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Abstract—In-hospital cardiac arrest (IHCA) diminish the 
survival rate of patients, despite most of the IHCA cases are 
preventable. More than 54% IHCA patient had abnormal 
clinical manifestation before they suffered a cardiac arrest. If 
appropriate steps were taken, patients’ survival rate would be 
higher and medical expense would be decreased. This paper 
proposes a novel approach to detect IHCA before the event 
occurred. We construct two types of shifting windows 
(corresponding to two tasks) that allow machine learning to be 
applied for our dataset which is severely imbalanced. The 
results show that our approach can effectively handle the 
imbalanced dataset for detecting cardiac arrest. As the 
selection of performance index, we used the area under the 
receiver operating characteristic curve (AUROC) and the area 
under the precision–recall curve (AUPRC). In our experiments, 
the best classifier is random forest for task 1, with AUROC of 
0.88. LSTM is the best for task 2, with AUPRC of 0.71 for the 
second task.  

Keywords—Cardiac arrest, cardiopulmonary resuscitation, 
imbalanced data classification, machine learning, prediction   

I. INTRODUCTION  
Cardiac arrest is a sudden loss of blood flow resulting 

from the failure of the heart to effectively pump. In-hospital 
cardiac arrest (IHCA) is a major burden to public health, 
which affects patient safety [1]. 80% of patients with cardiac 
arrest show signs of deterioration in the 8 hours before 
cardiac arrest [1]. Cardiopulmonary resuscitation (CPR) is 
originally developed for victims of sudden cardiac or 
respiratory arrest [2]. Doing CPR keeps blood circulating 
until trained to jump-start the heart back into a normal 
rhythm. This technique came into being after the invention of 
closed-chest cardiac massage in 1960 [2, 3]. It is an 
emergency procedure that combines chest compressions 
often with artificial ventilation in an effort to manually 
preserve intact brain function until further measures are 
taken to restore spontaneous blood circulation and breathing 
in a person who is in cardiac arrest [4]. It is standard practice 
to attempt CPR on any patient in the hospital who has a 
cardiac arrest, regardless of the underlying illness [2]. In the 
United States, 209,000 IHCA occur each year, and the 

survival discharge rate for patients with cardiac arrest is 
<20% worldwide [1]. Therefore, it is very important to detect 
IHCA. We design a novel approach to detect IHCA for 
emergency patients. Our goal is to develop an early warning 
system (EWS) to avoid using CPR for patients. We propose 
some methods to develop the EWS.  

Cardiac arrest and major trauma are relatively common in 
emergency departments (EDs). CPR technique is performed 
heavily in hospitals. In this paper, we focus on emergency 
patients. While patients can present at any time and with any 
complaint, a key part of the operation of an ED is the 
prioritization of cases based on clinical need. This process is 
called triage [5]. Triage is normally the first stage the patient 
passes through, and consists of a brief assessment, including 
a set of vital signs. In Taiwan, the five-level Taiwan Triage 
and Acuity Scale (TTAS) computerized system was 
implemented nationally in 2010. The TTAS retains most 
features of the Canadian triage and acuity scale (CTAS) [6]. 
Our dataset contains this value with a computerized decision 
support system. In recent years, a great amount of electronic 
health records (EHRs) have become available [7]. EHRs are 
collections both static and dynamic features. The static 
features contain patient background data. On the other hand, 
the dynamic features, such as lab tests and vital signs, are 
collected multiple time during a patient’s visit [7, 8]. 
Generally speaking, the dynamic features are represented as 
a time series. Our dataset also contains static and dynamic 
features during a patient’s visit. The static features include 
age, gender, weight, and triage (i.e., TTAS); the dynamic 
ones include vital signs and drug information. We aim to 
detect IHCA by combining static and dynamic features to 
test models. 

