10-3 �D�u�ʰj�k�G�ϥ� fminsearch

¬Û¹ï¦Ó¨¥¡A«D½u©Ê°jÂk¡]Nonlinear Regression¡^¬O¤@­Ó¤ñ¸û§xÃøªº°ÝÃD¡A­ì¦]¦p¤U¡G

¥H¼Æ¾Ç¨Ó´y­z¡A°²³]©Ò¥Îªº¼Æ¾Ç¼Ò«¬¬O $y=f(\mathbf{x}, \mathbf{\theta})$¡A¨ä¤¤ $f(\mathbf{x}$ ¬O¿é¤J¦V¶q¡A$\mathbf{\theta})$ ¬O¥iÅÜ«D½u©Ê¨ç¼Æ¡A$y$ ¬O¿é¥XÅܼơA«hÁ`¥­¤è»~®t¬° $$ E(\mathbf{\theta}) = \sum_{i=1}^n (y_i - f(\mathbf{x}_i, \mathbf{\theta}))^2 $$

¨ä¤¤ $(\mathbf{x}_i, y_i)$ ¬O²Ä $i$ ­Ó¤wª¾¸ê®ÆÂI¡C¥Ñ©ó $\mathbf{\theta}$ ¬O $f$ ªº«D½u©Ê°Ñ¼Æ¡A©Ò¥H $E(\mathbf{\theta})$ ¨Ã¤£¬O $\mathbf{\theta}$ ªº¤G¦¸¦¡¡A¦]¦¹§Ú­Ì¨ÃµLªk¥Ñ $\mathbf{\theta}$ ¹ï $\mathbf{\theta}$ ªº¾É¦¡¬°¹s¨Ó¸Ñ¥X³Ì¨Îªº $\mathbf{\theta}$ ­È¡C°h¦Ó¨D¨ä¦¸¡A§Ú­Ì¥²¶·¥Î¤@¯ë³Ì¨Î¤Æ¡]Optimization¡^ªº¤èªk¡A¨Ó§ä¥X $E(\mathbf{\theta})$ ªº³Ì¤p­È¡A¨Ò¦p±è«×¤U­°ªk¡]Gradient Descent¡^¡A©Î¬O Simplex ¤U©Y¦¡·j´M¡]Simplex Downhill search¡^µ¥¡C

Á|¨Ò¨Ó»¡¡A°²³]©Ò¥Îªº¼Æ¾Ç¼Ò«¬¬°

$$ y= a_1 e^{\lambda_1 x} + a_2 e^{\lambda_2 x} $$

¨ä¤¤¡A$a_1$¡B$a_2$ ¬°½u©Ê°Ñ¼Æ¡A¦ý $\lambda_1$¡B$\lambda_2$ ¬°«D½u©Ê°Ñ¼Æ¡A«h¦¹¼Ò«¬¬°«D½u©Ê¡AÁ`¥­¤è»~®t¥iªí¥Ü¦p¤U¡G $$ E(a_1, a_2, \lambda_1, \lambda_2) = \sum_{i=1}^{m} (y_i - a_1 e^{\lambda_1 x_i} - a_2 e^{\lambda_2 x_i})^2 $$

±ý§ä¥X¨Ï $E(a_1, a_2, \lambda_1, \lambda_2)$ ¬°³Ì¤pªº $a_1$¡B$a_2$¡B$\lambda_1$ ¤Î $\lambda_2$¡A§Ú­Ì»Ý±N $E$ ¼g¦¨¤@­Ó MATLAB ¨ç¦¡¡A¨Ã¥Ñ¨ä¥¦³Ì¨Î¤Æªº¤èªk¨Ó¨D¥X¦¹¨ç¦¡ªº³Ì¤p­È¡C°²³]¦¹¨ç¦¡¬° errorMeasure1.m¡A¨ä¤º®e¥iÅã¥Ü¦p¤U¡G

Example 1: 10-¦±½uÀÀ¦X»P°jÂk¤ÀªR/errorMeasure1.mfunction squaredError = errorMeasure1(theta, data) if nargin<1; return; end x = data(:,1); y = data(:,2); y2 = theta(1)*exp(theta(3)*x)+theta(2)*exp(theta(4)*x); squaredError = sum((y-y2).^2);

¨ä¤¤ theta ¬O°Ñ¼Æ¦V¶q¡A¥]§t¤F $a_1$¡B$a_2$¡B$\lambda_1$ ¤Î $\lambda_2$¡Adata «h¬OÆ[¹î¨ìªº¸ê®ÆÂI¡A¶Ç¦^ªº­È«h¬OÁ`¥­¤è»~®t¡C±ý¨D¥X¦¹¨ç¦¡ªº³Ì¤p­È¡A§Ú­Ì¥i¨Ï¥Î fminsearch «ü¥O¡A½Ð¨£¤U¦C½d¨Ò¡G

Example 2: 10-¦±½uÀÀ¦X»P°jÂk¤ÀªR/nonlinearFit01.mload data.txt theta0 = [0 0 0 0]; tic theta = fminsearch(@(x)errorMeasure1(x, data), theta0); fprintf('­pºâ®É¶¡ = %g\n', toc); x = data(:, 1); y = data(:, 2); y2 = theta(1)*exp(theta(3)*x)+theta(2)*exp(theta(4)*x); plot(x, y, 'ro', x, y2, 'b-'); legend('Sample data', 'Regression curve'); fprintf('»~®t¥­¤è©M = %d\n', sum((y-y2).^2));­pºâ®É¶¡ = 0.0762827 »~®t¥­¤è©M = 5.337871e-01

¤W¹Ïªº¦±½u§Y¬° fminsearch «ü¥O©Ò²£¥Íªº°jÂk¦±½u¡C¦b¤W­zµ{¦¡¤¤¡Adata ¯x°}¥]§t¦ÛÅܼơ]§Ydata(:,1)¡^©M¦]Åܼơ]§Y data(:,2)¡^¡A¥H¤è«K±N¤§¶Ç¤J¨ç¦¡ errorMeasure1.m¡CTheta0 «h¬O¥iÅÜ°Ñ¼Æ theta ªº°_©l­È¡Cfminsearch «ü¥O«h¬O¤@­Ó¨Ï¥Î Simplex ¤U©Y¦¡·j´Mªk¡]Downhill Simplex Search¡^ªº³Ì¨Î¤Æ¤èªk¡A¥Î¨Ó§ä¥X errorMeasure1 ªº·¥¤p­È¡A¨Ã¶Ç¦^ theta ªº³Ì¨Î­È¡C±ý¸Ôª¾¦¹¤èªkªº²Ó¸`¡A¥i¸Ô¾\µ§ªÌªº¥t¤@µÛ§@¡uNeural-Fuzzy and Soft Computing ¡V A Computational Approach to Learning and Machine Intelligence¡v¡APrentice Hall ¡A1997¡C


MATLABµ{¦¡³]­p¡G¶i¶¥½g