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ABSTRACT

A great amount of data is usually needed for a recommender
system to learn the associations between users and items.
However, in practical applications, new users and new items
emerge everyday, and the system has to react to them promptly.
The ability to recommend proper items to new users affects
the users’ first impression and accordingly the retention rate,
whereas recommending new items to proper users contributes
to the freshness of the recommendation. In this paper, we pro-
pose a deep learning model called the conditional preference
nets (CPN) to deal with both new users and items under the
same model framework. CPN employs an introductory user
survey to learn about new users, and content features automat-
ically extracted from items for the item side. Through a new
idea called the preference vectors and an existing content em-
bedding technique, the same model can capitalize the observed
associations between known (i.e. old) users and items, thereby
benefiting from the cumulative knowledge of user behavior
gained over time. We validate the superiority of CPN over
prior arts using the Million Song Dataset. We also demonstrate
how CPN allows a user to pick either genres, artists, or the
combination of them in the introductory survey.

Index Terms— Content-based recommendation, cold start
problem, introductory survey, convolutional neural network

1. INTRODUCTION

Recommendation has been considered as a core component
in many online services such as Netflix or Amazon [1]. Most
recommender systems model user preference by mining mas-
sive user behavior data, which manifests in either explicit
user ratings or implicit feedback such as item clicks and play
counts [2, 3]. The more we know about the users and items,
usually the easier we can generate good recommendation.

There are two primary approaches to recommendation:
collaborative filtering (CF) [2, 4, 5] and content-based filter-
ing (CB) [6–9]. The CF approach has been shown effective
in various domains, including movie, music, and news [10].
However, as CF identifies like-minded users solely from the
user behavior data, it cannot work well for users or items with

Fig. 1: Illustration of an introductory survey for people using
an online music service for the first time. The users are asked to
pick their favorite artists from a pre-defined list of candidates,
from which a preference model is learned for each of them.

little or no past information available, such as newly released
or unpopular items. The CB approach tackles this cold start
problem by using additional content features extracted from
the items, for example to select new items that are similar to
existing items that a user likes. However, most existing CB
methods can deal with only the item cold start problem [11–13]
rather than the user cold start problem, due to the difficulty of
acquiring personal information from, and in general finding a
suitable feature representation for users [14, 15].

The user cold start problem emerges as there are new users
joining an online service everyday [15]. While the item cold
start problem is related to the coverage and freshness of recom-
mendation, the user cold start problem affects the new users’
first impression of the system and accordingly their conversion
or retention rate, which is critical to a commercial system. A
solution commonly adopted by the industry is to probe a new
user’s preference through an inexpensive, short introductory
survey [14], by for example asking the users to propose or to
select their favorite items, as illustrated in Figure 1. Some
heuristics can then be employed to recommend items to these
users, for example by suggesting the items that are content-



wise most similar to the self-report favorite ones [14].
What we are interested in is an end-to-end machine learn-

ing model that can deal with both the user cold start and item
cold start problems at the same time, a task that is seldom
addressed in the literature. In particular, being motivated by
the success of deep learning models in pattern recognition
problems [16], we choose to investigate deep learning models
in this paper, using a music dataset of tens of thousands of
users and songs to train and validate our model.

In view of the convenience and low cost of the introductory
survey, the goal is to build a hybrid CF/CB deep learning model
that can exploit all the following three information sources: 1)
observed behavior data for known (i.e. old) users and items, 2)
result of the introductory survey of new users, and 3) content
features for (both old and new) items. We find that the action
of selecting items in the introductory survey can be viewed as
constructing a preference vector on which the neural network
is conditioned [17, 18]. In consequence, we call the model the
conditional preference nets.

Specifically, as the input for the user, we propose a feature
representation called the preference vector that can be con-
structed from either the user behavior data or the introductory
survey on-the-fly. For the item side, adapting the idea of con-
tent embedding [11], we set the learning target by the behavior
data of existing users and learn layers of parameters in the
offline training phase to process both the raw item content
features and the user preference vectors. We note that while
the existing content embedding method learns features only
for items [11], ours is for both users and items.

The main contribution of the paper is twofold:

• We propose a flexible preference vector to be used as the
feature input for the user side in a deep neural network.
We can compute the preference vector for a new user
through an online introductory survey, thereby alleviat-
ing the user cold start problem in recommendation.

• We propose a novel end-to-end deep learning model to
learn user preference through behavior data and item
content features, conditioned on user-specific preference
vectors. As the model is content-based, it can recom-
mend unpopular or new items, providing a solution to
the item cold start problem.

