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ABSTRACT
A new algorithm is proposed for robust principal component
analysis with predefined sparsity patterns. The algorithm is
then applied to separate the singing voice from the instrumen-
tal accompaniment using vocal activity information. To eval-
uate its performance, we construct a new publicly available
iKala dataset that features longer durations and higher quality
than the existing MIR-1K dataset for singing voice separation.
Part of it will be used in the MIREX Singing Voice Separa-
tion task. Experimental results on both the MIR-1K dataset
and the new iKala dataset confirmed that the more informed
the algorithm is, the better the separation results are.

Index Terms— Low-rank and sparse decomposition,
singing voice separation, informed source separation

1. INTRODUCTION

The robust principal component analysis (RPCA) algorithm
decomposes an input matrix (e.g., a spectrogram)X ∈ Rm×n

into a low-rank matrixA ∈ Rm×n plus a sparse matrixX−A.
The problem can be formulated as [1]

min
A
‖A‖∗ + λ‖X −A‖1 , (1)

where ‖A‖∗ = tr(
√
ATA) is the trace norm of A, ‖ · ‖1

denotes the entrywise l1-norm, and λ is a positive constant
which can be set to 1/

√
max(m,n) [2]. The trace-norm re-

laxation of the rank permits efficient convex minimization [1].
Unlike the classical PCA, RPCA is robust against outliers.

The singing voice separation problem, which aims to sep-
arate the singing voice and instrumental accompaniment from
monaural mixtures, can be applied to singing voice analy-
sis [3, 4], beat tracking [5], instrument detection [6], karaoke
applications [7], and so on. For singing voice separation, Rafii
and Pardo’s [8] REPET is the first to assume sparse voice plus
repeating background, whereas Huang et al.’s [9] RPCA ap-
proach contains the first explicit model of sparse voice plus
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low-rank music. Both exploit redundancy and repetitive pat-
terns at longer time scales [10–12] instead of separating frame
by frame. Please refer to [13] for a recent review of other
competing methods such as non-negative matrix factorization
(NMF) and probabilistic latent component analysis (PLCA).

At least two trends emerge in recent years. One is the
combination of existing building blocks in new ways [13,14].
The other is informed source separation [15–19]. The latter
approach is receiving increasing attention as the number of
musicians usually exceeds the number of microphones, ren-
dering blind source separation ill-posed. Furthermore, music
sources are particularly challenging to separate because they
are typically highly correlated in time and frequency [20].
Side information is necessary for better results [10].

Although many score-informed source separation algo-
rithms have been proposed for music signals, for popular mu-
sic the musical scores may not be as available [20]. Recently
we have observed that the sparse matrix from RPCA often
contains the predominant instrument or percussion and “this
issue might be partially solved by performing vocal detection
first to exclude non-vocal segments” [6]. However, RPCA
and REPET do not explicitly capitalize on the fact that a pop-
ular song is composed of vocal (with both singing and instru-
mental accompaniment) and non-vocal (with only accompa-
niment) segments, which is an important information source.

This paper presents a modifed RPCA algorithm to explore
this research direction. The algorithm exploits the vocal/non-
vocal patterns of the audio clip to coerce parts of the spec-
trogram to be non-vocal. While vocal activity detection has
been studied extensively [21, 22], to the best of our knowl-
edge, this work represents one of the first attempts to incor-
porate vocal activity information into the RPCA algorithm.
Though Bryan et al.’s [19] Interactive Source Separation Ed-
itor (ISSE) is earlier, it modifies PLCA and not RPCA.

To further advance research on singing voice separation,
we present a new iKala dataset that has a higher quality than
the existing MIR-1K dataset [23]. While the audio clips in
MIR-1K are usually shorter than 10 seconds and therefore
lacking the non-vocal regions in popular songs, the iKala
dataset is composed of 352 30-second clips featuring longer



instrumental solos. Part of the dataset is reserved for the
Singing Voice Separation task of the Music Information Re-
trieval Evaluation eXchange (MIREX).1 The remaining audio
clips and associated data will be made publicly available to
the research community for academic purposes through a
webpage.2 This study experiments with three different vo-
cal activity informed scenarios: no masks, vocal/non-vocal
masks, and ideal binary masks.

In what follows, we describe the proposed algorithm in
Section 2 and the new dataset in Section 3. Then, we present
experimental results in Section 4 and conclude in Section 5.

