propose a weight initialization

method for DCGN by extending the method proposed by [20]

and [21] to DCGNs.

The main idea is to make the output variance equal to

the input variance for each neuron. In doing so, we need to

estimate the variance of each kernel map w, which can be

calculated as [5], [6]:

Var(w) = E
[

|w|2
]

. (10)

However, such an estimation is ill-defined for DCGN,

since w is a vector not a scalar. That said, if we further

assume w1, w2, . . ., wN ∼ N
(

0, σ2
)

i.i.d., then E
[

|w|2
]

=
E
[

w2
1 + w2

2 + . . .+ w2
N

]

= E
[

w2
1

]

+E
[

w2
2

]

+. . .+E
[

w2
N

]

=
Nσ2. Thus we can rewrite Eq. (10) as:

Var(w) = Nσ2, (11)

where σ is an estimated parameter of the variance of w.

Then, if we use the initialization method proposed by [20],

we have Var(w) = 2/ (nin + nout), where nin and nout

denote the number of input and output units of that neuron,

respectively. Accordingly, we have σ2 = 2
N(nin+nout)

. On the

other hand, if we use the initialization method proposed by

[21], which is designed for networks that use rectified linear

units (ReLUs) [22] as the activation function φ(·), we would

have Var(w) = 2/nin, and σ2 = 2
N nin

.

E. Batch Normalization

Batch normalization [1] is an important technique to sta-

bilize and speed up the training process. The idea is to keep

the input of each layer having zero mean and unit variance.

The original version is designed for scalar neurons. While [5]

have extended the method for DQNs, we present below how

to extend it to general vector neurons with arbitrary dimension

N . To ensure equal variance in the vector parts, we calculate

the variance not only between different training data instances

but also between the N dimensions, leading to the following

covariance matrix V:

V = [Cov(ui, vj)] i=1,...,N , j=1,...,N , (12)

where Cov(·) is the covariance function and ui, vj denotes

entries of two input vectors u and v for that layer. Following

[5], we use Cholesky decomposition on the covariance matrix

to learn the shift vector β ∈ R
N and the transformation matrix

Γ ∈ R
N×N . If the input vector x̃ has been normalized to mean

0 and variance 1, then batch normalization is done by

BN(x̃) = Γx̃+ β . (13)

We note that Γ is a symmetric matrix, and that its diagonal

can be initialized to 1/
√
N to obtain modulus of 1 for the

variance of the normalized value. The other terms of Γ and

all entries of β are initialized to 0.

F. Pooling Layers

As shown in Figure 1, we can optionally use pooling layers

after the convolutional layer. A pooling layer is another type

of layers simplifying or summarizing the information from

convolved feature maps. For max pooling, we propose to

calculate the magnitude of each mode-3 fiber in the feature

maps, and preserve the one (i.e., a vector) with the largest

magnitude. For mean pooling, we calculate the average of each

element among the mode-3 fibers to generate new three-way

feature maps.

G. Applications to Regression Problems

DCGN can be applied to regression problems where we

need to learn a nonlinear mapping between tensor inputs and

tensor outputs. The inputs and outputs have the same mode-3
dimension, but not necessarily the same mode-1 and mode-2
dimensions. To fit the dimensionality of the output tensor, we

need to use only one kernel map for the last convolutional

layer of DCGN. For the activation function φ(·), we can use

rectified linear unit (ReLU) or leaky ReLU for all the layers

except for the last layer, where we may want to use the sigmoid

or tanh function. We can use squared error for the cost function

ǫ(A,B) = ‖A−B‖22, where A and B denote the groundtruth

target and the output tensors of DCGN, respectively. Such a

network is shown in Figure 1.

