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ABSTRACT 

It is found that the detection using basic spectral entropy 
becomes difficult and inaccurate when speech signals are 
contaminated by high noise. This paper presents an improved 
entropy-based algorithm. The way to compute spectral 
probability density function of entropy is altered by the 
introduction of a positive constant. The modification improves 
the discriminability between speech and noise and the robustness 
of entropy so that it becomes easier to set thresholds. Experiment 
results reveal the validity of the improved entropy and prove that 
the improved entropy outperforms basic entropy. Moreover, the 
improvement of accurate rate (5db SNR) reaches 12.9% for the 
detection of start and end points averagely comparing with a 
pure energy-based algorithm. 

1. INTRODUCTION 

Endpoint detection, which aims at distinguishing the speech and 
non-speech segments from digital speech signal, is considered as 
a crucial part of the speech signal processing, such as automatic 
speech recognition. A good endpoint detector can improve the 
accuracy and speed of a speech recognition system. With the 
increasing deployment of speech recognition and voice-based 
systems across a wide range of voice-based services, it is 
desirable to develop a robust endpoint detector.   

In the last several decades, a number of endpoint detection 
methods have been developed. We can categorize approximately 
these methods into two classes. One is based on thresholds [1-3]. 
Generally, this kind of method first extracts the acoustic features 
for each frame of signals and then compares these values of 
features with preset thresholds to classify each frame. The other 
is pattern-matching method [4,5] that needs estimate the model 
parameters of speech and noise signal. The detection process is 
similar to a recognition process. Compared with pattern-
matching method, thresholds-based method does not need keep 
much training data and train models and is simpler and faster. 

Endpoint detection by thresholds-based method is a typical 
classification problem. In order to achieve satisfied 
classification results, it is the most important to select 
appropriate features. Many experiments have proved that short-
term energy and zero-crossing rate fail under low SNR 
conditions. It is desirable to find other robust features superior 
to short-term energy and zero-crossing rate. J. L. Shen [6] first 
used the entropy that is broadly used in the field of coding 
theory on endpoint detection. Entropy is a metric of uncertainty 
for random variables, thus it is definite that the entropy of 

speeches is different from that of noise signals because of the 
inherent characteristics of speech spectrums.  
 The algorithm [6] is based on weighted spectral entropy and 
experiment results proved that the algorithm outperforms energy-
based algorithms in both detection accuracy and recognition 
performance under noisy environments. However, the weights 
cannot be obtained easily and accurately. L.S. Huang [7] 
combined basic spectral entropy and energy to solve the 
detection in babble and background music environments.  

However, it is found that the basic spectral entropy of 
speech varies to different degrees when the spectrum of speech 
is contaminated by different noise signals especially high noise 
signals. The varieties make it difficult to determine the 
thresholds. Moreover, the basic spectral entropy of various 
noises disturbs the detection process. It is expected that there 
exists a way by which it is possible that (1) the entropy of 
various noise signals approaches to one another under the same 
SNR condition, (2) the curve of noise entropy is flat, and (3) the 
entropy of speech signals differs from that of noise signals 
obviously. Moreover, it is advantageous to include energy 
information besides distribution information. In a word, the 
improved method based on entropy should be simple, robust, 
reliable and accurate. This paper proposes an algorithm based on 
improved spectral entropy almost obtaining the target. The 
experiment results prove that the improved spectral entropy is 
superior to basic spectral entropy and the proposed algorithm 
outperforms energy-based algorithm. 

The paper is organized as follows: Section 2 describes the 
definition of basic spectral entropy and its properties. Section 3 
describes the improved spectral entropy and the proposed 
algorithm. The experiments are shown in section 4 and the 
conclusion is given in section 5. 

