MATLAB ¦³¨âÓ¤èªk¥i¥Î©ópºâ³æÅܨç¼Æªº©w¿n¤À¡G
- quad¡G¾AÀ³¦¡ Simpson ¿n¤Àªk¡]Adaptive Simpson Quadrature¡^
- quadl¡G¾AÀ³¦¡ Lobatto ¿n¤Àªk¡]Adaptive Lobatto Quadrature¡^
¨Ò¦p¡A§ÚÌ¥ipºâ humps ¦b [0, 1] ªº©w¿n¤À¡G
quad ¤Î quad8 ³£À³¥Î¤F»¼°jµ{§Ç¡A¦pªG¨ä»¼°j©I¥s¤§¦¸¼Æ¹F¨ì 10 ¦¸¡A¨âºØ¤èªk§¡·|¶Ç¦^ Inf¡A¦¹§Yªí¥Ü©Òpºâ¤§©w¿n¤À¥i¯à¤£¦s¦b¡A©ÎÃø¥Hpºâ¡Cquad ¤Î quad8 ªº²Ä¥|Ӥ޼ƥi¥Î¨Ó«ü©w¿n¤Àªº¬Û¹ï»~®t®e§Ô«×¡C
quad ¤Î quadl ¤]¥i¥Î¨Ópºâ¦±½uªºªø«×¡C°²³]¦³¤@¦±½u¬O¥Ñ¤U¦C°Ñ¼Æ¤Æªº¤èµ{¦¡¨Óªí¥Ü¡G
$$ \left\{ \begin{array}{l} x(t)=sin(2t)\\ y(t)=cos(t)\\ z(t)=t \end{array} \right. $$¨ä¤¤ t ªº½d³ò¬° [0, 3$\pi$]¡C¦¹¦±½uªº¹Ï§Î¦p¤U¡G
¥Ñ°ò¥»·L¿n¤À¥iª¾¡A¦¹¦±½uªºªø«×µ¥©ó
$$ \int_0^{3\pi} \sqrt{ \left(\frac{dx(t)}{dt}\right)^2 + \left(\frac{dy(t)}{dt}\right)^2 + \left(\frac{dz(t)}{dt}\right)^2} dt = \int_0^{3\pi} \sqrt{\left[ 4cos^2(2t)+sin^2(2t)+1 \right]} dt $$§ÚÌ¥i¥ý©w¸q¨ç¼Æ curveLength.m ¦p¤U¡G
function out = curveLength(t) out = sqrt(4*cos(2*t).^2+sin(t).^2+1); «h¦±½uªø«×¥ipºâ¦p¤U¡G
MATLAB ªº dblquad «ü¥O¥i¥Î¨ÓpºâÂù«¿n¤À¡C°²³]§ÚÌnpºâ
$$ \int_{x_{min}}^{x_{max}} \int_{y_{min}}^{y_{max}} f(x, y) dx dy $$¨ä¤¤ $ f(x, y) = y sin(x) + x sin(y)$¡C²Ä¤@Ó¨BÆJ¡A´N¬On«Ø¥ß¤@Ó³Q¿n¤Àªº¨ç¼Æ integrand.m¡A¨ä¤º®e¦p¤U¡G
function out = integrand(x, y) out = y*sin(x) + x*cos(y); ¥²¶·ª`·Nªº¬O¡A¤Wz¨ç¼Æªº¿é¤J¤Þ¼Æ x¡By ¥²¶·©M¿n¤À¦¸§Ç¡]dxdy¡^¤@P¡C©w¸q¤F³Q¿n¤Àªº¨ç¼Æ¤§«á¡A§Ú̧Y¥ipºâÂù«¿n¤À¦p¤U¡G
result = dblquad( 'integrand', xMin, xMax, yMin, yMax);
¨ä¤¤
- xMin¡G¤º°j°é¿n¤Àªº¤U¬ÉÈ
- xMax¡G¤º°j°é¿n¤Àªº¤W¬ÉÈ
- yMin¡G¥~°j°é¿n¤Àªº¤U¬ÉÈ
- yMax¡G¥~°j°é¿n¤Àªº¤W¬ÉÈ
¥H¤U¬°¥H¼ÆÈ¥N¤Jªº½d¨Ò¡G
¦b¤@¯ëªº±¡ªp¤U¡Adblquad ·|©I¥s quad ¥Hpºâ©w¿n¤À¡CY¶·©I¥s quadl¡A½Ðª½±µ«ü©w©ó dblquad ªº³Ì«á¤@Ó¿é¤J°Ñ¼Æ§Y¥i¡A¨Ò¦p¡G
ì«h¤W¡A¥ô¦ó¨Ï¥ÎªÌ©w¸qªº¿n¤À¤èªk§¡¥i³Q dblquad ©I¥s¡A¥un¦¹¤èªkªº¿é¤J¤Î¿é¥X¤Þ¼Æ©M quad ©Î quadl ¤@P§Y¥i¡C
MATLABµ{¦¡³]p¡G¶i¶¥½g