npºâ¦h¶µ¦¡ªºÈ¡A¥i¥Î polyval «ü¥O¡A¨Ò¦p¡G
¦b¤Wz½d¨Ò¤¤¡Ax ©M y ³£¬Oªø«×¬° 31 ªº¦V¶q¡Ay(i) ªºÈ§Y¬° $p(x)= x^2+2x+1$ ¦b x = x(i) ªº¨ç¼ÆÈ¡C
Ynpºâ p(A)¡AA ¬°¤@¤è°}¡A¥i¥Î polyvalm «ü¥O¦p¤U¡G
¦¹µ²ªG©M B = A^2 + 2*A + 1 ¬O¤@¼Ëªº¡C
Y¤W¦¡§ï¬° B = polyval(p, A)¡A«h¨äµ²ªG©M B = A.^2 + 2*A + 1 ¬O¤@¼Ëªº¡C¡]½Ðª`·N¡GA^2 ©M A.^ 2 ªº·N¸q§¹¥þ¤£¦P¡A«eªÌ¬O¯x°} A*A¡A«áªÌ¬O¹ï¯x°} A ªº¨C¤@Ó¤¸¯À¥¤è¡C¡^
±ý¨D¦h¶µ¦¡ªº®Ú¡A¥i¥Î MATLAB ªº roots «ü¥O¡A¨Ò¦p¡AYnpºâ¦h¶µ¦¡ $p(x)= x^4 +3 x^3 + x^2 + 5x - 1$ ªº®Ú¡A¥i¨£¤U¦C½d¨Ò¡G
±ýÅçÃÒ¦¹¥|®Ú¬°¦h¶µ¦¡ $p(x)$ ªº¸Ñ¡A¥i¿é¤J¦p¤U¡G
¤Wzµ²ªGÅã¥Ü±N¥|Ó®Ú±a¤J¦h¶µ¦¡¨DȪºµ²ªG¡A³£«D±`±µªñ©ó¹s¡C
MATLAB ªº polyder «ü¥O¥i¥Î©ó¦h¶µ¦¡ªº·L¤À¡A¨Ò¦p¡G
¦¹§Yªí¥Ü $p(x)= x^3 +3x^2 + 3x + 1$ ·L¤À«áªºµ²ªG¬° $q(x) = 3x^2 + 6x + 3$¡C
MATLAB 6.x ¥H«áªºª©¥»¤w¸g´£¨Ñ polyint «ü¥O¡A¥H«K¹ï¦h¶µ¦¡¶i¦æ¿n¤À¡A¨Ò¦p
¦¹§Yªí¥Ü $p(x)= 4x^3 +3x^2 + 2x + 1$ ¿n¤À«áªºµ²ªG¬° $q(x) = x^4 + x^3 + x^2 + x + 8$¡C¡]½Ðª`·N¡A¦b¦¹§ÚÌ°²³]¿n¤À«áªº¤£©w±`¼Æ¬° k¡C¡^
MATLAB 5.x ¨ÃµL¹ï¦h¶µ¦¡¿n¤Àªº«ü¥O¡A¦ý§ÚÌ¥i¥H«Ü§Öªº¥Î¨ä¥¦¤èªk¹F¦¨¿n¤Àªº¥Øªº¡A¨Ò¦p¡G
¥H¤U¦C¥X¦p¦ó¨Ï¥Î MATLAB ¨Ó¶i¦æ¦h¶µ¦¡ªº¨DÈ¡B¨D®Ú¡B·L¤À¡B¿n¤À¡G
¨ç¼Æ »¡©ú q = polyval(p, x) pºâ p(x) ªºÈ q = polyvalm(a, A) pºâ p(A)¡AA ¬°¤@¤è°} r = roots(p) pºâ p(x) ªº®Ú q = polyder(p) q(x) ¬° p(x) ªº·L¤À q = polyint(p, k) q(x) ¬° p(x) ªº¿n¤À¡A¨ä¤¤ k ¬°¥ô·N±`¼Æ q = [p./length(p):-1:1, k] ¦P¤W¤@¦C¡]polyint «ü¥O¤£¦s¦b®Éªº´À¥N¤è®×¡^
MATLABµ{¦¡³]p¡G¶i¶¥½g