¤@Ó¤è°} A ªº©T¦³¦V¶q¡]Eigenvector¡^$x$ »P©T¦³È¡]Eigenvalue¡^$\lambda$ ªºÃö«Y¦¡¦p¤U¡G $$ Ax = \lambda x$$ ¤W¦¡¥i¤Æ²¦¨ $$(A-\lambda I)x=0$$ ¥Ñ©ó $x$ ¤£¬O¤@Ó¹s¦V¶q¡A¦]¦¹ $A-\lambda I$ ¥²¶·¬O Singular¡A¤W¦¡¤~·|¦³¸Ñ¡C·í $A-\lambda I$ ¬O Singular ®É¡A¨ä¦æ¦C¦¡¬°¹s¡G $$|A-\lambda I|=0$$ Y A ¬° n¡Ñn ªº¯x°}¡A«h¤W¦¡¬° $\lambda$ ªº n ¦¸¦h¶µ¦¡ ¡A¥Nªí $\lambda$ ±N¦³ n Ó¸Ñ $\lambda_1, \lambda_2, \dots, \lambda_n$¡Aº¡¨¬¤U¦CÃö«Y¦¡¡G $$ \left\{ \begin{matrix} A x_1 = \lambda_1 x_1 \\ \vdots\\ A x_2 = \lambda_2 x_2 \end{matrix} \right. $$ ©Î¥i¼g¦¨¯x°}§Î¦¡¡G $$AX=XD$$ ¨ä¤¤
$$X= \begin{bmatrix} | & & | \\ x_1 & \dots & x_n \\ | & & | \end{bmatrix}, D= \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix} $$ ¦pªG $X^{-1}$ ¦s¦b¡A«h¥Ñ¤W¦¡¥i±o $$A=XDX^{-1}$$ ¦¹¦¡ºÙ¬°©T¦³È¤À¸Ñ¡]Eigenvalue Decomposition¡^¡CMATLAB ªº eig «ü¥O¥i¥Î©ópºâ¯x°}ªº©T¦³È¤Î©T¦³¦V¶q¡CY¥u·Qpºâ©T¦³È®É¡A¥i¿é¤J¦p¤U¡G
Yn¦P®É¨ú±o©T¦³È¤Î©T¦³¦V¶q®É¡A¶·´£¨Ñ¨âÓ¿é¥X¤Þ¼Æ¡A¦P®É§Ṳ́]¥i¥HÅçÃÒ©T¦³È¤À¸Ñ¡A¦p¤U¡G
¨ä¤¤ X ªº¨C¤@ª½¦æ¬°¤@Ó©T¦³¦V¶q¡A¦Ó D ªº¹ï¨¤½u¤¸¯À«h¬O¹ïÀ³ªº©T¦³È¡C
MATLABµ{¦¡³]p¡G¶i¶¥½g