¤@¯ë¡u¦h¿é¤J¡B³æ¿é¥X¡vªº½u©Ê°jÂk¼Æ¾Ç¼Ò«¬¥i¼g¦¨
$$ y = f(\mathbf{x}) = \theta_1f_1(\mathbf{x}) + \theta_2f_2(\mathbf{x}) + \cdots + \theta_nf_n(\mathbf{x}) $$¨ä¤¤ $\mathbf{x}$ ¬°¿é¤J¡]ªø«×¬° $m$ ªº¦V¶q¡^¡Ay ¬°¿é¥X¡]¯Â¶q¡^¡A$\theta_1$¡B$\theta_2$¡B$\cdots$¡B$\theta_n$ ¬°¥iÅܪº¥¼ª¾°Ñ¼Æ¡A$f_i(\mathbf{x}), i=1$ to $n$ «h¬O¤wª¾ªº¨ç¼Æ¡AºÙ¬°°ò©³¨ç¼Æ¡]Basis Functions¡^¡C°²³]©Òµ¹ªº¸ê®ÆÂI¬° $(\mathbf{x}_i, y_i), i=1 \cdots m$¡A³o¨Ç¸ê®ÆÂIºÙ¬°¨ú¼Ë¸ê®Æ¡]Sample Data¡^©Î°V½m¸ê®Æ¡]Training Data¡^¡A±N³o¨Ç¸ê®ÆÂI±a¤J¼Ò«¬«á¥i±o¡G $$ \left\{ \begin{matrix} y_1 & = & f(\mathbf{x}_1) & = & \theta_1f_1(\mathbf{x}_1) + \theta_2f_2(\mathbf{x}_1) + \cdots + \theta_nf_n(\mathbf{x}_1) \\ \vdots & = & \vdots & = & \vdots \\ y_m & = & f(\mathbf{x}_m) & = & \theta_1f_1(\mathbf{x}_m) + \theta_2f_2(\mathbf{x}_m) + \cdots + \theta_nf_n(\mathbf{x}_m) \\ \end{matrix} \right. $$
©Î¥iªí¥Ü¦¨¯x°}®æ¦¡¡G
$$ \underbrace{ \left[ \begin{matrix} f_1(\mathbf{x}_1) & \cdots & f_n(\mathbf{x}_1) \\ f_1(\mathbf{x}_2) & \cdots & f_n(\mathbf{x}_2) \\ \vdots & \vdots & \vdots\\ f_1(\mathbf{x}_m) & \cdots & f_n(\mathbf{x}_m) \\ \end{matrix} \right] }_\mathbf{A} \underbrace{ \left[ \begin{matrix} \theta_1\\ \vdots\\ \theta_n\\ \end{matrix} \right] }_\mathbf{\theta} = \underbrace{ \left[ \begin{matrix} y_1\\ y_2\\ \vdots\\ y_m\\ \end{matrix} \right] }_\mathbf{y} $$¥Ñ©ó¦b¤@¯ë±¡ªp¤U¡A$m>n$¡]§Y¸ê®ÆÂIӼƻ·¤j©ó¥iÅܰѼÆӼơ^¡A¦]¦¹¤W¦¡µLºë½T¸Ñ¡A±ý¨Ï¤W¦¡¦¨¥ß¡A¶·¥[¤W¤@»~®t¦V¶q $\mathbf{e}$¡G $$ \mathbf{A}\mathbf{\theta}=\mathbf{y}+\mathbf{e} $$ ¥¤è»~®t«h¥i¼g¦¨
$$ E(\mathbf{\theta})=\|\mathbf{e}\|^2=\mathbf{e}^T\mathbf{e}= (\mathbf{A}\mathbf{\theta}-\mathbf{y})^T (\mathbf{A}\mathbf{\theta}-\mathbf{y}) $$ª½±µ¨ú $E(\mathbf{\theta})$ ¹ï $\mathbf{\theta}$ ªº°¾·L¤À¡A¨Ã¥O¨äµ¥©ó¹s¡A§Y¥i±o¨ì¤@²Õ $n$ ¤¸¤@¦¸ªº½u©ÊÁp¥ß¤èµ{¦¡¡AY¨Ï¥Î¯x°}¹Bºâ¨Óªí¥Ü¡A$\mathbf{\theta}$ ªº³Ì¨ÎÈ¥i¥Hªí¥Ü¦¨ $$ \hat{\mathbf{\theta}} = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{y} $$ ¡]¦³Ãö¤W¦¡ªº±À¾É¡A¥i¨£¥»³¹³Ì«á¤@¤p¸`ªº»¡©ú¡C¡^
