¤@Ó n ¦¸ªº¦h¶µ¦¡¥i¥Hªí¥Ü¦¨
$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$¦]¦¹¦b MATLAB ¤¤¡A¥i¥H¥Î¤@Óªø«×¬° n+1 ªº¦C¦V¶q¨Óªí¥Ü¦h¶µ¦¡ $p(x)$ ¦p¤U¡G
$$p = [a_n, a_{n-1}, \cdots, a_1, a_0]$$Á|¨Ò¨Ó»¡¡A§ÚÌ¥i¥Î p = [1, 2, 3, 1] ¨Óªí¥Ü¤@Ó¤T¦¸¦h¶µ¦¡ $p(x) = x^3 + 2 x^2 + 3 x + 1$¡C
¦h¶µ¦¡ªº¥[´î¡A¥iª½±µ¥Ñ¦V¶qªº¥[´î¦Ó±À¥X¡CY¦³¨â¦h¶µ¦¡¤À§O¬O $p_1(x) = x^3+x+1$ ¤Î $p_2(x)= x^2-x+2$¡A«h¨ä©M»P®t¥ipºâ¦p¤U¡G
¥²¶·ª`·Nªº¬O¡G¯x°} p1 »P p2 ªºªø«×n¤@P¡A§_«h MATLAB ´N·|²£¥Í¹Bºâ¿ù»~ªº°T®§¡C
¦h¶µ¦¡ªº¼»P°£¡A¥i¨Ï¥Î conv ¤Î deconv «ü¥O¨Ó¹F¦¨¡A¨Ò¦p¡A±ý¨D¦h¶µ¦¡ $p_1(x)$ »P $p_2(x)$ ªº¼¿n¡A¥i¿é¤J¦p¤U¡G
¤W¨Ò¤¤ªº p1 »P p2 ¦h¶µ¦¡ªº¼¿nµ²ªG¬O p3¡AY§ï¥H¦h¶µ¦¡ªºªí¥Üªk¡A§Y¬° $p_3(x) = x^5-x^4+3x^2-x+2$¡C
Y±ý¨D $p_1(x)$ °£¥H $p_2(x)$ ©Ò±oªº°Ó¦¡»P¾l¦¡¡A¥i¿é¤J¡G
¦¹§Y¥Nªí $p_1(x)$ °£¥H $p_2(x)$ «á¡A±o¨ìªº°Ó¦¡¬° $q(x)=x+1$¡A¾l¦¡¬° $r(x)=-1$¡C
¥H¤U¦C¥X¦p¦ó¨Ï¥Î MATLAB ¨Ó¶i¦æ¦h¶µ¦¡ªº¥[´î¼°£¡G
s
¨ç¼Æ »¡©ú p1 + p2 ¦h¶µ¦¡ $p_1(x)$ »P $p_2(x)$ ªº©M p1 - p2 ¦h¶µ¦¡ $p_1(x)$ »P $p_2(x)$ ªº®t conv(p1, p2) ¦h¶µ¦¡ $p_1(x)$ »P $p_2(x)$ ªº¼¿n [q, r] = deconv(p1, p2) ¦h¶µ¦¡ $p_1(x)$ °£¥H $p_2(x)$ «á¡A±o¨ì°Ó¦¡¬° $q(x)$¡A¾l¦¡¬° $r(x)$
MATLABµ{¦¡³]p¡G¶i¶¥½g![]()