The classical data imbalance problem is recognized as 
one of the major problems in the field data mining and 
machine learning as most machine learning algorithms 
assume that data is equally distributed. In the case of 
imbalanced data, majority classes dominate over minority 
classes, causing the machine learning classifiers to be more 
biased towards majority classes. This causes poor 
classification of minority classes. Classifiers may even 



predict all the test data as majority classes. Some of the real-
world examples involve fraud detection in banking, intrusion 
detection in networks, and rare diseases [9, 10, 11]. However, 
imbalanced class distribution of a dataset has encountered a 
serious difficulty to most classifier learning algorithms which 
assume a relatively balanced distribution [12]. Most machine 
learning algorithms do not work well with imbalanced 
datasets. We propose a novel approach to deal with such 
datasets. In this paper, we design shifting windows that are 
time-based. We define a shifting window as collected EHRs 
during a fixed time for each patient.  

As adoption of artificial intelligence and machine 
learning becomes more pervasive, the way we live and work 
is being fundamentally altered. Neural network is one of the 
most popular machine learning algorithms today. It has been 
decisively proven that neural networks outperform other 
algorithms in accuracy and speed. Recurrent Neural 
Networks (RNNs) have proven to be very successful for 
modelling sequences of data in many areas of machine 
learning [8]. Long Short-Term Memory (LSTM) networks 
are an extension for RNNs, which basically extends their 
memory. Therefore it is well suited to learn from important 
experiences that have very long time lags in between. LSTM 
is effective in capturing underlying temporal structures in 
time series data [13]. It makes the model particularly suitable 
at modeling dynamic information in EHRs, where there is a 
strong statistical dependency between medical events over 
long-time intervals [7]. Our proposed method applies classic 
machine learning algorithms and LSTM to imbalanced data 
learning.  

Three major contributions of our work are: 

l To handle imbalanced ratio, we design shifting windows 
to adjust our dataset and propose a novel approach 
exploring disease detection.  

l We combine static and dynamic features to detect IHCA. 
We construct sequences of dynamic data for neural 
networks. Our goal is to develop some models to apply 
to an EWS.   

l This study explores the combined efficacy of these two 
components: Convolutional Neural Network (CNN) 
and LSTM. CNN is added before LSTM to obtain 
static features; LSTM is applied to handle dynamic 
features. Our proposed approach uses not only classic 
machine learning classifiers but also neural networks 
to detect IHCA. 

The remainder of this paper is organized as follows: We 
will briefly review the related works in Section 2, describe 
the proposed methods in Section 3, depict experiments in 
Section 4, report results from experiments in Section 5, and 
finally conclude this paper in Section 6. 

II. RELATED WORK 
Annual adult non-traumatic patients who stay in 

emergency room more than 6 hours in a tertiary medical 
center were enroll in this research. Patients who signed do 
not resuscitation (DNR) were excluded and those who alive 
on arrival but received CPR during stay in emergency room 
were IHCA patients. Initially designed to rescue patients 
experiencing a sudden cardiac arrest due to arrhythmia, CPR 
has come to be seen as a procedure that should be used for 
patients for whom there is a reasonable chance of restoring 

cardiopulmonary function and prolonging life [14]. There are 
studies, such as [1, 2, 3, 4, 14, 15], where CPR technique is 
an important procedure to improve survival for sudden 
cardiac arrest. Its main purpose is to restore partial flow of 
oxygenated blood to the brain and heart. The objective is to 
delay tissue death and to extend the brief window of 
opportunity for a successful resuscitation without permanent 
brain damage [16]. 

With the approach of big data epoch, people can benefit 
from large-scale and real-time data to help improve the 
diagnosis decision, applying data mining and machine 
learning techniques. However, in many real-life problems, 
especially in the medical field, the datasets are commonly 
imbalanced. The performance of classifier would be terribly 
affected when imbalanced data is not managed well [17]. If 
you take the example of rare diseases, machine learning may 
suffer from accuracy paradox, which makes it difficult to 
control false positives and false negatives. On the other hand, 
patients may suffer from a rare disease but the machine 
learning models do not predict. The results become most 
patients without disease in the dataset.  

