§ÚÌ¥i¥H¨Ï¥Î interpn «ü¥O¨Ó¶i¦æ°ªºû®æ¤lÂI¤º´¡¡A¨ä¨Ï¥Î»yªk¦p¤U¡G
vi = interpn(x1, x2,.., v, y1, y2,.., method) ¨ä¤¤ x1¡Bx2¡B¡K ¬O¸ê®ÆÂIªº¿é¤J³¡¥÷¡Av ¬O¸ê®ÆÂIªº¿é¥X³¡¥÷¡Ay1¡By2¡B¡K ¬O¤º´¡ÂI¡A¦Ó¦r¦ê method «h¥i«ü©w¤º´¡¤èªk¡A¦³¤U¦C 4 ºØ¡G
- 'nearest'¡G¾FªñÂI¤º´¡
- 'linear'¡G½u©Ê¤º´¡
- 'spline'¡GSpline ¤º´¡ªk
- 'cubic'¡G¤T¦¸¤º´¡
¨Ï¥Î interpn ®É¡Ax1¡Bx2¡B¡K ¥²¶·¬OÄY®æ»¼¼W©Î»¼´î¡C¬°¤F«OÃҮ榡¥¿½T¡Ax1¡Bx2¡B¡K ³Ì¦n¬O¥Ñ ndgrid «ü¥O²£¥Í¡A¥H«O«ù¨ä®æ¦¡¥¿½T©Ê¡C
¤Gºû®æ¤lÂI¥i¥Ñ meshgrid «ü¥O²£¥Í¡A¦Ó°ªºû®æ¤lÂI«h¥i¥Ñ ndgrid «ü¥O©Ò²£¥Í¡A¨ä¨Ï¥Î»yªk¦p¤U¡G
[X1, X2, X3,¡K] = ndgrid(x1, x2, x3,¡K) ¨ä¤¤ XI ªº²Ä i ºû¤¸¯À¬O¥Ñ xi ¤ÏÂв£¥Í¡CÁ|¨Ò¨Ó»¡¡A§ÚÌ¥ipºâ¤U¦C¤èµ{¦¡
$$ z = x_2 e^{-x_1^2-x_2^2-x_3^2} $$¦b®æ¤lÂIªºÈ¡A¨Ã¥HÃC¦â¥NªíȪº¤j¤p¡AµM«á¦A¥Î§ó±Kªº¸ê®ÆÂI¨Ó¶i¦æ¤º´¡¡A±o¨ì§ó²Ó½oªº¹Ï¡A¦p¤U¡G
¦b¤Wz½d¨Ò¤¤¡A¤W¤èªº¹Ï¤ñ¸û²ÊÁW¡A¤U¤èªº¹Ï«h¤ñ¸û²Ó±K¡AÅã¥Ü interpn «ü¥Oªº¤º´¡®ÄªG¡C¥t¥~¡A¦b¤Wz½d¨Ò¤¤¡A§Ų́ϥΠinterpn «ü¥O¨Ó¹ï 3 Ó¿é¤Jªº¸ê®ÆÂI¶i¦æ¤º´¡¡A¦¹¥\¯à¬O©M interp3 ¬Û¦Pªº¡A¦ý¨Æ¹ê¤W¡A interpn «ü¥O¬O¥i¥H¹ï§ó°ªºû«×ªº¸ê®ÆÂI¶i¦æ¤º´¡¡A©Ò¥H¦b¥\¯à§ó¬°±j¤j¡C
MATLABµ{¦¡³]p¡G¶i¶¥½g![]()