In what follows, we present the proposed model in Section
2, the experimental setup and dataset in Section 3, and finally
the experimental results in Section 4.

2. METHODOLOGY

2.1. Preference Vector

A preference vector xu = [ru1, ru2, . . . , ru|I|]
T specifies the

items that a user u likes, where |I| denotes the number of
elements in the item list I and rui > 0 if the association exists.
It can be constructed for a new user on-the-fly through an intro-
ductory survey. A user may want to select their favorite items

(e.g. from a pre-defined list) without giving any weights, lead-
ing to a binary preference vector, i.e. rui ∈ {0, 1}. Or, a user
may want to explicitly rate his or her preference of the items.
A preference vector of the same length can also be built for
an old user from the user behavior data, by checking whether
or how much the user likes an item in the list. Therefore, the
preference vectors for old and new users are comparable.

Although being simple, the preference vector can be con-
sidered as the raw data encoding a user’s preference, com-
paring to other feature representations one might compute to
characterize the user. However, for computational reasons, we
might want to avoid using all the individual items (e.g. songs)
in a database for the preference vector, when it leads to ex-
ceedingly large |I|. For many applications we can use domain
knowledge to reduce |I| by using item groups (e.g. albums,
artists or genres) instead. For recommendation applications,
this has the additional advantage of reducing the cognitive load
of the introductory survey, as the candidate list is shorter.

In a real-world application, the items in the database may
be dynamic: items are added to and removed from the database
everyday. Moreover, we might want to update the candidate list
in the introductory survey over time to account for changes in
the mainstream preferences. These engineering issues are out
of the scope of this paper, but they can be addressed with some
adaptations of the preference vector, such as using different
subsets of I over time as the candidate list for the survey.

2.2. Conditional Preference Nets (CPN)

Assume we are given the user behavior data R ∈ R|U|×|J |
for known users U and items J , where J contains all the
individual items in the database (usually J ⊇ I). We are also
given the preference vectors for these users, X ∈ R|U|×|I|,
and the raw content features Ψ ∈ R|J |×m for the items, where
m denotes the dimensionality of the content features. The task
is to learn a model that maximizes the joint probability:

P (R | X,Ψ) =
∏

(u,j)∈R

P (duj | xu, ψj)cuj , (1)

where duj is a binarized version of ruj indicating whether
such a user-item association exists, and cuj is the confidence
of the association parameterized by two parameters α and ε:

cuj = 1 + α log(1 + ruj/ε) . (2)

That is to say, we use the binary-valued duj as the training
target and the confidence scores cuj to weigh different data
instances. Similar to [19], in our pilot study we found that
such a non-linear scale of ruj performs remarkably better than
a linear scale in reducing the bias from heavy users.

Our model fits the behavior distribution by mapping
learned representation xlu and ψlj into a joint space:

zuj = f(Wxx
l
u + blx) ◦ f(Wψψ

l
j + blψ) , (3)



where xlu and ψlj is the result from f(Wxx
l−1
u + bl−1x ) and

f(Wψ ∗ ψl−1j + bl−1ψ ) respectively, ∗ denotes the convolution
operator, f(·) the rectified linear activation function, W the
parameters, and b the bias term. The variable l indexes the
layers in the deep neural network, and when l = 1 we have
x1
u , xu and ψ1

j , ψj . In Eq. (3) we combine information
from the user and items sides by the element-wise product,
denoted as ◦. An alternative is to simply concatenate the two
outputs, but in our experiment we found that the element-wise
product works slightly better. A theoretical justification of do-
ing so is to enforce the neural network to map user preferences
and item content features to a joint space.

Finally, the prediction d̂uj can be computed by using spe-
cific zuj from user u and item j. The prediction is defined as
d̂uj = σ(VTzluj), where σ(·) is the sigmoid function and zluj
is the result from f(Wzz

l−1
uj + bl−1z ).

Training: The learning objective of CPN is to predict the
user-item association duj . We use the following cost function:

min
θ
− 1

|N |
∑
u,j

cuj(duj log d̂uj+(1−duj) log(1−d̂uj)) , (4)

where θ contains all the parameters of the network. As it is im-
portant to have negative data in training a model, we randomly
sample user-item pairs with no association (i.e. duj = 0) for
negative sampling, ensuring that each user and item in the
training set would be at least sampled once. The model pa-
rameters θ are optimized by using stochastic gradient descent
(SGD), which computes the gradients using a backpropagation
algorithm. Specially, we employ the subgradient method Ada-
Grad [19] to adaptively set the learning rate for speeding up
the convergence rate. To prevent overfitting, we also randomly
drop out some neurons while training.

