16-1 �j����O

MATLAB ´£¨Ñ¨âºØ°j°é«ü¥O¡A¤@ºØ¬O for °j°é¡]For Loop¡^¡A¥t¤@ºØ¬O while °j°é¡]While Loop¡^¡Cfor °j°éªº¨Ï¥Î»yªk¦p¤U¡G

for ÅÜ¼Æ = ¦V¶q, ¹Bºâ¦¡ end

¨ä¤¤Åܼƪº­È·|³Q¨Ì¦¸³]©w¬°¦V¶qªº¨C¤@­Ó¤¸¯À­È¡A¨Ó°õ¦æ¤¶©ó for©M end ¤§¶¡ªº¹Bºâ¦¡¡C¥t¤@ºØ for °j°éªº¨Ï¥Î»yªk¦p¤U¡G

for ÅÜ¼Æ = ¯x°}, ¹Bºâ¦¡ end

¦¹®ÉÅܼƪº­È·|³Q¨Ì¦¸³]©w¬°¯x°}ªº¨C¤@­Óª½¦æ¡A¨Ó°õ¦æ¤¶©ó for ©M end ¤§¶¡ªº¹Bºâ¦¡¡C

Á|¨Ò¨Ó»¡¡A¤U¦C for °j°é·|²£¥Í¤@­Óªø«×¬° 6 ªº½Õ©M¼Æ¦C¡]Harmonic Sequence¡^¡G

Example 1: 16-µ{¦¡¬yµ{±±¨î/forLoop01.mx = zeros(1,6); % ÅÜ¼Æ x ¬O¤@­Ó 1¡Ñ6 ¤j¤pªº¹s¯x°} for i = 1:6 x(i) = 1/i; end disp(x) % Åã¥Ü x format rat % ¨Ï¥Î¤À¼Æ§Î¦¡¨ÓÅ㦡¼Æ­È disp(x) % Åã¥Ü ¤À¼Æ§Î¦¡ªº x 1.0000 0.5000 0.3333 0.2500 0.2000 0.1667 Columns 1 through 4 1 1/2 1/3 1/4 Columns 5 through 6 1/5 1/6

¦b¤W¨Ò¤¤¡A¯x°} x ³Ìªì¬O¤@­Ó 1¡Ñ6 ¤j¤pªº¹s¯x°}¡A¦b for °j°é¤¤¡AÅÜ¼Æ i ªº­È¨Ì¦¸¬O 1 ¨ì 6¡A¦]¦¹¯x°} x ªº²Ä i ­Ó¤¸¯Àªº­È¨Ì¦¸³Q³]¬° 1/i¡C¨ä¤¤¥Î¨ìªº format rat¡A¥iÅý§Ú­Ì¨Ï¥Î¦³²z¼Æ§Î¦¡¨ÓÅã¥Ü¦¹¼Æ¦C¡A´«¥y¸Ü»¡¡A´N¬O±N¤@­Ó¼Æ­Èªí¥Ü¦¨ $\frac{p}{q}$¡A¦Ó¥B $p$ ©M $q$ ³£¬O¾ã¼Æ¡C

for °j°é¥i¥H¬O¦h¼h©Î±_ª¬¦¡¡]Nested¡^ªº¡A¦b¤U¨Ò¤¤§Y²£¥Í¤@­Ó 6¡Ñ6 ªº Hilbert ¯x°} h¡A¨ä¤¤¬°©ó²Ä i ¦C¡B²Ä j ¦æªº¤¸¯À¬° ¡G

Example 2: 16-µ{¦¡¬yµ{±±¨î/forLoop02.mh = zeros(6); % ÅÜ¼Æ x ¬O¤@­Ó 6¡Ñ6 ¤j¤pªº¹s¯x°} for i = 1:6 for j = 1:6 h(i,j) = 1/(i+j-1); end end format rat % ¨Ï¥Î¤À¼Æ§Î¦¡¨ÓÅ㦡©Ò¦³¼Æ­È h % Åã¥Ü h h = Columns 1 through 4 1 1/2 1/3 1/4 1/2 1/3 1/4 1/5 1/3 1/4 1/5 1/6 1/4 1/5 1/6 1/7 1/5 1/6 1/7 1/8 1/6 1/7 1/8 1/9 Columns 5 through 6 1/5 1/6 1/6 1/7 1/7 1/8 1/8 1/9 1/9 1/10 1/10 1/11

