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Abstract—This paper presents our research on computer
assisted pronunciation training (CAPT). We focus on mispronun-
ciation detection and articulation feedback. We propose taking
into account the speech attributes, namely place and manner
of articulation, in the assessment models to improve mispro-
nunciation detection and return precise articulation feedback
to learners. We train a discriminative articulatory model based
on time-delay neural networks (TDNNs) with the multi-task
learning strategy to give the articulatory score and a TDNN-
based acoustic model to give the phonetic score. In testing, the
system detects mispronunciations and returns precise articulation
feedback based on both the phonetic and articulatory scores.
The results of experiments conducted on the MATBN Mandarin
Chinese broadcast news corpus show that the proposed models
outperform the Gaussian mixture model (GMM)-based and deep
neural network (DNN)-based baselines in terms of equal error
rate (EER) and diagnostic accuracy (DA). Furthermore, our
mispronunciation detection system should work in any language,
although the current system focuses on Mandarin.

Index Terms—computer assisted pronunciation training, mis-
pronunciation detection, articulatory features, multi-task learn-
ing, discriminative training, time-delay neural networks.

I. INTRODUCTION

Computer assisted pronunciation training (CAPT) systems
provide opportunities for learners to practice pronunciation
in a stress-free environment. In the past few decades, CAPT
systems based on statistical modeling techniques have made
considerable progress [1-4]. For effective learning, CAPT sys-
tems should provide learners with pronunciation assessments
and personalized correction feedback. In general, there are
two main approaches to pronunciation assessment. One is to
give learners pronunciation scores, from the phone level to
the syllable level [5, 6], and the other is to detect individual
errors, such as specific phone substitution errors [7, 8]. Based
on the scores at the phone or syllable level, learners can
know how well their pronunciation is and where the wrong
pronunciation might be, but they cannot know the types of
errors and how to correct them. Concerning the detection
of phone substitution errors, researchers usually target a few
specific problematic phones. For example, a typical CAPT
system will give the substitution feedback on the “r-1 substi-
tution error”, which occurs very commonly in English when
a learner pronounces the word “rate” as “late”. Rather than
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providing such phone substitution feedback, giving feedback
directly related to corrective articulation from articulatory
model is more useful to learners. Articulatory models can
be categorized into geometrical [9-12] and biomechanical
[13, 14] types. In this paper, we focus on the geometrical
model. In a geometrical model, the vocal tract is represented
by its initial geometry, and a set of parameters estimated
from the electromagnetic articulography (EMA) data directly
deforms this geometry. Joint mispronunciation detection and
articulation suggestions has been proved helpful in many
areas, such as speech therapy [15], speech comprehension
improvement [16] and pronunciation perceptual training [17].
In this study, we propose a mispronunciation detection
system that takes into account the phonetic and articulatory
scores at the phone and syllable levels and returns precise
articulation feedback to learners. We perform experiments on
the MATBN Mandarin Chinese broadcast news corpus [18],
where all the speech utterances were manually annotated with
transcripts, speakers, and syllable mispronunciations. We use a
subset of the MATBN corpus spoken by speakers who have no
mispronunciations in their speech to train a time-delay neural
network (TDNN)-based acoustic model by Kaldi' for phonetic
forced alignment and phonetic score evaluation [19]. We also
use the same subset to train a TDNN-based speech attribute
(i.e., manner and place attributions of articulation) classifier
with the multi-task learning strategy for articulatory score
evaluation. In testing, the phonetic scores are calculated by the
acoustic model while the articulatory scores are calculated by
the articulatory model (i.e., the attribute classifier). The system
detects mispronunciations and returns articulation feedback
based on both the phonetic and articulatory scores. Another
subset of the MATBN corpus that contains mispronunciations
is used as the testing data, mostly the interviewees’ speech.

In summary, the highlights of this paper in comparison with

other relevant reported works are threefold.

1) TDNNs are employed in our CAPT system instead
of fully-connected multilayer perceptrons to efficiently
learn the temporal dynamics of signals from short-term
feature representations [20, 21].