Implementation details: We use the time-frequency rep-
resentation mel-spectrogram as the raw content features of
music, for it is commonly used in deep learning models deal-
ing with audio signals [11,20]. We compute it using short-time
Fourier transform with 4,096-sample, half-overlapping win-
dows, for musical audio sampled at 22kHz. The mel-scale is
used to reduce the dimensionality along the frequency axis
to 128. The convolution network for the item side contains
two convolutional layers: the first layer has 256 convolutional
filters of size 128×4 and max pooling kernel 1×4, and the
second layer has 512 convolutional filters of size 1×4 and max
pooling kernel 1×2. The convolution is applied only along the
time dimension. After the convolution layers, the representa-
tion is further optimized by fully-connected layers with 2,048
neurons. For the preference vector on the user side, we use
two fully-connected layers with 2,048 neurons. After the joint
layer that combines the neural network outputs from the user
and item sides, we use another two fully connected layers with
1,024 neurons to predict the user-item association.

2.3. Offline Simulation Framework for New Users

We need an online introductory survey to build the preference
vectors for new users in the cold start setting. Following
Rashid et al. [15], we use an offline simulation framework that
assumes a new user will always pick the items that the user
likes the most (e.g. the songs with the highest playcounts) in
the survey. As a user is unlikely to pick too many items in the
survey, in our implementation we assume that we are given
only the top 5 favorite items of a user from the survey.

To reduce the size of I, we use the artists and genres pre-
senting in the database as the item groups. Specifically, this is
done by concatenating a binary vector of artists and a binary
vector of genres, where we have 1’s for the artists correspond-
ing to and the genre tags associated with the 5 favorite songs.
With this setting, we also like to demonstrate the flexibility of
the preference vector: we can use various types of item groups
in the introductory survey, as long as there is a mapping be-
tween the elements I in the preference vector and the set of
individual items J . Moreover, although not demonstrated in
this paper, thanks to the flexibility of the preference vector, the
recommendation model can be conditioned on any other fea-
ture descriptors of users (e.g. age) by adding these features to
the preference vector, as long as such information is available
for both the training and test users.

3. EXPERIMENTAL SETUP

Dataset: The Million Song Dataset (MSD) [21] is a public
dataset comprising of audio features and metadata for about
a million contemporary songs. We use its taste profile subset
in our experiment. It contains the playcounts of over a mil-
lion users for over 380,000 songs. We keep the songs whose
30-second audio previews can be crawled from the 7digital
website (so as to compute the mel-spectrograms from audio)
and those whose genre labels are available in the metadata (to
construct the preference vector and to interpret the recommen-
dation result). Moreover, we randomly pick users who have
listened to more than 10 songs among these songs. The dataset
is then split into a training subset, a validation subset, and two
test subsets. The two test subsets are used to evaluate the rec-
ommendation result in the warm start (to recommend known
items to known users) and cold start (to recommend new items
to new users) settings, respectively. For example, in the cold
start setting, the task is to rank the new items according to
how likely a new user would like them. See Table 1 for the
statistics of the data subsets. There are 20,473 artists and 60
genres in total. The final dataset is still a big one, permitting
the use of a deep neural network for learning.

Evaluation metric: A typical way to evaluate the perfor-
mance of recommendation is to assess whether any of the top
N items recommended to a user are favored by the user or
not [22]. The average result for all the test users is reported,
using the following three standard metrics: recall, precision
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Fig. 2: Performance of different methods in the (upper) warm start and (lower) cold start settings, evaluated in terms of (from left
to right) MAP, precision and recall at different ranks (i.e. from 1, 10, 50, 100, 150 to 200) of the recommended items.

Table 1: Statistics of different subsets of the dataset

Data sets #users #songs #user-song pairs
Training 25,000 112,908 763,929
Validation 22,075 34,373 576,125
Test (warm start) 24,344 50,305 202,847
Test (cold start) 3,161 2,209 7,553

and mean average precision (MAP). Moreover, following Cre-
monesi et al. [22], to avoid overestimating the accuracy of the
recommendation result, we randomly select 1,000 additional
non-listened items for each user (i.e. duj = 0) as the negative
data and add them to the pool of candidate songs for ranking.

Baselines: We compare the performance of CPN with an
existing deep learning model and a variant that we propose.

• D-IF [11] is a state-of-the-art CB method that uses a
deep learning model to deal with the item cold start
problem. This method contains two steps. First, it uses
weighted matrix factorization (WMF) [2], a state-of-the-
art CF method, to learn fixed-dimensional latent factors
of users and items from the user behavior data. Then, a
CNN model is trained by treating the item latent factors
as the learning target and item content features such as
the mel-spectrogram for music as the input. The inner
product of the user latent factors learned by WMF and
the item feature embeddings learned by the CNN is then
used to estimate how likely a user likes an item.