H. Foreseen Applications to Classification Problems

When DCGN is applied to classification problems, the

input is a three-way tensor and the corresponding output is

a vector for one-hot representation (i.e., the class labels). We

can also use only one kernel map for the last convolutional

layer, but this is not mandatory. Moreover, we would add

fully-connected layers to the end of DCGN for learning the

classifier. We usually use the sigmoid function as the activation

function for the last layer of the fully-connected layers, so

that we can use the cross entropy as the cost function:

ǫ(a,b) = −∑

[ai ln bi + (1 − ai) ln(1 − bi)], where a and

b are the groundtruth label vector and the predicted one,

respectively. In such a case, DCGN performs the function of

feature learning.

III. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of DCGN, we test it on two

regression problems. The first one is color image inpainting,

which aims to reconstruct the deteriorated or lost parts of

the original color image. The second one is multispectral

image denoising, which aims to recover the original multi-

band image from a noisy version. For the first problem, the

input is a tensor with N = 3, the RGB channels. For the

second problem, since a multispectral image is composed of

multiple greyscale images shooting at different wavelengths

(or bands), N is equal to the number of bands. We note that

DCGN can deal with multispectral images of arbitrary bands,



(a) Noisy (b) DCGN (c) CNN2

Fig. 3: Examples of three contaminated images, and the result

of DCGN and a conventional CNN model (CNN2) for image

inpainting. DCGN performs better than CNN2 in removing the

imposed text, as also shown in Table I.

but DQN can only deal with 4-band multispectral images each

time. Therefore, we intend to vary the value of N from 3 to

6 for the second experiment.

As baseline methods, we consider the conventional CNNs

and the DQN model proposed by [5], using the code they

shared. The goal is to verify the possible advantages of using

the vector neurons over the scalar neurons, instead of pursuing

high accuracy. Therefore, we opt for simpler model design and

aim to compare the models fairly. For all the baseline models

and our model, we use only three fully convolutional layers

(without any pooling layers) and employ kernel maps with

size 3 × 3. We used ReLU as the activation function, mean

squared error (MSE) as the cost function, and Adam [23] for

gradient optimization.

For conventional CNNs, we consider three variants of CNN

with different number of kernels per layer. CNN1 has the same

number of kernels per layer (i.e., 24) as DCGN and DQN;

CNN2 has more kernels but the total number of parameters

is similar to DCGN, and CNN3 has even more kernels and

roughly three times the total number of parameters as DCGN.

DCGN and DQN have more parameters than CNN1 because

their kernel maps are tensors.

The evaluation metrics for both experiments are peak

signal-to-noise ratio (PSNR) and structural similarity index

(SSIM) [24]. SSIM is a measure of the similarity between two

images (i.e., the groundtruth clean one and the recovered one)

and its range is [0, 1]. Both PSNR and SSIM are the higher

the better. We calculate them for each output result and report

TABLE I: THE PSNR (IN DB) AND SSIM OBTAINED BY DIF-

FERENT METHODS FOR COLOR IMAGE INPAINTING. ‘KER-

NELS’ STANDS FOR THE NUMBER OF NEURONS PER LAYER,

AND ‘PARMS’ THE TOTAL NUMBER OF PARAMETERS. DQN

IS BASED ON [5].

Method N Kernels Param. PSNR SSIM

Input noise — — — 14.23 0.65

CNN1 3 24 11.7K 29.50 0.90

CNN2 3 41 32.6K 30.11 0.91

CNN3 3 72 97.4K 30.86 0.93

DCGN 3 24 32.4K 31.72 0.94

DQN [5] 4 24 43.9K 31.62 0.94
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Fig. 4: The PSNR (in dB) of DCGN and CNN for image

inpainting, using different number of kernel maps per layer.

We use the same mark to indicate the cases where DCGN and

CNN have the same total number of parameters.

the average values. All the experiments are performed on a

personal computer equipped with an NVIDIA GeForce GTX

1080Ti GPU and 64GB RAM. Our code is written in Python.

A. Color Image Inpainting

Image inpainting is a task that aims to recover corrupted or

missing pixels in an image [25]–[28]. Figure 3(a) shows three

example images that need to be inpainted. We have to remove

the imposed text and fill pixel values that are consistent with

the surrounding context.

