¦b«e¤@¸`¤¤¡A§Ṳ́wª¾¹D°ò¥» ODE Àɮתº¼gªk¡A¦p vdp1.m¡Bvdp2.m ¤Î lorenzOde.m µ¥¡C¦b¥»¸`¤¤¡A±N§ó¶i¤@¨B¤¶²Ð ODE Àɮתº¶i¶¥¥Îªk¡A¥H¨Ï ODE «ü¥O¯à°÷¨³³t¥B·Ç½T¦aºâ¥X¿n¤Àµ²ªG¡C
º¥ý¡A§ÚÌ¥i±N tspan¡]¿n¤À®É¶¡½d³ò¡^¡By0¡]°_©lÈ¡^¤Î options¡]ODE°Ñ¼Æ¡^¸m©ó ODE Àɮפ¤¡A³o¨ÇÅܼƥ²¶·¯à¥Ñ ODE Àɮ׶Ǧ^¡A¨ä®æ¦¡¬°¡G
[tspan, y0, options] = odeFile([], [], 'init') ¨ä¤¤§Ṵ́²³] odeFile §Y¬O§Ú̪º ODE ÀɮסCY odeFile º¡¨¬¤Wzn¨D¡A«h§ÚÌ¥i¥Hª½±µ©I¥s ODE «ü¥O¦p¤U¡G
[t, y] = solver('odeFile') ¨ä¤¤ solver ¬°«ezªº¥ô¤@Ó ODE «ü¥O¡A¥¦¥i¥Ñ odeFile ª½±µ±o¨ì tspan¡By0 ¤Î options µ¥¿n¤À©Ò»Ýªº¸ê°T¡C
¥H«ezªº van der Pol ¬°¨Ò¡AYn¯à°÷¶Ç¦^ tspan¡By0 ¤Î options¡Avdp1.m ¶·§ï¼g¦p¤U¡]vdp3.m¡^¡G
¦¹®É§ÚÌ¥i¥Hª½±µ©I¥s ODE «ü¥O¦p¤U¡G
¦¹¥~¡Avan der Pol ªº·L¤À¤èµ{¦¡¦³¤@Ó°Ñ¼Æ $\mu$¡AY§Æ±æ±q¥~±¶Ç¤J¦¹°Ñ¼ÆªºÈ¡A§ÚÌ¥i±N vdp3.m §ï¼g¦¨vdp4.m¡A¨ä¤º®e¦p¤U¡G
¦¹®É $\mu$ ´NÅܦ¨¤@Ó¿ï¾Ü©Ê¡]Optional¡^ªº°Ñ¼Æ¡A¨ä¹w³]Ȭ° 1¡C¦b¤U¨Ò¤¤¡A§Ú̱N $\mu$ ªºÈ±q MATLAB ¶Ç¤J¡A¨Ãµe¥X¤£¦P $\mu$ ȤUªº van der Pol ¤èµ{¦¡ªºª¬ºAÅܼơG
¦b¤W¹Ï¤¤¡A$\mu$ ªºÈ¤À§O¬O 1 ¤Î 3¡C«ü¥O¦C¤¤¥Î¨ì¤F³\¦hªÅ¯x°}¡A³o¨ÇªÅ¯x°}¥Nªí¡u¨ú¥Î¹w³]È¡v¡A¦]¦¹ ode45 ·|ª½±µ±q vdp4.m ¨ú¥Î®É¶¡°Ï¶¡¤ÎÅܼư_©lÈ¡C¨Æ¹ê¤W¡A±z¤]¥i¥H¶Ç¤J¤GөΧó¦hªº°Ñ¼Æ¡AMATLAB ¤Î ODE «ü¥O¹ï©ó¥i¶Ç¤Jªº°Ñ¼ÆÓ¼Æ¨ÃµL³]¡C
¦¹¥~¡A¬°¸Ñ¨M¨ä¥¦¸û½ÆÂøªº ODEs ¤Î DAEs¡]Differential Algebra Equations¡^¡AODE ÀÉ®×¥ç¥i¦b¤£¦PªººX¸¹¡]Flag¡^¤U¶Ç¦^¤£¦Pªº¸ê°T¡A¥H¤U¬O¤@Ó§¹¾ãªº¦Cªí¡G
¾ã²z¡G¥Ñ odeset ²£¥Íªº ODE ¿ï¶µ ºX¸¹ ¶Ç¦^È ¡]ªÅ¦r¦ê¡^ dy(=F(t,y)) init tspan, yo ¤Î options jacobian Jacobian ¯x°} J(t,y) = $\partial F/\partial Y$ jpattern Jacobian sparsity pattern ¤§¯x°} mass ¸Ñ M(t,y)y' = F(t,y) ©Ò¶·ªº½è¶q¯x°} M events ©w¸q¨Æ¥óµo¥ÍÂIªº¦UºØ¸ê°T «á¥|ªÌ¦]¬°¤£±`¥Î¨ì¡A¦b¦¹¤£¦AÂØz¡C¦³¿³½ìªºÅªªÌ¥i°Ñ¦Ò MATLAB ¦³Ãö ODE ªº¤â¥U¡C
MATLABµ{¦¡³]p¡G¶i¶¥½g![]()