Algorithm 1 RPCA with Predefined Sparsity Patterns
Input: X ∈ Rm×n,M ∈ {0, 1}m×n, λ ∈ R, µ ∈ R∞
Output: Ak, Ek

1: Let E1 = 0, Y1 = X/max
(
‖X‖2, λ−1‖X‖∞

)
, k = 1

2: while not converged do
3: Ak+1 ← argminA L(A,Ek, Yk;µk)
4: Ek+1 ← (1−M) ◦ argminE L(Ak+1, E, Yk;µk)
5: Yk+1 ← Yk + µk(X −Ak+1 − Ek+1)
6: k ← k + 1
7: end while

2. ROBUST PRINCIPAL COMPONENT ANALYSIS
WITH PREDEFINED SPARSITY PATTERNS (RPCAS)

By adding a simple constraint to (1), we can coerce parts of
the input matrix to be non-sparse (or non-vocal, in terms of
singing voice separation). Given an input matrix X ∈ Rm×n

and a predefined sparsity mask M ∈ {0, 1}m×n, RPCAs
solves the following optimization problem:

min
A,E
‖A‖∗ + λ‖E‖1 s.t. X = A+ E and M ◦ E = 0 , (2)

where ◦ denotes the Hadamard product. This problem can
be solved by the inexact ALM method [24], which minimizes
the partial augmented Lagrangian function [1, 24]

L(A,E, Y ;µ) = ‖A‖∗ + λ‖E‖1 + tr(Y T (X −A− E))

+
µ

2
‖X −A− E‖2F ,

(3)

where ‖ · ‖F denotes the Frobenius norm and µ is a positive
penalty parameter. This is done by alternately solving for A
and E via the singular value shrinkage operator [2], then up-
dating the Lagrangian multiplier Y . The additional constraint
M ◦E = 0 should be enforced at each iteration. This is sum-
marized in Algorithm 1. Note that in terms of the constraints
we could also interpret the current problem as half RPCA and
half matrix completion [1]. If M is all zeros, this formulation
coincides with the original RPCA with no masks.

1http://www.music-ir.org/mirex/wiki/2014:
Singing_Voice_Separation

2http://mac.citi.sinica.edu.tw/ikala/

In addition to the all-zero mask, two more sparsity
patterns are proposed in this work. First, we can use the
vocal/non-vocal mask defined by:

Mij =

{
1, if Pj = 0,

0, otherwise,
(4)

where P denotes the human annotations of vocal pitch and
0 means non-vocal [23]. As will be described in the next
section, both the MIR-1K and the iKala datasets come with
pitch contour annotations, so we can use them to obtain the
vocal/non-vocal masks. But state-of-the-art vocal detection
methods have also been shown effective [21, 22] and may be
readily applicable. We leave this for future work.

Second, we can use the ideal time-frequency binary mask
defined as follows [25]:

M∗ij =

{
1, if |Kij |2 > |Vij |2,
0, otherwise,

(5)

where K is the spectrogram of the ground truth music ac-
companiment and V is the spectrogram of the ground truth
singing voice. These masks are quite informative (especially
the last one), so we can expect increased performance when
we use them. In our study, we consider the ideal binary mask
as an oracle method to test the best possible performance ob-
tainable by RPCAs. In addition, the ideal binary mask can
be used without RPCAs to get the best possible performance
for all possible algorithms. In practice, one might employ the
classification-based source separation approach proposed by
Wang et al. [26] to estimate the binary mask from audio.

3. THE IKALA DATASET

The MIR-1K dataset is the first public dataset specifically
created for singing voice separation [23]. Three criteria are
considered while compiling the dataset: 1) voice and music
recorded separately, 2) comprehensive manual annotations,
and 3) dataset publicly available. It consists of 1,000 clips of
Chinese popular songs recorded at 16kHz, with clean music
accompaniments retrieved from Karaoke songs and singing
voices sung by amateur singers [23]. It also comes with
human-labeled pitch values, vocal/non-vocal regions, and
lyrics, among others. While MIR-1K has been very useful
in the past, rapid advances in computing technology demand
even higher quality datasets. This is where iKala comes in.

The iKala dataset contains 352 30-second clips of Chi-
nese popular songs in CD quality. The singers and musicians
are professionals. The dataset is human-labeled for pitch
contours and timestamped lyrics. Moreover, as the clips are
longer, the iKala dataset contains non-vocal regions (e.g.,
instrumental solos) that may challenge separation algorithms
that assume the presence of human voice throughout the au-
dio clip. Please see Table 1 for a detailed comparison between



MIR-1K [23] iKala
Sampling rate 16kHz 44.1kHz
Singer quality Amateur Professional
Clip duration 4-13s 30s
Number of clips 1,000 252+100
Voice recorded separately Yes Yes
Pitch contour annotations Yes Yes
Voice type annotations Yes No
Lyrics with speech Yes No
Lyrics with timestamps No Yes
Separate chorus and verse No Yes
Instrumental solo No Yes

Table 1. Comparison of MIR-1K and iKala datasets
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Fig. 1. Block diagram of our proposed system.

the two datasets. Following the convention of MIREX, 100
clips from iKala are reserved for the annual MIREX Singing
Voice Separation task and will not be made public. However,
researchers will be able to use the 252-clip public subset for
parameter fine-tuning or for developing supervised or semi-
supervised algorithms for source separation [12, 27]. There
are no overlapping songs between MIR-1K and iKala.

4. EXPERIMENTS

We will study the effect of the following three levels of in-
formedness on separation performance:

• RPCA with no masks (least informed).

• RPCAs with vocal/non-vocal masks (informed).

• RPCAs-IBM with ideal binary masks (most informed).