We use the images from the LabelMe dataset [29] for this

evaluation. The dataset is split into two non-overlapping sets:

the training set contains 2,920 images, and the test set 1,133

images. To prevent overfitting, we randomly select from the

training set 150 images as the validation set. To reduce the

training time, we resize all the images from 2,592×1,944 to

512×512. We contaminate all the images by the same text

with variant fonts [30], using the contaminated ones as the

model input and the clean ones as the target output. For all

the models, we set the maximal number of training epochs to

100, and stop the training process when the validation MSE

does not decrease for consecutive 10 epochs. Since the color
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show the output of each neuron on the left hand side, and the summation of them on the rightmost column. We can see that

DCGN learns to separate the image from the occluding text, and that the summation of the feature maps becomes more and

more noise-free layer by layer. We note that the final output of DCGN would actually be a weighted sum of the feature maps.

images only have three dimensions (i.e., RGB), we follow the

approach of [5] and set the fourth dimension to all zeros for

DQN to provide a fair comparison with the quaternion algebra.

Table I shows that DCGN and DQN perform generally

better than the conventional CNNs, suggesting the benefit of

vector neuron learning. While the results of DCGN and DQN

are comparable, the result of DCGN is significantly better

(p−value < 0.01) than even CNN3 under the paired t-test for

both metrics. Moreover, we note that DCGN has fewer total

parameters than DQN, yet DCGN obtains the highest mean

PSNR 31.72 dB.

Some inpainting results of DCGN and CNN2 are shown in

Figures 3. Both methods can remove the imposed text, but

DCGN performs slightly better. Figure 4 further shows that

the result of both DCGN and CNN increases as a function

of the number of kernels per layer, but DCGN consistently

outperforms CNN.

Finally, we show in Figure 5 what DCGN might learn for

the inpainting task. For this investigation, we use a three-layer

DCGN with only five neurons per layer for simplicity. Figure 5

shows the output (i.e., feature map) of each neuron for a given

image, as well as the direct sum of these outputs per layer.

Because the feature maps are all tensors with N = 3, they

can be viewed as color images. We see that DCGN learns to

separate the original image from the imposed text, and that

the summation of the feature maps becomes more and more

noise-free layer by layer.

B. Multispectral Image Denoising

A multispectral (or hyperspectral) image is composed of a

collection of monospectral (greyscale) images, each captured

with a specific wavelength [31]. These monospectral images

can be thought of as in different bands of the multispectral

image. Since some associations may exist among different

bands, we can improve the performance of image processing

applications by leveraging such associations [32].

In multispectral image denoising [8], [33], we are given

a noisy version of a multispectral image with N bands, and

are asked to restore the clean version (also N bands). We

use the Columbia multispectral image database [34] for this

evaluation. It contains 32 real-world scenes and each scene is

made up of 31 monochrome images of size 512×512, captured

by varying the wavelength of a camera from 400nm to 700nm

with a step size of 10nm. We randomly select 16 scenes for

the training set, and the rest for the test set. We pick images

of the last 3–6 bands to make N ∈ [3, 6]. Moreover, we divide

each image into 32×32×N overlapping tensor patches with

hop size being one. Then, we randomly select approximate

20,000 tensor patches as the training data, 1,000 of which are

held out as the validation data to prevent overfitting. For each

tensor patch, all the N bands are processed at the same time.

We set the maximal number of training epochs to 30 and stop

the training process if the validation MSE does not decrease

for 5 consecutive epochs.

To create a noisy image, we randomly pick a certain

ratio of pixels from each band to add Gaussian noise with



TABLE II: PSNR (IN DB) AND SSIM OBTAINED BY DIFFERENT METHODS FOR MULTISPECTRAL IMAGE DENOISING UNDER

DIFFERENT SPARSITY (IN %) AND SIGMA VALUES. WE CAN USE DIFFERENT NUMBER OF BANDS FOR DENOISING, LEADING

TO DIFFERENT DATA DIMENSIONS N .