To overcome this problem, some approaches have been 
proposed that can be implemented during the pre-processing 
stage. One commonly used strategy is called resampling, 
which includes under-sampling and over-sampling. Over-
sampling can be achieved by adding similar data of 
underrepresented class to balance the skewed class ratio. 
There are a number of methods to over-sample a dataset used 
in the typical classification problem. The common 
techniques are known as Synthetic Minority Over-sampling 
Technique (SMOTE) [18], Borderline-SMOTE [19], and 
Adaptive Synthetic Sampling Approach (ADASYN) [20]. 
There are some methods to under-sample data. The common 
techniques are Cluster, random sampling, and stratified 
sampling. In this paper, we address a novel approach to add 
similar data of  underrepresented class to balance the class 
ratio. Our approach differs from SMOTE and ADASYN in  
expanding data coming from the original data. By the 
shifting window construction, we expand the amount of 
IHCA.   

For the imbalanced problem, some researches focus on 
diagnoses or diseases. In [17], they propose an ensemble 
model to precisely diagnose the diabetic on a large-scale and 
imbalance dataset. They make efforts to reduce the variance 
by under-sampling as much as possible [17]. It is well known 
that an excellent model requires both low variance and low 
bias [17]. They build a classifier to fit the resampled data 
aiming at decreasing the bias. The information required for  
medicine diagnosis is typically collected from a history and 
physical examination of the person seeking medical care. 
Cardiac arrest is different from diabetes disease and it is a 
sudden loss of blood flow resulting from the failure of the 
heart to effectively pump.  

On the other hand, some studies [21, 22, 23] handle 
multi-class imbalanced problem. In [22], they design two-
stage adaptive weighted extreme learning machine method. 
Their approach achieves a good balance between high 
detection accuracy and low false-alarm rate based on our 
two-stage recognition scheme [22]. In [23], they design a 
complete, fully automatic and efficient clinical decision 
support system for breast cancer malignancy grading. In 
order to overcome the imbalanced classification problem, 
they propose the usage of an efficient ensemble classifier 



named EUSBoost, which combines a boosting scheme with 
evolutionary under-sampling for producing balanced training 
sets for each one of the base classifiers in the final ensemble 
[23]. 

For a binary class problem, the imbalance degree of a 
class distribution can be denoted by the ratio of the sample 
size of the small class to that of the prevalent class [12]. In 
practical applications, the ratio can be as drastic as 1:100, 
1:1000, or even larger [24]. In [25], research is conducted to 
explore the relationship between the class distribution of a 
training dataset and the classification performances of 
decision trees. Their study indicates that a relatively balanced 
distribution usually attains a better result [12]. In some 
applications, a ratio as low as 1 : 35 can make some methods 
inadequate for building a good model [12]. The ratio of our 
original dataset (IHCA positive patients : IHCA negative 
ones) is 1 : 350. IHCA positive patients denote patients who 
need to use CPR in the ED. We under-sample IHCA 
negative patients for detection; the ratio of adjusted dataset 
becomes 1 : 10. The IHCA negative patients denote patients 
who do not use CPR during patients’ visit in the ED.  

The neural network itself is not an algorithms, but rather 
a framework for many different machine learning algorithms 
to work together and process complex data inputs. RNN is 
one of the most extensively researched deep neural networks 
for handling temporal sequential data [7]. LSTM is a type of 
RNN specifically designed to avoid gradient vanishing and 
exploding problems. RNN has been applied to many EHR 
applications due to its memory maintenance mechanism [26] 
and parameter sharing scheme, which allow the model to 
capture long-range temporal dependency and to handle 
sequences of varying length. We apply LSTM to test our 
models. 