2. BASIC SPECTRAL ENTROPY 

2.1 Basic spectral entropy 

According to the paper [6], the spectrum is first obtained for 
each frame by fast Fourier transform (FFT). Then the probability 
density function (pdf) for the spectrum can be calculated by 
normalizing every frequency component over all frequency 
components of one frame: 
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where N is the total number of frequency components in FFT, 
Y(fi) is the spectral energy of the frequency component fi, pi is 
the corresponding probability density. Generally, we use a 
heuristic constraint to improve the discriminability of the pdf 
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between speech and non-speech signals.  Since most of the 
energy of speech is in the region between 250Hz and 3750Hz, 
we use the constraint as follows: 

0)( =ifY ,          if  fi<250Hz  or fi >3750Hz  (2) 
After applying the above constraint, the negative spectral 

entropy Hi of frame i can be calculated: 
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2.2 The properties of spectral entropy 

The validity of the basic spectral entropy as a feature used on 
endpoint detection is indicated by the following properties. On 
the other hand, it shows that the basic spectral entropy needs to 
be improved. 

• The entropy of speech signals is different from that of 
most noise signals because of the intrinsic 
characteristics of speech spectrums and the different 
probability density distributions. 

• Equation (1) is a normalizing process, and then 
spectral entropy is not influenced by the total energy 
in theory if the spectral distribution keeps unchanged.  
In practice, the distribution is changed by the actual 
pronunciation so that the entropy becomes different. 
However, the change of entropy is small compared 
with that of energy. For example, Fig. 1(a) shows a 
time-domain signal including two speech segments 
where the energy of the second segment is much low. 
It is difficult to detect accurately the end point of the 
second segment by energy-based algorithms. From Fig. 
1(b), the negative entropy of the two segments is 
different at the second character “hai”, but it is easier 
to detect the end of the second segment by the entropy 
compared with the energy. Moreover, even for the 
plosive and nasal consonants such as /f/, /c/, /t/, /s/, 
/sh/, there are considerable entropy values. 

 

 

                   Fig. 1: (a). Waveform,  (b) Negative entropy. 

• The spectral entropy is robust to noise to some extent. 
For example, in Fig. 2, each line represents the entropy 
under different SNR conditions with white noise. With 
the drop of the SNR, the shape of negative entropy is 
almost kept. Nevertheless, the negative entropy 
decreases so that endpoint detection becomes more 
difficult if the SNR decreases. 

         

 

 

Fig. 2: Negative entropy under different SNR conditions with 
white noise. 

3. THE PROPOSED ALGORITHM 
Section 2 proves that spectral entropy can be used as a useful 
feature for endpoint detection and it is superior to energy. On the 
other hand, it implicitly shows that the entropy of speech is 
altered to become confused with the entropy of noise when the 
spectrum is contaminated by noises especially under the serious 
SNR conditions. At the same time, the spectral entropy contour 
of noise makes the detection more difficult. Thus the thresholds 
are hard to set and the endpoints of utterance are difficult to be 
identified.  

In order to improve the robustness of spectral entropy 
against various noises, we consider to alter the original spectral 
probability density function of signals to make the entropy meet 
the three requirements described in section 1. In this section, we 
modify the computational form of entropy and propose a new 
algorithm to enhance the robustness and make the thresholds 
easy to be tuned so as to make algorithm more practical and 
accurate. 

3.1 The improved feature 

Rewrite Equation (1) into the following form by introducing a 
positive constant K: 

∑ −

=
++=

1

0
' ))((/))((

N

k kii KfYKfYp    i=0…N-1,K>0    (4) 

New “negative spectral entropy” is then obtained by taking 
Equation (4) into Equation (5). 
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After some simple derivations, the difference between old 
pdf pi and new pdf  pi΄ is as follows: 
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According to Equation (6), we can analysis the influence of 
the introduction of K to spectral entropy in two aspects. 

Firstly, within one frame, the total energy ∑ −
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definite and the difference ∆pi  is determined by K and pi. 

• If pi ≈ 1/N, then ∆pi ≈ 0. It means that the new 
probability density is close to the old probability 
density. 

• If pi > 1/N, then ∆pi < 0. The new probability density 
pi΄ of the corresponding frequency component whose 
energy is greater than the average energy of spectrum 
components is lower than the old probability density pi. 
Moreover, |∆pi| increases along with the increase of K 
and pi. 

• If pi < 1/N , then ∆pi > 0. The new probability density 
pi΄ of the corresponding frequency component whose 
energy is less than the average energy of spectrum 
components is higher than the old probability density 
pi. Moreover, |∆pi| increases along with the increase of 
K and the decrease of pi. 

