classifierEval
Evaluation of a given classifier
Contents
Syntax
- computedClass=classifierEval(classifier, DS, cPrm)
- computedClass=classifierEval(classifier, DS, cPrm, plotOpt)
- [computedClass, logLike]=classifierEval(...)
- [computedClass, logLike, recogRate]=classifierEval(...)
Description
computedClass=classifierEval(classifier, DS, cPrm) returns the computed class of the dataset DS on a given classifier.
- classifier: a string specifying a classifier
- classifier='qc' for quadratic classifier
- classifier='nbc' for naive Bayes classifier
- classifier='gmmc' for GMM classifier
- classifier='knnc' for k-nearest-neighbor classifier
- classifier='linc' for linear classifier
- classifier='src' for sparse-representation classifier
- classifier='svmc' for support vector machine classifier
- classifier='lsec' for least-square estimate classifier
- DS: data set for training
- cPrm: parameters for the classifier, where cPrm.class(i) is the parameters for class i.
- computedClass: a vector of computed classes for data instances in DS
computedClass=classifierEval(classifier, DS, cPrm, plotOpt) also plots the decision boundary if the dimension is 2.
[computedClass, logLike, recogRate]=classifierEval(...) returnsmore info, including the log likelihood of each data instance, and the recognition rate (if the DS has the info of desired classes).
Example
DS=prData('3classes'); plotOpt=1; classifier='qc'; [cPrm, logLike, recogRate, hitIndex]=classifierTrain(classifier, DS); DS.hitIndex=hitIndex; % Attach hitIndex to DS for plotting classifierPlot(classifier, DS, cPrm, 'decBoundary');