III. METHODS 
Data Descriptions. This study uses EHRs of ED 

obtained from a public teaching hospital which is one of the 
greatest hospitals in Taiwan. This dataset is collected EHRs 
for adult patients (age ≧20 years) visited ED from 2014 to 
2015. It covers 2 whole years. We collect non-traumatic 
patients excluding do not resuscitate; these patients stay ED 
more than 6 hours. Each patient information was 
anonymized and deidentified before the analysis.  

Our dataset contains both static and dynamic features. 
The list of static and dynamic features is shown in Table I. 
Static features include patient background information 
collected once per visit; our study contains 9 static ones. 
Dynamic features are collected multiple times at irregular 
intervals during the patients’ registered hospitalization and 
have a time stamp associated with each record. Hence, 
dynamic features are expressed as a temporal sequence; this 
study contains 10 dynamic ones.  

TABLE I.  STATIC AND DYNAMIC FEATURES 

Types Features 

Static Age, gender, height, weight, fever, Glasgow Coma Scale 
(eye opening, verbal response, and motor response), and 
triage (i.e., TTAS). 

Dynamic Ø Vital signs: mean arterial pressure (MAP), 
systolic blood pressure, diastolic blood pressure, 
pulse, respiratory rate, and body temperature 
(BT). 

Ø Drug information: Intravenous therapy (IV) 
injection, painkiller, antibiotic, and diuretic. 

 

Study Population The study population are emergency 
patients who stay ED more than 6 hours. These patients 
contain static and dynamic features during their visits. 
Because human errors could exist in the EHRs, we exclude 
systolic blood pressure, diastolic blood pressure, pulse, 
respiratory rate, and BT values that were outside the ranges 
of 40 to 300 mm Hg, 20 to 300 mm Hg, 30 to 200 beats/min, 
3 to 60 breaths/min, and 28 to 42°C, respectively. We 
identify 107 IHCA positive patients and 28,953 IHCA 
negative patients in the ED. We conduct a stratified random 
sampling on IHCA negative patients while keeping the same 
underlying distribution of age, gender, and length of stay. 
We under-sample IHCA negative patients and the ratio of 
adjusted dataset becomes 1 : 10. As a result, the adjusted 
dataset contains 1,177 patients (107 positives and 1,070 
negatives).  

The workflow for the processing is illustrated in Fig. 1. 
Due to the imbalanced ratio, IHCA negative patients are 
under-sampled by stratified random sampling. The sampled 
data and original data are the same distribution. 

 

Fig. 1. The data flow 

In this paper, we design the shifting window for dynamic 
features. We define a shifting window as collected EHRs 
during a fixed time (i.e., m hours) for each patient’s visit in 
Fig. 2. Fig. 2 shows a IHCA positive patient and a shifting 
window including EHRs. These EHRs contain vital signs 
and drug information. In Fig. 2, the CPR time is the first time 
using CPR technique during a patient’s visit. On the other 
hand, a shifting window is composed of a sequence of 
partition. Each partition collects a number of EHRs. In this 
paper, we also define the length of the shifting window and 
the shifting time between any two adjacent shifting windows. 
In Fig. 2, m hours is the length of a shifting window. When 
the shifting window is advanced, the oldest partition is 
disregarded and a new partition containing a set of newly 
collected EHRs are appended to the window. Shifting 
windows are shifted by a fixed time. This is the shifting time. 
In our experiments, we adjust various lengths of a shifting 
window. On the other hand, we use EHRs in a shifting 
window to detect whether a patient uses CPR technique 1 
hour later or not. Shifting windows can apply to LSTM 
based on time series data. 

 

Fig. 2. A shifting window  



The dynamic features are represented as a time series. A 
shifting window may contain at least one EHR for any 
feature. In order to display dynamic features information 
completely, we calculate dynamic features statistics. During 
the specific shifting window, the mean, the first quartile (Q1), 
the third quartile (Q3), maximum, minimum, and standard 
deviation of every dynamic feature are calculated as new 
variables. In addition, the first and last records of each 
dynamic feature are captured as new variables. Consequently, 
each dynamic feature is generated 8 new features in a 
shifting window. 