¦b¹ê§@¤W¡A§ÚÌ¥i¥Hª½±µ¨Ï¥Î MATLAB ªº¡u¥ª°£¡v¨Óºâ¥X $\mathbf{\theta}$ ªº³Ì¨ÎÈ¡A§Y $\hat{\mathbf{\theta}} = \mathbf{A}$\$\mathbf{y}$¡C
¥H¤U¥H¡§ peaks ¡¨¨ç¼Æ¬°¨Ò¡A¨Ó»¡©ú¤@¯ëªº½u©Ê°jÂk¡CY¦b MATLAB ¤U¿é¤J peaks¡A¥i¥Hµe¥X¤@Ó¥W¥Y¦³Pªº¦±±¡A¦p¤U¡G
¦¹¨ç¼Æªº¤èµ{¦¡¦p¤U¡G
$$ z = 3(1-x)^2 e^{-x^2-(y+1)^2}-10\left(\frac{x}{5}-x^3-y^5\right) e^{-x^2-y^2}- \frac{1}{3} e^{-(x+1)^2-y^2} $$¦b¤U¦C»¡©ú¤¤¡A§ÚÌ°²³]¡G
- ¼Æ¾Ç¼Ò«¬ªº°ò©³¨ç¼Æ¤wª¾
- °V½m¸ê®Æ¥]§t¥¿³W¤À§GªºÂø°T
¦]¦¹¤Wz¨ç¼Æ¥i¼g¦¨¡G
$$ \begin{array}{rcl} z & = & 3(1-x)^2 e^{-x^2-(y+1)^2}-10\left(\frac{x}{5}-x^3-y^5\right) e^{-x^2-y^2}- \frac{1}{3} e^{-(x+1)^2-y^2} + noise\\ & = & 3 f_1(x, y) - 10 f_2(x, y) - \frac{1}{3} f_3(x, y) + noise\\ & = & \theta_1 f_1(x, y) + \theta_2 f_2(x, y) + \theta_3 f_3(x, y) + noise\\ \end{array} $$¨ä¤¤§ÚÌ°²³] $\theta_1$¡B$\theta_2$ ©M $\theta_3$ ¬O¥¼ª¾°Ñ¼Æ¡A$noise$ «h¬O¥§¡¬°¹s¡BÅܲ§¬° 1 ªº¥¿³W¤À§GÂø°T¡C¨Ò¦p¡G¦pªGn¨ú±o 100 µ§°V½m¸ê®Æ¡A¥i¨Ï¥Î¤U¦C½d¨Ò¡G
¦b¤W¨Ò¤¤¡Arandn «ü¥Oªº¨Ï¥Î§Y¦b¥[¤J¥¿³W¤À§GÂø°T¡C¤W¹Ï¬°§Ú̦¬¶°¨ìªº°V½m¸ê®Æ¡A¥Ñ©óÂø°T«Ü¤j¡A©Ò¥H©Mì¥ý¥¼±aÂø°Tªº¹Ï§Î®t²§«Ü¤j¡C²{¦b§ÚÌn¥Î¤wª¾ªº°ò©³¨ç¼Æ¡A¨Ó§ä¥X³Ì¨Îªº $\theta_1$¡B$\theta_2$ ©M $\theta_3$¡A½d¨Ò¦p¤U¡G
¥Ñ¦¹§ä¥Xªº $\mathbf{\theta}$ È©M³Ì¨ÎÈ $\left(3, -10, -\frac{1}{3} \right)$ ¬Û·í±µªñ¡C®Ú¾Ú¦¹°Ñ¼Æ¡A§ÚÌ¥i¥H¿é¤J¸û±KªºÂI¡A±o¨ì°jÂk«áªº¦±±¡A½Ð¨£¤U¦C½d¨Ò¡G
¦b¤W¹Ï¤¤¡A¥iª¾°jÂk«áªº¦±±©Mì¥ýªº¦±±¬Û·í±µªñ¡C³Ì¥Dnªºì¦]¬O¡G§Ú̲q¹ï¤F°ò©³¨ç¼Æ¡]©Î¬O§ó¥¿½Tªº»¡¡A§ÚÌ°½¬Ý¤F¥¿½Tªº°ò©³¨ç¼Æ¡^¡A¦]¦¹±o¨ì«D±`¦nªº¦±±ÀÀ¦X¡C¤@¯ë¦Ó¨¥¡AY¤£ª¾¥¿½Tªº°ò©³¨ç¼Æ¦ÓJ¶Ã¿ï¥Î¡A«ÜÃø¥Ñ 3 Ó¥iÅܨç¼Æ¹F¨ì 100 Ó¸ê®ÆÂIªº¨}¦nÀÀ¦X¡C
¦b¤W¨Ò¤¤§ÚÌ´¿¦b¸ê®ÆÂI¥[¤J¥¿³W¤À§G¡]Normal Distributed¡^ªºÂø°T¡C¨Æ¹ê¤W¡A¥un°ò©³¨ç¼Æ¥¿½T¡A¦Ó¥BÂø°T¬O¥¿³W¤À§G¡A¨º»ò·í¸ê®ÆÂI¶V¨Ó¶V¦h¡A¤Wzªº³Ì¤p¥¤èªk´N¥i¥H¹Gªñ°Ñ¼Æªº¯u¥¿¼ÆÈ¡C
MATLABµ{¦¡³]p¡G¶i¶¥½g![]()