“    shang      hai                 shang     hai  ” 
(a)  

(b) 
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Form above analysis, we can deduce that the introduction 
of K into Equation (1) leads that the higher the old probability 
density is, the more it decreases, on the contrary, the lower the 
old probability density is, the more it increases. As a result, the 
probabilities in one frame tend to be equal. As we know, 
entropy increases along with the increase of uncertainty. Thus, 
the entropy of each frame increases (negative entropy decreases). 

Secondly, for different frames, the total energies are 
different and ∆pi is determined by three terms: ∑ −
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and pi. If K and pi are the same for the noisy speech and the 
noise signal, |∆pi| of the corresponding noisy speech spectrum 
component is smaller than that of noise signal because the 
energy of speech plus noise is commonly greater than that of 
noise signal. Thus, the increase of entropy (the decrease of 
negative entropy) of noise signals is possibly much more than 
noisy speech. Furthermore, the special spectrum character of 
speeches assures that the influence for speech signals is much 
different from that for noise signals. 

In conclusion, negative entropy of both noisy speech and 
noise signal decreases. However, the decrease of negative 
entropy of noise is much more obvious than speech signal and 
entropy of various noises becomes close to one another, which 
makes the thresholds easy to be preset. Hence, the 
discriminability between speech signals and noise signals under 
noise environments is improved greatly. 

3.2 The algorithm 

In this section, an algorithm using the improved negative spectral 
entropy as a robust feature is presented below. 

Step 1:Compute average frame energy E_noise of the first N1 
frames assumed as the background noise. 

Step 2: Set K of Equation (4) according to the E_noise: 
If   E_noise < Th_E1, set K = K0.  
If  Th_E1 ≤ E_noise < Th_E2, set K = α·K0.  
If  Th_E2 ≤ E_noise < Th_E3, set K = β ·K0.  
If  E_noise ≥ Th_E3,  set  K = γ ·K0. 
where Th_E1,Th_E2  and Th_E3 are preset thresholds, K0 
is an experience value. 

Step 3:Compute the average negative entropy Mean_NE of the 
20 frames before the current frame t. 
If the negative entropy of the current frame NEt > 
Mean_NE+V1 and NEt+i > Mean_NE+V2 (i=1,2…N2), 
continue to find the nearest peak and set it as the current 
frame. Otherwise repeat step 4. 

Step 4:If negative entropy of the peak and the consecutive frame 
meets NEt > Th1 and NEt+1 > Th1, go back to find a valley 
until its negative entropy NEvalley < Th2 and regard the 
valley as the start point. Otherwise goto Step 3. 

Step 5:After finding the start point, set K = K0 . 
Step 6:Compute negative entropy until NEt < Th3. From this 

point go forward to find the nearest valley and its 
negative entropy is NEvalley.  
Compute Number1 = number of frames whose negative 
entropy NEvalley+i meets NEvalley-V3 < NEvalley+I < 
NEvalley+V3 (i =1,2…N3), Number2 = number of frames 
whose negative entropy meets NEvalley –V4 <NEvalley+i < 
NEvalley +V4 (i=1,2…N4).  

If Number1 > Th4 and Number2 > Th5, regard the valley as 
the end point. Otherwise, repeat Step 6. 

Step 7: Repeat from step 3 to step 6 until the end of the file. 

3.3 Implementation issues 

We set different K for different SNR in searching start points and 
set the same K in searching end points to attain the best results. 
Th_E1, Th_E2 and Th_E3 are related to noise energy and frame 
length, α, β and γ used to make the entropy of noises under 
different SNR conditions close is related to noise energy and 
SNR.  

These thresholds and parameters are easy to be determined 
by observation on the curves of the proposed features. 

Using the constraints of Minimum Utterance Length and 
Minimum Pause Length, delete segments or combine segments 
into one segment. 

4. EXPERIMENT RESULTS 
The speech database used in the experiments here is 863 Chinese 
Mandarin Corpus. 5 data sets in the Database are used in our 
experiments. Every data set includes about 520 ~ 650 utterances 
and every utterance lasts 4 ~ 8 seconds. The noise signals used in 
the simulation include 4 kinds of noise (white, pink, F16 and 
Factory noises) of NOISEX-92 Database and office noise we 
collected. The office noise includes sounds of air-conditioners, 
knocking on keyboards and footfall. Especially, the sounds of 
knocking on keyboards are transitory but high-energy. The clean 
speech signals and various noise signals are mixed at 3 different 
signal-to-noise ratios (5db, 10db, 15db) to simulate the real noise 
environments. In our experiments, FFT is 1024 points and K0 is 
the order of 108. 