Feature Selection In machine learning and statistics, 
feature selection is the process of selecting a subset of 
relevant features for use in model construction. Each patient 
contains many shifting windows. A shifting window includes  
8 new variables for each dynamic features in order to display 
dynamic feature information completely. There are many 
static and dynamic features including generated new features 
for each shifting window. Therefore, we use the sequential 
forward selection (SFS) manner by Whitney [27] for feature 
selection. SFS is one of the commonly used heuristic 
methods for feature selection. We use k-Nearest Neighbor 
(kNN) [28] and the leave-one-out test for F3 score estimate. 
After adjusted dataset is used the feature selection method to 
reduce features. 

     (1) 
However, the ranges of the values of the dynamic 

features are large. This causes difficulty for classifier training. 
Therefore, we use Normalization function to adjust the 
values of the static and dynamic features in Equation 1. Due 
to various ranges of the values of these features, we only use 
the normalization function to adjust these values. The range 
of these normalized values is between 0 and 1.  

IV. EXPERIMENTS 
The machine learning is implemented using the scikit-

learn package in Python [30]; the neural networks are 
implemented in Keras 1  with TensorFlow 2  as the backend 
engine. The scikit-learn package also implements multiple 
classification problems. For machine learning, regarding 
classification algorithms, we use top ones [31]: Naïve Bayes 
[32, 33], Support Vector Machines (SVM) [34 , 35], 
AdaBoost [36, 37] and C4.5 Decision Tree [38]. In addition, 
we also use the Random Forest algorithm [39]. Random 
forests are an ensemble learning for classification, regression, 
and other tasks by constructing a  multitude of decision trees 
at training time and outputting the class that is the mode of 
the classes or mean prediction of the individual trees. For a 
LSTM layer, we experiment 20, 40, 60, and 80 units and the 
best one was chosen. Categorical Cross-entropy is applied as 
loss function and Adam optimizer is used for optimization. It 
is used for multi-class classification. All models are 
evaluated using leave-one-out cross-validation. We compare 
the classification performance given by the two tasks 
described previously and these classification algorithms. 

All models are tested using two tasks. The two tasks 
focus on time series data. 

                                                        
1 https://keras.io/  
2 https://www.tensorflow.org/  

A. The shifting window without overlap (the first task) 
We design shifting windows; this task is to predict 

whether the patient will use CPR m hours later. To follow 
out this task, the patients’ sequences are right aligned. For 
IHCA positive patients, the end point is the onset time of 
ones using IHCA. For IHCA negative patients, the end point 
is not the end of sequences. To detect the two classes, we 
calculate the mean of  difference between the time when a 
IHCA patient registers with the hospital and the time when 
this patient uses CPR for the first time. The two classes have 
similar observation time. Then, we construct some m-hour 
shifting windows for every patient. Fig. 3 illustrates this task. 
We need for classifier training. We label each emergency 
patient as P (for IHCA positives) or N (for IHCA negatives). 
Therefore, after data processing, the task becomes a binary 
classification task.  

 

Fig. 3. The shifting window without overlap 

When an emergency patient visit the hospital, medical staffs 
need to measure the patient’s information, such as vital signs. 
We analyze information of every patient during m hours 
window to detect it. Fig. 3 illustrates this task. The rectangle 
with the dotted line is denoted as a shifting window; there are 
3 shifting windows in Fig. 3. For IHCA positive patients, the 
window #1 is a shifting window of the nearest CPR time. In 
our experiments, the shifting window is denoted as 8-hour 
window, because medical staffs of hospitals work in shifts. 
The vital signs of the general patients were measured at least 
3 times per day manually by the medical staff. In addition, 
most drugs are taken one dose four times a day. The time 
interval is about 6 hours. The few drugs are taken one dose 
six times a day; the time interval is 4 hours. Consequently, in 
the two tasks, the experiments are designed to detect IHCA 
using 4-, 6-, and 8-hour shifting window.  