In addition, we will use REPET-SIM [28] with the default
parameters as a baseline, and IBM without RPCAs as the
theoretical upper bound. Our evaluation will run on both
the iKala and the MIR-1K datasets. Voice and music will be
mixed at 0 dB. To reduce hard disk usage, all iKala clips will
be downsampled to 22,050 Hz. Please refer to our main setup
in Fig. 1. For each clip in the iKala dataset (excluding the
MIREX-reserved set), we will use a short-time Fourier trans-
form (STFT) with a 1,411-point Hann window, and for each
clip in MIR-1K, we will use STFT with a 1,024-point Hann
window, both with 75% overlap, following [9]. The spectro-
grams thus obtained will contain a magnitude part and a phase

(a) iKala, voice
Method GNSDR GSIR GSAR
REPET-SIM 3.09 7.25 10.0
RPCA 2.16 5.66 10.8
RPCAs 4.42 10.7 9.21†

RPCAs-IBM 8.13 26.0 9.31†

IBM 12.3 23.7 14.1
(b) iKala, music

Method GNSDR GSIR GSAR
REPET-SIM 5.24 5.77 8.15
RPCA 4.52 5.48 6.12
RPCAs 6.17 7.07 7.53
RPCAs-IBM 8.32 8.45 10.9
IBM 15.9 29.6 12.1

(c) MIR-1K, voice
Method GNSDR GSIR GSAR
REPET-SIM 2.59 4.77 8.81
RPCA 3.20 4.72 10.4
RPCAs 5.03 7.80 9.59†

RPCAs-IBM 10.2 22.4 10.7
IBM 13.5 21.3 14.5

(d) MIR-1K, music
Method GNSDR GSIR GSAR
REPET-SIM 2.83 4.55 9.82
RPCA 3.32 5.41 9.20
RPCAs 4.52 6.48 10.4
RPCAs-IBM 6.33 7.23 15.1
IBM 13.2 24.0 13.7

Table 2. Separation quality (in dB) for the voice and music
channels for the (a)(b) iKala and (c)(d) MIR-1K datasets.

part P . The magnitude part will further be decomposed by
RPCAs into voice and music components which will then be
separately reconstructed in the time domain via inverse STFT
using the original phase P [29], a common practice for source
separation in the spectrogram domain [10]. Although it is
possible to perform source separation in the time domain and
thereby better exploits phase information [30, 31], this is be-
yond the scope of this work.

The quality of separation is assessed in terms of source-to-
distortion ratio (SDR), source-to-interference ratio (SIR), and
source-to-artifact ratio (SAR) [32], which are computed for
the vocal part v and the instrumental part a, respectively. We
computed these ratios by using BSS Eval Version 3.0 [32].
We compute the normalized SDR (NSDR) by SDR(v̂, v) −
SDR(x, v). Moreover, we aggregate the performance over all
the test clips by taking the weighted average, with weight pro-
portional to the length of each clip [23]. The resulting mea-
sures are denoted as GNSDR, GSIR, and GSAR, respectively.
Note the later two are not normalized.

Results for the iKala and the MIR-1K datasets are shown
in Table 2(a)(b) and Table 2(c)(d), respectively. We ascertain



the effect of informedness with 12 one-tailed paired t-tests,
confirming that RPCAs-IBM > RPCAs > RPCA (all with
p < 10−10, except the three denoted by daggers in Table 2,
which are not significant). We observe that RPCA performs
slightly better than REPET-SIM for MIR-1K. However, the
clips in MIR-1K are too short and cannot reflect the prevalent
non-vocal regions in full songs, a case for which RPCA falls
short of. Clearly, REPET-SIM outperforms RPCA for the
iKala dataset. By taking into account voice activity informa-
tion, the proposed RPCAs algorithms lead to much better per-
formance than RPCA and REPET-SIM in terms of GNSDR
and GSIR, especially for vocal GSIR. However, the RPCAs
algorithms perform slightly unfavorably for GSAR, except for
the RPCAs-IBM method. This shows a possible limitation of
the vocal/non-vocal mask. Interestingly, for both vocal GSIR
and music GSAR from MIR-1K, RPCAs-IBM performs bet-
ter than IBM, suggesting that RPCAs might be trading music
GSAR for vocal GSIR.

For the iKala dataset, we also show the boxplots for
NSDR, SIR and SAR for the singing voice in Fig. 2. It can
be seen that RPCAs outperforms the competing methods
REPET-SIM and RPCA in NSDR and SIR.

5. CONCLUSIONS

In this paper, we have proposed a novel vocal activity in-
formed singing voice separation algorithm and presented the
new iKala dataset. Evaluation on the public 252-clip subset as
well as the existing MIR-1K dataset showed that vocal/non-
vocal information would significantly increase performance,
except for SAR. Although we assume vocal/non-vocal infor-
mation is known, in practice we can use an automatic vocal
activity detector [21] to obtain this side information. In the
future, we expect iKala’s pitch contour information together
with time-stamped lyrics would further enhance the quality
of separation. We also look forward to more research on this
problem due to the organization of source separation evalua-
tion campaigns such as MIREX and SiSEC [33].
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