Thttp://kaldi-asr.org
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Fig. 1. Overview of the proposed mispronunciation detection framework.

2) The i-Vector, as one of input components of TDNN:S, is
used to normalize the variability of speakers [22].

3) The output units in each articulatory model are sim-
plified to mono-attributes rather than tri-attributes used
in [23]. The attributes in each attribute category are
mutually exclusive.

The remainder of this paper is organized as follows. Section
IT introduces the speech attributes for Mandarin phones. Sec-
tion III describes our mispronunciation detection framework
and methods of scoring the context-dependent phones. Section
IV presents our training strategy for the attribute classifier.
Section V gives an overview of the corpus used in this
paper. Section VI reports the experimental results. Finally,
conclusions are drawn in Section VII.

II. SPEECH ATTRIBUTES FOR MANDARIN PHONES

In Mandarin, each Chinese character corresponds to one
spoken syllable, consisting of an initial, usually a consonant,
and a final, usually vowel(s) or vowel(s) followed by a nasal.
Speech attributes can be used to describe how phones are
produced using related articulators and the airflow from the
lungs, and thus can be used to detect changes in pronunciation
caused by either regional accent or substitution errors. In this
study, we detect mispronunciations based on the phone-level
posteriors and speech attributes. We adopt the attribute-to-
phone conversion rules in [24]2. Table I lists the different
categories of speech attributes and their associated Mandarin
grapheme-phoneme denoted in Hanyu Pinyin.

According to [23], place and manner of articulation are
used to describe the attributes of consonant sounds, while
vowels are described with three-dimensional features: horizon-
tal dimension (tongue backness), vertical dimension (tongue
height), and lip shape (roundedness). Based on Table I, the
articulatory attribute transcription of a speech utterance can
be directly derived from its phone transcription. In this study,
we use four kinds of articulatory transcriptions: manner, place
+ backness, place + height, and place + roundedness. Table II
gives an example of attribute labels derived from the phone
labels. By forced alignment with a pre-trained phone-based
acoustic model, each frame of a speech utterance can be la-
beled with the phone and the articulatory attributes represented
by four ground truth one-hot vectors.

2The phoneme i has 3 allophones: ii when followed by c, z, s, iii
when followed by zh, ch, sh, r, and i when followed by all other initials.

TABLE I
FIVE CATEGORIES OF SPEECH ATTRIBUTES AND THEIR ASSOCIATED
MANDARIN GRAPHEME-PHONEMES IN HANYU PINYIN.

category attribute grapheme-phoneme
bilabial bpm
labiodental £
alveolar dtln
place dental z C s
retroflex zh ch sh r
palatal Jj g x
velar g k h
stop bpdtgk
fricative f sshrxh
manner affricative z zh ¢ ch j g
nasal m n
lateral 1
n/a all vowels
back o er u
backness central a err iii
front e 1 v ii nn ng
n/a all consonants
high i ii iiiu v
low a ng
height middle high o er nn
middle low e err
n/a all consonants
rounded o0 u Vv ng
roundedness unrounded a er e err 1 ii iii nn
n/a all consonants
TABLE 11

THE PHONEME SEQUENCE AND ITS CORRESPONDING MANNER, PLACE +
BACKNESS, PLACE + HEIGHT, AND PLACE + ROUNDEDNESS SEQUENCES,
TAKING THE CHINESE PHRASE “F{f"” (WE) FOR EXAMPLE.

phrase A (we)

phoneme u o m er nn
manner vowel vowel nasal vowel vowel
place + back back bilabial back front
backness

place + . middle - middle middle
height high high  Plabial - Thion high
place + rounded rounded bilabial unrounded unrounded
roundedness

III. OVERVIEW OF THE PROPOSED MISPRONUNCIATION
DETECTION FRAMEWORK

Our mispronunciation detection framework is shown in Fig
1. We first train an acoustic model and an articulatory model
from a well-pronounced speech corpus. Given a test speech
utterance, we first perform forced alignment to divide it into
a phonetic segment sequence. Then, we compute the phonetic
score and the articulatory score for each phonetic segment.
Finally, the decision module will judge whether a phonetic
segment or a syllable segment is mispronounced. We will
describe the individual modules in detail in this section.