B. The shifting window without overlap (the second task) 
In this task, we build shifting windows with overlap in Fig. 

4. The shifting time between any two adjacent shifting 
windows is 1 hour. For IHCA positive patients, they will use 
CPR 1 hour later during a shifting window, They are labeled 
P. However, during a shifting window, a IHCA positive 
patient will not use CPR 1 hour later. They are labeled U. 
This means that the patient will use CPR at least 2 hours later 
during the shifting window. He/she is a potential IHCA 
positive patient. For IHCA negative patients, they are labeled 
N during any shifting window. In Fig. 4, during the shifting 
window #n, Patient A is labeled N; Patient B is labeled P. 
However, Patient C is a IHCA positive patient but Patient C 
will not use CPR 1 hour later during a shifting window(i.e., 
window #n). Patient C is labeled U. This class (i.e., patients 
are labeled U) collects records of many positive patients. 
This task becomes a multiple classification task after data 
processing. However, we transfer our dataset into binary 



classification in order to train neural networks because our 
goal is to detect IHCA.  

 

 

Fig. 4. The shifting window with overlap  

C. Evaluation Metrics  
We use the area under the receiver operating 

characteristic curve (AUROC), the area under the precision-
recall curve (AUPRC), and F-Score (see Equation 2). F-
Score is the harmonic mean of precision and recall and gives 
a good combination of the two [28]. Generally speaking, F-
Score with β=3 is to emphasize recall.  

  (2) 
Furthermore, we use 10-fold cross-validation. It divides the 

dataset into 10 disjoint subsets. It uses 9 subsets to create a 
new dataset, and use the new dataset to train a classifier. 
Then, it uses the remaining 1 subset to test the classifier. It 
repeats the above two steps 10 times, and each time it uses a 
different subset. The final result is an aggregate of the 10 test 
results. Cross-validation is almost the standard way to 
evaluate classifiers and compare classification algorithms 
(and find an optimal set of parameters for a classification 
algorithm) in data mining. 

V. RESULTS 
In this section, we present the results for both 

experimental settings. 

A. The shifting window without overlap 
In this task, how many shifting windows do we construct 

for a patient? For a patient, we compute the difference 
between the time when a patient registers with the hospital 
and the time when a patient use CPR for the first time. The 
mean of all patients’ difference in time is 30 hours. On 
average, while a IHCA positive patient registers with the 
hospital, he/she will use CPR 30 hours later. Consequently, 
we depend on the average to adjust the amount of shifting 
windows. For instance, for 4-hour shifting window, we 
construct 7 shifting windows for each patient. In this paper, 
our goal is to detect IHCA early.  

We depend on various lengths of shifting window to 
generated data. Table II shows results of feature selection. 
These selected features are sorted in Table II. Totally, pulse 
is the most important feature for 4- and 6-hour shifting 
window; systolic blood pressure is the important one for 8-
hour shifting window. Pulse, respiratory rate, diuretic, BT, 
IV injection, painkiller are the more important features for 4-, 
6-, and 8-hour shifting window. In this task, we rely on these 
features to detect IHCA.   

TABLE II.  RESULTS OF FEATURE SELECTION 

Shifting window Features 

4-hour Pulse, respiratory rate, diuretic, BT, IV injection, 
painkiller, gender, Glasgow Coma Scale. 

6-hour Pulse, respiratory rate, diuretic, IV injection, 
Glasgow Coma Scale, gender, systolic blood 
pressure, painkiller, MAP, antibiotic, BT, TTAS.  

8-hour Systolic blood pressure, pulse, respiratory rate, 
BT, IV injection, diuretic, painkiller. 

