% Classifier design. Here we use the quadratic classifier as an example. toolboxAdd; load DS.mat suvOpt=mySuvOptSet; % ====== Input selection if suvOpt.useInputSelect DS.input=DS.input(suvOpt.input.bestIndex, :); % Use the selected features DS.inputName=DS.inputName(suvOpt.input.bestIndex); % Update the input names based on the selected features end % ====== Input normalization if suvOpt.useInputNormalize [DS.input, mu, sigma]=inputNormalize(DS.input); % Input normalization based on the given mu and sigma end % ====== Use QC as an example [cPrm, logProb, recogRate, hitIndex]=qcTrain(DS); fprintf('Recognition rate via QC = %f%%\n', recogRate*100); DS.hitIndex=hitIndex; % Attach hitIndex to DS for plotting figure; qcPlot(DS, cPrm, '2dPdf'); figure; qcPlot(DS, cPrm, 'decBoundary'); fprintf('Saving classifier parameters "cPrm" to "cPrm.mat"...\n'); save cPrm.mat cPrm