• D-IF+D-UF: To deal with both user cold start and item
cold start, following the idea of D-IF, we train an ad-
ditional deep neural network that uses the user latent
factors computed by WMF as the learning target and the
proposed user preference vectors as the input. For rec-
ommendation, we compute the inner product of the item
feature embeddings and the user feature embeddings.

Although many recommendation algorithms have been pro-
posed in the literature, we consider mainly D-IF and its variant,
for D-IF represents the state-of-the-art CB method for music
recommendation. Many other methods, such as WMF, cannot
deal with either the user cold start or item cold start prob-
lem. Whenever possible, we use similar parameter settings
and inputs for CPN and these methods for fair comparison.

4. EXPERIMENTAL RESULTS

Figure 2 shows the result of different methods for the warm
start and cold start settings, including the result of a random
baseline that randomly ranks the songs. We see similar trends
from the result of the considered methods: the MAP and preci-
sion saturates to certain values as the number of recommended
items is sufficiently large, while the recall keeps going up along
with the number of recommended items. All the deep learning
methods perform remarkably better than the random baseline.
For the warm start setting, we see that the proposed CPN
model performs remarkably better than the competing meth-
ods, suggesting the advantage of learning to predict directly



Fig. 3: The top-5 recommended songs for an imaginary user who selects different item groups (genre, artist, or a pair of genre
and artist) in the introductory survey. Note that CPN employs item content features, but D-UF does not. The recommended
songs are visually presented by an image of the corresponding artist and the genre tag provided by MSD.

the user-item association in an end-to-end manner. In contrast,
both D-IF and D-UF+D-IF employ a two-stage approach that
predicts the latent factors computed by WMF instead of the
user-item association. For the cold start setting, the values in
all the three performance metrics are much lower than those
in the warm start setting, suggesting the difficulty of recom-
mending new items to new users. However, we see that CPN
can still outperform D-IF+D-UF in MAP and precision.

Next, for a qualitative evaluation, we employ again the
offline simulation framework and show the recommendation
result when an imaginary user selects different genres, artists,
or the combination of them in the introductory survey. This
can give us some insights into how the recommender system
responses to different inputs from the introductory survey.

To demonstrate the importance of taking into account item
content features, we compare the result of CPN with D-UF:

• D-UF: Similar to D-IF+D-UF, we train a deep neural
network to learn the mapping between user preference
vectors and user latent factors computed by WMF. How-
ever, for recommendation, we use the inner product of
the user feature embeddings learned by the neural net-

work and the item latent factors computed by WMF,
without using the item content features at all. Unlike
D-IF, D-UF can deal with the user cold start problem.

Figures 3a and 3b show the top-5 songs recommended
by D-UF and CPN when a user picks different genres in the
introductory survey. When the user chooses Rock, we see that
CPN also recommends Rock songs in return. On the other
hand, when the user chooses Electronic, CPN recommends
not only Electronic music but also House and Dance music,
which are indeed related to Electronic.

Figures 3c and 3d show the recommended songs when the
user selects only one particular artist. We see that CPN can
indeed recommend songs of related genres, and the songs are
from different artists. In contrast, although the recommenda-
tion of D-UF is also relevant, the recommended songs lack
diversity as they are mostly from the specified artist.

Finally, Figures 3e and 3f show the recommended songs
when the user picks a genre and an artist. We can see that the
recommendation result is different from the case where only a
genre or an artist is selected, and that the result of CPN is more
diverse, suggesting the benefit of using item content features.



5. CONCLUSION

In this paper, we have presented a new deep learning model
called conditional preference nets (CPN) to jointly optimize
the user and item features for predicting the user-item associa-
tion in an end-to-end manner. To accommodate users new to a
recommender system, we have also presented the idea of pref-
erence vectors to condition the neural network. Because CPN
can jointly leverage user behavior data, item content features,
and inputs from the introductory survey, it can deal with both
the user cold start and item cold start problems. Our experi-
ment on a music dataset shows that CPN provides relevant and
diverse recommendation. As CPN is a generic method, it can
also be applied to any other domains.

For future work, we are interested in combining the idea
of active learning [23] to CPN through manipulating the pref-
erence vectors, in order to model the preference of a new user
with fewer inputs. We also want to study other item picking
strategies in our offline simulation framework. By modifying
the input and structure of the neural network, it is also possible
to study other applications such as next-item recommenda-
tion [24] or cross-domain recommendation [25].
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