 

 

 

Fig. 5. The various lengths of the shifting window without overlap (ROC curves) 

ROC curves (4-hour) ROC curves (6-hour) ROC curves (8-hour) 



 

Fig. 6. The various lengths of the shifting window without overlap (precision-recall curves) 

Fig. 5 and 6 show ROC curves and precision-recall 
curves for the shifting window without overlap while varying 
lengths of shifting window are from 4 hours to 8 hours.  

The higher the AUROC value is, the better the model is. 
For 4-hour shifting window, the best classifier is the random 
forest; the AUROC value is 0.88. CNN+LSTM is best and 
the AUROC value is closed to 0.9. For 6-hour shifting 
window, the best classifiers are random forest and naïve 
Bayes but CNN+LSTM would not perform well. The best 
classifier is random forest for 8-hour shifting window. 
Totally, the performance for 4-hour shifting window is better 
than the performance for 6- and 8-hour shifting window. For 
the 4-hour shifting window, window #1 is a shifting window 
of the nearest CPR time in Fig. 3. Its performance is the best.  
Regardless of the length of shifting window, the best 
classifiers are random forest and CNN+LSTM. 

In general, precision-recall curves are often zigzag curves 
frequently going up and down. Precision-recall curves tend 
to cross each other much more frequently than ROC curves. 
Similarly, the higher the AUPRC value is, the better the 
model is. For 4-hour shifting window, LSTM is the best and 
the AUPRC value is 0.71. This value is the highest 
regardless of the length of shifting window. Random forest is 
the best for 6-hour shifting window; LSTM and Naïve Bayes 
are the best for 8-hour shifting window.  

 

Fig. 7. AUROC values given by machine learning classifiers and neural 
networks 

We compare the 4-, 6-, and 8-hour shifting window. The 
results in Fig. 7. Totally, for machine learning classifiers, 6-
hour shifting window performs well; for neural networks, 4-
hour shifting window performs well. On the other hand, the 
most amount of shifting windows performs well for neural 
networks.  

In addition, we calculate F3 scores that are a good 
combination of precision and recall. The results are given in 
Fig. 8. F3 score has emphasizes recall over precision, with 3 
indicating that recall is weighted three times as much as 
precision. In this task, random forest is best during 6-hour 
shifting window; this F3 score is 0.75. Totally, the 6-hour 
shifting window performs well. Regardless of the length of 
shifting window, the best classifiers are random forest and 
naïve Bayes.   

 

Fig. 8. F3 scores given by machine learning classifiers and neural 
networks 

B. The shifting window with overlap  
The adjusted dataset has 1,177 patients: 107 IHCA 

positive and 1,070 IHCA negative ones. In this task, the 
shifting time is set 1 hour. For classic machine learning 
algorithms, this tasks belong to multiple class problem in Fig. 
9, 10, 11, and 12. We define 3 classes in Fig 4. In our 
experiments, we also choose random forest classifier to 
analyze the 4-, 6-, and 8-hour shifting window.  

Precision-recall curves (4-hour) Precision-recall curves (6-hour) Precision-recall curves (8-hour) 



 

Fig. 9. The various lengths of shifting window with overlap (ROC curves) 

On AUROC and AUPRC performance, the 4-hour 
shifting window is the best and the 6-hour shifting window is 
the second in Fig. 9 and 10. The AUPRC value is 0.82 and 
the AUPRC value is 0.78 for the 4-hour shifting window. 
Because the 4-hour shifting window is the nearest CPR time, 
it perform well.  

 

Fig. 10. The various lengths of shifting window with overlap (precision-
recall curves) 

We rely on the 4-hour shifting window with overlap to 
test all models including machine learning algorithms and 
neural networks. Fig. 11 and 12 present the ROC and 
precision and recall curves, respectively. 

 
Fig. 11. The different classifiers of the 4-hour shifting window with overlap 
(ROC curves) 

Fig. 11 shows that the best classifiers are SVM and 
random forest. The AUROC values are 0.87 and 0.86, 
respectively. Fig. 12 shows that the best classifiers are also 
SVM and random forest. The AUPRC values are 0.73 and 
0.7, respectively. In the previous studies [1, 7], random forest 
was the most commonly used machine learning algorithms 
and showed better performance than others. 