A. The phonetic score calculated by the acoustic model

We can use the goodness of pronunciation (GOP) [6] as the
phonetic score. The GOP for a given phonetic segment O”
labeled as phone p is defined as the conditional probability
P(p|OP), i.e., the posterior probability of p given the phonetic
segment OP. Therefore, the phonetic score ¢, of a phonetic
segment OP for phone p is calculated as follows:

P(O”|p)
=l
S ’ °9 (maxqu P(01]q)

where ¢ is the competing phone; () is the complete phone set,
and N F(p) is the number of frames in the phonetic segment
OP. GOP is in the range of (-oco ,0]. The best GOP is zero
when p = g, the bigger the better. A threshold is demanded to
verify whether the phonetic segment is correctly pronounced.

We can also calculate the phonetic score with the rank ratio
(RR) [25], which is computes as follows:

R,—1

Cp = pT’

where R, denotes the rank of the log-likelihood of the acoustic

model for phone p and N is the number of phones in the

complete phone set. RR is in the range of [0, 1). The best RR
is zero when R, = 1, the smaller the better.

1) Normalization of the phonetic score: As introduced
above, the RR phonetic score is in the range of [0, 1) while the
GOP phonetic score is in the range of (-oo ,0]. For both types
of scores, a score close to zero indicates a good pronunciation.
Therefore, we can normalize these two scores to the same
range between 0 and 100, and the larger the value, the better
the pronunciation. The normalization function is as follows:

)vrw.

2)

> 100
" g *
where C:) denotes the normalized phonetic score for phone p;
¢p can be the phonetic score obtained from either Eq. (1) or
Eq. (2); and a and b are constants. In this study, we set a to
0.2 and b to 2. Note that, for the sake of simplicity, we will
use ¢, to represent the normalized phonetic score hereafter.
2) The syllable-level phonetic score: To calculate the
syllable-level phonetic score, we can simply compute the
average of the phonetic scores of the component phones in
the syllable. Alternatively, we can calculate the syllable-level
score in line with the phone lengths by the result of forced
alignment. That is, we regard the phonetic segment length (i.e.,
the number of frames) as a weight of the corresponding pho-
netic score in calculating the syllable-level score as follows:

1 n -
G= 7 2 (LixG), (4)

where (, denotes the phonetic score of syllable s, ¢ denotes the
it" phone in syllable s, L; denotes the segment length of the
i*" phone, ¢; denotes the normalized phonetic score of the it

phone, n is the number phones in syllable s, and L = ZZ" L;.
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Fig. 2. The architecture of the TDNN-based attribute classifier, where tdnn
and fc denote the time-delay layer and fully-connected layer, respectively.
The notation followed by tdnn represents the specific layer-wise context.

TABLE III
THE GROUND TRUTH MANNER ATTRIBUTE VECTOR AND THE PREDICTED
MANNER ATTRIBUTE VECTOR FOR A SPEECH FRAME OF “M” PHONE.
“PREDICTED” MEANS THE OUTPUT OF THE MANNER LAYER IN FIG 2.

attributes stop fricative nasal
ground truth 0 0 1
predicted 0.01 0.03 0.95

B. The articulatory score calculated by the articulatory model

As shown in Fig. 2, our TDNN-based attribute classifier
will output the predicted manner, place + backness, place +
height, and place + roundedness vectors for each frame of
input speech. Since each frame corresponds to a specific phone
according to the forced alignment by the acoustic model, the
ground truth manner, place + backness, place + height, and
place + roundedness vectors can be easily derived according
to Table II. In Table III, we take the phoneme m for example
to explain the ground truth vectors and the predicted vectors.
The first row in Table III represents the ground truth manner
vector of an m frame, which is a one-hot vector with value
“1” for the nasal attribute. The second row in Table III is the
predicted manner vector. We can compute the inner product
of these two vectors as the articulatory score as follows:

1 <~ [atty] - att.;] = 100

= , 5)
PPl

where 7, denotes the articulatory score of phone p; ¢ denotes
the i*" frame of the phone p segment; L denotes the number
of frames in the phone p segment; att.; and att.; denote the
ground truth attribute vector and the predicted attributed vector
of the i*" frame, respectively. Note that att.; and att.; are the
concatenated vector of the 4 ground truth attribute vectors and
the concatenated vector of the 4 predicted attribute vectors,
respectively. Therefore, in Eq. (5), the 4 at the denominator is
to normalize the inner product between 0 and 1 while the 100
at the numerator is to scale the articulatory score to the same

interval as the phonetic score for consistency.