Method N Kernels Param.
(5%, 100) (10%, 100) (15%, 100) (10%, 150) (10%, 200)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input noise — — — 21.23 0.72 18.35 0.59 16.68 0.50 14.81 0.53 12.30 0.52

CNN1 4 24 12.2K 42.07 0.97 40.62 0.95 39.06 0.94 38.97 0.95 39.24 0.94

CNN2 4 48 45.1K 45.07 0.98 42.18 0.97 41.02 0.96 42.07 0.97 42.01 0.97

CNN3 4 83 130.2K 43.82 0.97 41.71 0.97 41.57 0.97 43.04 0.97 41.49 0.96

DCGN (N = 3) 3 24 32.4K 48.24 0.99 46.00 0.98 45.02 0.98 46.97 0.98 44.93 0.98

DCGN (N = 4) 4 24 43.3K 48.61 0.99 46.58 0.98 45.42 0.98 46.02 0.98 43.62 0.97

DCGN (N = 5) 5 24 54.0K 48.96 0.99 46.97 0.98 45.55 0.98 44.60 0.98 45.03 0.98

DCGN (N = 6) 6 24 64.8K 50.26 0.99 47.19 0.98 45.63 0.98 45.45 0.98 46.31 0.98

DQN [5] 4 24 43.5K 45.15 0.98 43.20 0.97 42.29 0.97 42.61 0.97 41.57 0.97

“Superballs” Image

“Hairs” Image

“Fake and real food” Image

(a) Original (b) Noisy (c) Denoised

Fig. 6: Examples of three noisy images (at 700nm band) and

the multispectral image denoising result by DCGN with N =
4. The sparsity of the noisy pixels is 10% and the sigma value

of the additive Gaussian noise is set to 200.

specific sigma value. We refer to this ratio as the sparsity

below. We vary the sparsity from 5% to 15% and sigma from

100 to 200 to simulate different degrees of corruption. In

model training, the MSE is computed between the restored

and the original versions of the patches across all the N bands.

We vary N from 3 to 6 for DCGN, and set N = 4 for CNNs

and DQN.

Table II shows the result of multispectral image denoising.

The following observations can be made. First, comparing

the result of the two CNNs and DCGN (N = 4), we

see again DCGN outperforms CNNs for a regression task.

The performance difference between DCGN and CNN2 is

significant (p-value<0.01) under the t-test for the first four

evaluation scenarios. The fifth evaluation scenario (i.e., 10%

sparsity with a sigma of 200) is the most noisy scenario

but DCGN still performs better. Figure 6 demonstrates the

denoised result of DCGN.

Second, Table II indicates that the performance of DQN [5]

is also much better than CNN1. However, it is only comparable

to CNN2, which uses more kernels per layer but the same

overall total number of parameters. Comparing the result of

DCGN (N = 4) and DQN, it seems DCGN is more effective,

possibly owing to the use of cyclic group algebras.

Finally, comparing the result of different DCGN models

in Table II, we see that the performance in PSNR improves

as a function of N , except for the two noisier scenarios.

This nicely demonstrates the importance of having a vector

neural learning model that can accommodate arbitrary data

dimensions. The dependency across different data dimensions

may increase when we have more dimensions, and DCGN can

exploit such dependency to improve the result of a machine

learning task.

IV. CONCLUSION

In this paper, we have presented a new type of CNN ar-

chitecture consisting of N -dimensional vector-valued neurons

endowed with the cyclic group algebra, where N can be

an arbitrary positive integer. In the convolution procedure,

scalar multiplications in conventional CNNs are changed to

vector multiplications through circulant matrices. The learning

process is performed with a backpropagation algorithm. Ex-

perimental results on color image inpainting and multispectral

denoising show that the proposed model exhibit better perfor-

mance than conventional CNNs and deep quaternion networks.

In the future, we would like to test it on classification prob-

lems, and datasets with even larger dimensions.
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