¦b¤W­±ªº¨Ò¤l¡A§Ú­Ì¨Ï¥Îzeros«ü¥O¨Ó¹w¥ý°t¸m¡]Allocate¡^¤F¤@­Ó¾A·í¤j¤pªº¯x°}¡C­Y¤£¹w¥ý°t¸m¯x°}¡Aµ{¦¡¤´¥i°õ¦æ¡A¦ý¦¹®ÉMATLAB»Ý­n°ÊºA¦a¼W¥[¡]©Î´î¤p¡^¯x°}ªº¤j¤p¡A¦]¦Ó­°§Cµ{¦¡ªº°õ¦æ®Ä²v¡C©Ò¥H¦b¨Ï¥Î¤@­Ó¯x°}®É¡A­Y¯à¦b¨Æ«eª¾¹D¨ä¤j¤p¡A«h³Ì¦n¥ý¨Ï¥Îzeros©Îonesµ¥«ü¥O¨Ó¹w¥ý°t¸mµ¹¯x°}©Ò»Ýªº°O¾ÐÅé¤j¤p¡C¡]¦³Ãöµ{¦¡½Xªº³Ì¨Î¤Æ¤Î°O¾ÐÅ骺ºÞ²z¡A½Ð°Ñ¨£¥»®Ñ©n©f§@¡uMATLAB µ{¦¡³]­p¡G¶i¶¥½g¡vªº²Ä¤G³¹¡uµ{¦¡½X»P°O¾ÐÅ餧³Ì¨Î¤Æ¡v¡C¡^ ¦b¤U¨Ò¤¤¡Afor °j°é¦C¥X¥ý«e²£¥Íªº Hilbert ¯x°}ªº¨C¤@ª½¦æªº¥­¤è©M¡G

Example 3: 16-µ{¦¡¬yµ{±±¨î/forLoop03.mformat short % ¦^¨ì¹w³]§Î¦¡¨ÓÅ㦡©Ò¦³¼Æ­È h=magic(5); for i = h disp(norm(i)^2); % ¦L¥X¨C¤@¦æªº¥­¤è©M end 1055 1105 1.2050e+03 1105 1055

¦b¤W¨Ò¤¤¡A¥Ñ©ó h ¬O¤@­Ó¯x°}¡A©Ò¥H¨C¤@¦¸ i ªº­È´N¬O¯x°} h ªº¤@ª½¦æªº¤º®e¡A©Ò¥H¼g¥X¨Óªº«ü¥O¯S§O²¼ä¡C

­Y­n¸õ¥X for °j°é¡A¥i¥Î break «ü¥O¡C¨Ò¦p¡A­Y­n§ä¥X³Ì¤pªº n ­È¡Aº¡¨¬ n! > 10100¡A¥i¿é¤J¦p¤U¡G

Example 4: 16-µ{¦¡¬yµ{±±¨î/break01.mfor i = 1:1000 if prod(1:i) > 1e100 fprintf('%g! = %e > 1e100\n', i, prod(1:i)); break; % ¸õ¥X for °j°é end end70! = 1.197857e+100 > 1e100

¦b¤@­Ó°j°é¤º¡A­Y­nª½±µ¸õ¦Ü¨ì¦¹°j°é¤U¤@¦^¦Xªº°õ¦æ¡A¥i¥H¨Ï¥Î continue «ü¥O¡A¦¹«ü¥Oªº¥\¯àÃþ¦ü©ó C »y¨¥ªº continue ±Ô­z¡A©Î¬O Perl »y¨¥ªº next ±Ô­z¡C½d¨Ò¦p¤U¡G

Example 5: 16-µ{¦¡¬yµ{±±¨î/continue01.mx = [1 -2 3 -4 5]; posTotal = 0; for i = 1:length(x) if x(i)<0, continue; end % ­Y x(i) ¤p©ó¹s¡Aª½±µ¸õ¨ì¦¹°j°éªº¤U¤@­Ó½ü°j posTotal=posTotal+x(i); end posTotal % Åã¥Ü posTotal ªº­È posTotal = 9