C. Combination of the phonetic and articulatory score

For phone p, the overall assessment score can be simply
calculated as the weighting average of the phonetic score (,
and the articulatory score 7, as follows:

)‘P:w*c;n""(l_w)*npa (6)

where w is an adjustable weight.

IV. MULTI-TASK LEARNING

As discussed above, each frame of a speech utterance can
be labeled with phone and four kinds of ground truth one-
hot attribute vectors. We can train a TDNN-based attribute
classifier for each attribute category separately [26]. In this
study, we take advantage of multi-task learning and propose
attribute modeling that considers all the interaction effects in a
unified objective function in Eq. (7). Fig. 2 shows the TDNN-
based attribute classifier built for the four kinds of attribute
vectors presented in Sec. II.

A. The advantage of multi-task learning

The purpose of using multi-task learning [27, 28] (MTL) is
to train the model with several different but related tasks using
shared representations. The effectiveness of MTL depends on
the relationship between each task and the shared learning
structure across tasks. In our case, the four output layers
correspond to four categories of speech attributes, respectively,
so they are highly connected to each other. Not only the
different articulatory features can be modeled at the same time,
but also each feature can be prevented from over-fitting.

B. The neural network architecture

Since the attributes in each of the four attribute vectors are
exclusive, and the four attribute vectors are related, we train
our TDNN-based attribute classifier with multi-task learning.
Specifically, each speech frame in the input layer is represented
by a vector consisting of 100 i-Vector features, 40 high
resolution MFCCs, and 3 pitch features. The first five hidden
layers in Fig. 2 are time-delay layers [21]. (—3,0,3) means
that we splice frames {t — 3}, {¢}, and {t+ 3} together at the
current hidden layer and ¢ denotes the current time. The last
two hidden layers, labeled as fc in Fig. 2, are fully-connected
layers with 650 hidden nodes for the shared fc layer and 250
hidden nodes for the fc layer of each sub-task. The objective
function of multi-task learning is the summation of the cross-
entropy losses of the four sub-tasks:

Loss =C Epanner + C1E‘place+backness"' %
CV-Eplace+heighl + C’Ejplace+roundedness7

where Loss and C'E denote the total loss of the TDNN-based

attribute classifier and the cross-entropy loss of the output

layer of an individual sub-task.

TABLE IV
STATISTICS OF DIFFERENT TYPES OF MISPRONUNCIATIONS IN MATBN.
IN THIS STUDY, WE FOCUS ON PHONE SUBSTITUTION ERRORS, I.E., THE
INITIAL PHONE ERROR, MIDDLE PHONE ERROR, AND FINAL PHONE
ERROR. THE OTHER ERROR DENOTES PHONE INSERTIONS AND
DELETIONS. THE TONE ERROR MEANS IT IS PRONOUNCED WITH THE
INCORRECT TONE. THE UNDERLINED PHONE REPRESENTS THE LOCATION
OF MISPRONUNCIATION.

proportion top proportion
error type (%) pattern (%)
initial phone error 69.09 shiii — sii 13.09
middle phone error 2.33 Xve — Xie 2.05
final phone error 3.37 qv — qi 0.48
other error 18.40 fa — hua 10.56
tone error 6.81 fu2 — fu3d 1.16

V. SPEECH CORPUS

We use the MATBN corpus, which is a Mandarin Chi-
nese broadcast news corpus collected in Taiwan [18], in
the experiments. There are three types of speakers: anchor
reporters, field reporters, and interviewees. The speech of
anchor reporters always exhibits a high standard of fluency,
good pronunciation and good acoustic quality. The speech
of field reporters also exhibits a high standard of fluency
and good pronunciation but sometimes the acoustic quality
is low. The speech of interviewees is often of very low
quality and intelligibility with background speech and noises
of various types. All the speech utterances in the corpus are
manually annotated with transcripts, speakers, and syllable
mispronunciations.