4.1 Feature comparison 

Fig. 3 shows the basic and the proposed negative spectral 
entropy at 15db SNR with factory noise. In Fig. 3, the upper 
figure is waveform, the middle is the basic entropy contour, and 
the lowest is the proposed entropy contour. One can notice that 
the discriminability of the proposed feature is obviously better 
than the basic feature. 

Fig. 4 includes four improved feature curves representing 
negative entropy under factory, office, white and pink noise 
backgrounds respectively and SNR=10db. From Fig. 4, it is 
found that the introduction of K almost makes the negative 
entropy of various noises approaches to -70 and the curves of 
noise become fairly flat under the same SNR condition. It is 
obvious that the thresholds are easy to be tuned consistently for 
different noise signals. 

 

 

Fig. 3: Waveforms, the basic and improved negative 
spectral entropy (SNR=15db). 
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4.2 Endpoint detection experiments 

In this experiment, the range of accurate start point is from 2000 
points before the hand-labeling start point to 400 points after the 
hand-labeling start point. Similarly, the range of accurate end 
point is from 400 points before the hand-labeling end point to 
2000 points after the hand-labeling end point. Our recognition 
experiments tell us that the ranges are rational and don’t nearly 
influence the recognition accurate rate. 

Table 1 doesn’t include the result of method based on the 
basic entropy because according to our experience, the 
parameters are difficult to be tuned for various noises. 

The detection accurate rates of start points and end points 
are showed in Table 1. It can be found that (1) the proposed 
algorithm is better than pure energy-based algorithm at medium 
SNR (15db) and significantly better at low SNR’s (≤10db). (2) 
the performance of the proposed algorithm is distinctly superior 
to energy-based algorithm under non-stationary noise conditions. 
For example, energy-based algorithm fails under office noise 
including impulsive and high-energy sounds of keyboards-
knocking. (3) the accurate rate of start point detection is better 
than that of end point detection. Because the energy of the end 
of utterance is weak, energy-based algorithm deteriorates at the 
detection of end points. However, the proposed algorithm is 
considerably stable. 

5. CONCLUSION 
Improved spectral entropy and a novel algorithm are proposed in 
this paper. The introduction of K into the process of calculating 
the probability density function of spectrum enhances the 
discriminability between speech signals and noise signals and 
improves the robustness of spectral entropy. Moreover, it 
becomes easier to determine thresholds than before. Experiments 
results prove that the improved feature can be successfully used 
in the real noisy environments and the performance is superior to 
energy-based endpoint detection. The improvement of accurate 
rate (5db) reaches 12.9% for the detection of start points and end 
points averagely comparing with a pure energy-based algorithm. 

    

    

Fig. 4: The improved negative spectral entropy under 4 
different noise environments (SNR=10db). 

15DB (%) 10DB (%) 5DB (%) SNR 
 

NOISE start end start end start end 
Energy 95.8 94.3 95.0 88.3 91.2 73.9White 
Entropy 99.5 98.4 98.7 96.6 97.3 83.0
Energy 97.4 94.2 92.6 89.2 88.4 69.5Pink 
Entropy 97.8 98.6 96.9 98.2 93.8 91.5
Energy 93.4 96.2 91.1 86.9 79.5 63.9

F16 
Entropy 96.7 99.0 95.0 93.6 95.0 84.6
Energy 90.1 89.4 79.2 68.0 69.2 56.3Factory 
Entropy 97.1 90.4 92.1 80.1 76.4 78.2
Energy 71.2 66.5 69.8 64.0 60.4 40.2Office 
Entropy 89.8 82.6 83.8 73.2 69.7 52.3
Energy 89.6 88.1 85.5 79.3 77.7 60.8Average
Entropy 96.2 93.8 93.3 88.3 86.4 77.9

Improve
ment  6.6 5.7 7.8 9.0 8.7 17.1

Table 1: Endpoint detection accurate rate 
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