¦b¤W­z½d¨Ò¤¤¡A§Ú­Ì­pºâ¦V¶q x ªº¥¿¤¸¯ÀªºÁ`©M¡A¦]¦¹¥u­n¹J¨ì x(i) ¬O­t¼Æ¡A§Ú­Ì´N¥i¥H¨Ï¥Î continue «ü¥O¨Óª½±µ¸õ¨ì¦¹°j°éªº¤U¤@­Ó¦^¦X¨ÓÄ~Äò°õ¦æ¡CContinue «ü¥O¬O±qMATLAB 6.x ¤~¶}©l¤ä´©¡A¦pªG§A¬O¨Ï¥Î MATLAB 5.x¡A´N¨S¦³¦¹«ü¥O¥i¨Ñ¨Ï¥Î¡A¦ý¬O§Ú­ÌÁÙ¬O¥i¥H¨Ï¥Î if¡Vthen¡Velse ªº±ø¥ó«ü¥O¨Ó¹F¨ì¬Û¦Pªº¥\¯à¡C

¥t¤@­Ó±`¥Î¨ìªº°j°é«ü¥O¬O while °j°é¡A¨ä¨Ï¥Î»yªk¬°¡G

while ±ø¥ó¦¡ ¹Bºâ¦¡¡F end

¤]´N¬O»¡¡A¥u­n±ø¥ó¦¡¦¨¥ß¡A¹Bºâ¦¡´N·|¤@¦A³Q°õ¦æ¡C¨Ò¦p¡G¥ý«e²£¥Í½Õ©M¼Æ¦Cªº¨Ò¤l¡A¥ç¥i¥Î while °j°é§ï¼g¦p¤U¡G

Example 6: 16-µ{¦¡¬yµ{±±¨î/while01.mx = zeros(1,6); i = 1; while i<=6 x(i) = 1/i; i = i+1; end x % Åã¥Ü x x = 1.0000 0.5000 0.3333 0.2500 0.2000 0.1667

­Y­n¥Î while «ü¥O§ä¥X³Ì¤pªº n ­È¡A¨Ï±o n! > 10100 ¡A¥i¿é¤J¦p¤U¡G

Example 7: 16-µ{¦¡¬yµ{±±¨î/while02.mn = 1; while prod(1:n) < 1e100 n = n+1 end fprintf('%g! = %e > 1e100\n', n, prod(1:n)); n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15 n = 16 n = 17 n = 18 n = 19 n = 20 n = 21 n = 22 n = 23 n = 24 n = 25 n = 26 n = 27 n = 28 n = 29 n = 30 n = 31 n = 32 n = 33 n = 34 n = 35 n = 36 n = 37 n = 38 n = 39 n = 40 n = 41 n = 42 n = 43 n = 44 n = 45 n = 46 n = 47 n = 48 n = 49 n = 50 n = 51 n = 52 n = 53 n = 54 n = 55 n = 56 n = 57 n = 58 n = 59 n = 60 n = 61 n = 62 n = 63 n = 64 n = 65 n = 66 n = 67 n = 68 n = 69 n = 70 70! = 1.197857e+100 > 1e100

»P«e­zªº for °j°é¬Û¦P¡A¦b¥ô¦ó®É¨è­Y­n¸õ¥X while °j°é¡A¥ç¥i¨Ï¥Î break «ü¥O¡F­Y­n¸õ¨ì¤U¤@¦^¦Xªº while °j°é¡A¤]¥i¥H¨Ï¥Î continue «ü¥O¡C¦ý¥²¶·¯S§Oª`·Nªº¬O¡Abreak «ü¥O­Y¥Î¦b¦h­«°j°é¤¤¡A¨C¦¸¥u¸õ¥X¥]§tbreak«ü¥Oªº³Ì¤º³¡°j°é¡C

µL½×¬O for ©Î while °j°é¡A§¡·|­°§C MATLAB ªº°õ¦æ³t«×¡A©Ò¥H§Ú­ÌÀ³ºÉ¶q¨Ï¥Î¦V¶q¤Æªº¹Bºâ¡]Vectorized Operations¡^¦ÓºÉ¶q¤Ö¥Î°j°é¡C¡]¦³Ãö¦V¶q¤Æªº¹Bºâ¡A½Ð°Ñ¨£¥»®Ñ¸Ñ©f§@¡uMATLAB µ{¦¡³]­p¡G¶i¶¥½g¡vªº²Ä¤G³¹¡uµ{¦¡½X»P°O¾ÐÅ餧³Ì¨Î¤Æ¡v¡C¡^


MATLABµ{¦¡³]­p¡G¤Jªù½g