A. Mispronunciations in the speech corpus

The statistics of the mispronunciations in the MATBN
corpus are summarized in Table IV. There are two major
categories of mispronunciations. The first corresponds to the
error in tone (e.g., fu2 pronounced as fu3), and the second
corresponds to the phone errors (e.g., shal pronounced as
sal), including substitution, insertion, and deletion. We can
see that the mispronunciation of consonants (cf. the initial
phone error in Table IV) accounts for the largest proportion of
mispronunciations. In this study, we only consider the phone
substitution errors, i.e., the initial phone error, the middle
phone error, and the final phone error, according to the location
of the error. We leave other errors to future research.

B. Training and testing sets

Among the three types of speakers, studio anchors and field
reporters are well-trained native speakers. Therefore, there are
few mispronunciations in their speech. In contrast, there are
more pronunciation errors in the interviewees’ speech.

We thought that the acoustic model for pronunciation
assessment should be trained by a standard speech corpus
without mispronunciations, such as the speech of well-trained
anchor and field reporters. The speech with mispronunciations
could then be used as the testing data. Consequently, we
divided the MATBN corpus into two subsets, namely MATBN-
STD and MATBN-MIS. As shown in Table V, MATBN-STD



TABLE V
STATISTICS OF THE MATBN-STD AND MATBN-MIS SUBSETS.
MATBN-STD CONTAINS ONLY THE CORRECTLY PRONOUNCED SPEECH
FROM THE ANCHORS AND FIELD REPORTERS, AND MATBN-MIS
CONTAINS THE SPEECH FROM THE ANCHORS, FIELD REPORTERS, AND
INTERVIEWEES WITH MISPRONUNCIATIONS.

role MATBN-STD MATBN-MIS
#utt. dur. (hours) #utt. dur. (hours)

anchor 5,599 224 693 3.8

reporter 10,211 41.3 3,153 16.8

interviewee 0 0 5,451 22.9

total 15,810 63.7 9,297 43.5

consists of 15,810 utterances (63.7 hours), and is used for
training the acoustic model. MATBN-MIS consists of 9,297
utterances (43.5 hours), and is used for testing. Note that the
speakers in training and testing subsets are not overlapped.

VI. EXPERIMENTS

We use the phone-based symbols to represent the phone
set. We consider a syllable that is incorrectly pronounced as
a positive example, and treat its left and right syllables as
negative examples. If the left or right syllable around the
mispronounced syllable is also mispronounced, we go forward
or backward to find the nearest correctly pronounced syllable
as the negative example. Therefore, the ratio of positive and
negative examples is about 1:2 in the testing data.

A. Systems compared in the paper

We consider two types of transcripts, the base syllable
sequence and the tonal syllable sequence. For example, the
syllables bal, ba2, ba3, ba4, and ba5 are treated as the
same base syllable ba. We add the tone label to the vowels
and the last phone in a syllable.

We compare two acoustic models in the paper:

1) GMM: the baseline using the conventional GMM-HMM

model as the acoustic model.

2) TDNN: the proposed method using the TDNN model as

the acoustic model.
As introduced in Sec. III, two phonetic scores (i.e., RR,
GOP) can be calculated by the acoustic model. In addition,
experiments are conducted on without-tone and with-tone
transcripts separately to examine their respective performance.

In our preliminary analysis, we found that the retroflex
phones were difficult to recognize. For example, the phone sh
was often pronounced as s, but the phonetic score of sh was
still high. Furthermore, in the mispronunciation annotations,
the retroflex errors are in the majority as shown in Table.
IV (cf. the top pattern in the initial phone error category).
Therefore, we came up with an idea to combine the acoustic
and articulatory scores on the retroflex phones, as described
in Algorithm 1.