 

Fig. 12. The different classifiers of the 4-hour shifting window with overlap 
(precision-recall curves) 

Fig. 13 and 14 show the ROC and precision-recall curves 
for neural networks. It belongs to binary classification 
problem. Because neural networks need time series data, we 
adjust the 3-class (i.e., labeled P, U, and N) dataset to the 2-
class (i.e., labeled P and N) dataset. CNN performs the best 
and the AUROC value is 0.77 in Fig. 13.  LSTM is the best 
and the AUPRC value is 0.3 in Fig. 14. 

ROC curves  ROC curves  

Precision-recall curves  

Precision-recall curves  



 

Fig. 13. The different nerual networkss of the 4-hour shifting window with 
overlap (ROC curves) 

 

Fig. 14. The different nerual networkss of the 4-hour shifting window with 
overlap (precision-recall curves) 

C. Comparison 
To compare the two tasks, we use two performance 

measures, namely, AUROC and AUPRC. In Fig. 15, we 
present the best settings (or the settings giving the best 
results) chosen from Fig. 5, 6, 9, and 10, and we also present 
the best classifier for each of the two tasks. For the first task 
(i.e., the shifting window without overlap), we choose the 4-
hour shifting window; for the second task (i.e., the shifting 
window with overlap), we choose the 4-hour shifting 
window.  

 

Fig. 15. Comparison in AUROC performance measure between the two 
tasks 

According to Fig. 15, the first task is better than the 
second task in the AUROC performance measure totally. For 
4-hour shifting window without overlap, the best classifier is 
Naïve Bayes and random forest. For 4-hour shifting window 
with overlap, the best classifier is random forest. 
Consequently, random forest is the best classifier for 
detection of IHCA. In the previous studies, logistic 
regression and random forest were the most commonly used 
machine learning methods and showed better performance 
than traditional algorithms [1]. 

 

Fig. 16. Comparison in AUPRC performance measure between the two 
tasks 

According to Fig. 16, the second task is better than the 
first task in the AUPRC performance measure totally. For 4-
hour shifting window without overlap, the best classifier is 
random forest. For 4-hour shifting window with overlap, the 
best classifier is also random forest. Consequently, random 
forest is the best classifier for detection IHCA. 

We compare the two tasks and present the comparison in 
Table III. The first task represents deep neural networks. The 
second task can be applied to other disease detection. The 
first task represents a better method for AUROC; the second 
task represents a better method for AUPRC. 

Precision-recall curves  

ROC curves  



TABLE III.  COMPARISON BETWEEN THE TWO TASKS 

 The first task The second task 

Advantage Can be applied to neural 
networks  

General and can be applied 
to other disease detection 

and can handle imbalanced 
data 

Disadvantage Runs slower and needs 
more memory 

Cannot be applied to neural 
networks 

Application Can detect patients 
whether are IHCA or not  

Can develop an EWS  

Classification Two classes Three classes for classic 
machine learning 

algorithms; two classes for 
neural networks  

AUROC Higher Lower 

AUPRC Lower Higher 

 

VI. CONCLUSION 
Machine learning is one of the most exciting technologies 

that one would have ever come across. It can be explained as 
automating and improving the learning process of computers 
based on their experiences without any human assistance. 
We apply classifiers to detect IHCA by combining static and 
dynamic features. We use two tasks to test all models. For 
the shifting window without overlap, 4-hour shifting window 
is the best performance. The best classifier is random forest 
totally and the AUROC value is 0.88. CNN+LSTM is best; 
the AUROC value is closed to 0.9. For the shifting window 
with overlap, 4-hour shifting window is also the best 
performance. LSTM is the best and the AUPRC value is 0.71. 
In the future, we will add more features to our models.   
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