B. Evaluation metrics

In this paper, the equal error rate (EER) and diagnostic
accuracy (DA) are used for performance evaluation. In the
confusion matrix in Table VI, the positive label stands for the
mispronunciation. When a phone is predicted as positive by

Algorithm 1: Combing phonetic and articulatory scores
Data: (,,7,
Result: )\,

1 (p is obtained from Eq. (1) or Eq. (2);

2 1, is obtained from Eq. (5);

3 w= 0.2 (heuristically selected);

4 while not at the end frame in phone p do

5 read the current frame;
6 if phone p has the retroflex attribute then
7 | Ap=wxGpt (L—w)*mp;
8 else
9 ‘ Ap=0(ps
10 end
11 end
TABLE VI

THE CONFUSION MATRIX. WE DEFINE THE POSITIVE LABEL AS THE
MISPRONUNCIATION AND THE NEGATIVE LABEL AS THE CORRECT
PRONUNCIATION, AND TRUE POSITIVE = FULL HIT + NEAR HIT.

mispronunciation system prediction
annotation positive negative
ositive full hit false negative
P near hit g
negative false positive true negative

TABLE VII
PERFORMANCE IN TERMS OF EER AND DA FOR DIFFERENT SYSTEMS.
+PM DENOTES THE SYSTEM THAT COMBINES THE PHONETIC AND
ARTICULATORY SCORE DERIVED BY ALGORITHM 1.

without tone with tone
method
EER (%) DA (%) EER (%) DA (%)
RR (GMM) 40.65 14.38 45.97 11.46
RR (GMM) + PM 33.70 32.56 36.98 34.94
RR (TDNN) 39.56 16.76 42.71 13.46
RR (TDNN) + PM 33.27 43.52 35.81 42.96
GOP (GMM) 41.31 17.49 45.80 17.29
GOP (GMM) + PM 38.56 36.04 42.60 37.81
GOP (TDNN) 39.85 22.43 41.78 19.97
GOP (TDNN) + PM 33.55 46.79 36.86 44.65

the system, if the phone with the highest posterior probability
is the same as the mispronunciation annotation or all the
four articulatory vectors exactly match the mispronunciation
annotation, it is counted as a full hit; otherwise, we refer it as
a near hit.

The diagnostic accuracy is defined as

# full hit

DA(6 =
(Oer) # true positive’

®)

where 0gggr denotes the threshold in the condition of EER.
Note that if two systems have the same EER, the system with
a higher DA score means it has a better diagnostic ability.

C. Results

Table VII compares the performance of sixteen experimental
setups in terms of EER and DA. Several observations can be



drawn from the table. First, combining the articulatory score
with the phonetic score is helpful for all the systems, regardless
of which model is used to calculate the phonetic score and
which type of the phonetic score is used. Second, the TDNN-
based acoustic model outperforms the GMM-based acoustic
model in terms of both EER and DA in all cases. Third, RR
seems to be more stable than GOP, and the GOP score given
by GMM is not so reliable.

We found the common cases in false negative are retroflex
phones. By considering the articulatory factor in scoring, more
retroflex phone errors like zh — z, ch — ¢, and sh —
s were detected. Moreover, we could enhance the traditional
diagnosis feedback (e.g., phone-substitution) through articula-
tory information.

VII. CONCLUSIONS

In this paper, we have proposed using the articulatory factor
in speech to furnish encyclopedic diagnosis feedback and
demonstrate that it can effectively detect mispronunciations on
the retroflex phones. Two different phonetic scoring criteria,
namely RR and GOP, have similar performance in baseline
experiments, but after using the TDNN model and combining
the articulatory score, the RR-based criterion performs better
than the GOP-based one. In our future work, we will collect
and annotate more mispronunciations and use two acoustic
models to deal with bad alignments caused by serious mispro-
nunciations, one for alignment and one for scoring. In order to
provide more comprehensive diagnosis feedback to learners,
more types of mispronunciations should be considered. There-
fore, we need to investigate the pronunciation errors common
in Mandarin in more detail through linguistic theories.
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