AUTOMATIC STRESS PREDICTION OF CHINESE SPEECH SYNTHESIS*

(1) Jian-Hua Tao (2) Sheng Zhao (3) Lian-Hong Cai

Department of Computer Science and Technology, Tsinghua University, Beijing

{ (1) jhtao, (2) clh-dcs}@tsinghua.edu.cn (3) sz00@mails.tsinghua.edu.cn

ABSTRACT

The stress was proved to be the essential links between linguistics and acoustics, and behaves as an important parameter for prosody processing and unit selection in speech synthesis system. In the paper, some acoustical measurements are carried out on F0, duration, silence in order to disclose the relationship between stress and acoustical parameters. The normalized compared acoustic parameters are induced to facilitate the stress detecting from the speech. Furthermore, a rule-learning approach is proposed to predict stress in unrestricted Chinese text. In order to improve the accuracy rate of prediction rules, the most effective linguistic features related to stress are selected according to several experiments. The method is proved to be very successful and has been integrated into our speech synthesis system. We get 86% accurate rate of stress prediction. Further listening tests also show that the expressive force of synthesized speech is improved a lot compared to the systems based on traditional method.

1. INTRODUCTION

During the last several years, there has been a rapid progress in Chinese speech synthesis. Now, the method of unit selection and concatenation, accompanying with large corpus, is used widely in the systems design. Nevertheless, the stress was still proved to be the essential links between linguistics and acoustics, and behaves as an important parameter for prosody processing and unit selection. However, it is a real hard work for us to handle the stress, such as how to detect the stresses in the corpus with high consistency and how to predict the stresses from the linguistic information.

The first question exists in the phase of corpus design and labeling. Normally, stress is not a very well defined term in literature. A common definition of prominence is that it refers to those words or syllables that are perceived as standing out from their environment. Perceived syllable stress was interpreted as a gradual parameter by Fant & Kruckenberg. Subjects rated the perceived stress of syllables on a 30-point scale. The authors investigated a small corpus of Swedish and found linear relationships between perceived prominence and acoustic and articulatory parameters. They also investigated the consistency of their labellers and obtained high correlations; this was confirmed by de Pijper & Sanderman for boundary prominence. Grover et al. showed that the reliability of word prominence ratings is higher for a 10-point scale than for a 4-point scale. As we know, Chinese is a tonal language and syllable is normally assigned as the basic prosodic element in processing. Each syllable has a tone, and has a relatively steady F0 contour. It is difficult to determine the stresses within the influence of various syllabic tone patterns. In the paper, some acoustical measurements are carried out on F0, duration, and silence, in order to disclose the relationship between stress and acoustical parameters, and to make stress labeling in high precise and high consistency. Results show that stress is influenced not only by pitch range and duration of the syllables, but also by the neighboring silence and neighboring stresses.

To get the relationship between linguistic processing and acoustic processing, some data-driven methods have been introduced in English, such as Classification and Regression Tree (CART), Hidden Markov Model (HMM), neural network auto associators. Whereas, rule based stress prediction is still the popular method for most of the current Chinese speech synthesis systems. As a result, the naturalness and flexibility of the system are limited in a certain extent. In the paper, rule learning approach is proposed to predict stress in unrestricted Chinese text. In order to improve the accuracy rate of prediction rules, the most effective linguistic features related to stress are selected according to several experiments. The method is proved to be very successful and has been integrated into our speech synthesis system. We get 86% accurate rate of stress prediction. Compared to other methods, it can be though as a very high performance. Further listening tests also show that the expressive force of synthesized speech is improved a lot compared to the systems based on traditional rule based method.

The paper is organized as following. In section 2, the acoustic features of stresses are analyzed to make automatic stress tagging for the corpus. Section 3 analyzes the mapping the patterns between syntactic information and stresses. In Section 4, a rule learning algorithm is described in detail, which is used to predict the stress automatically from the linguistic information. The results are analyzed in Section 4. Section 5 presents the conclusion and the view of future work.

2. STRESS DETECTING

As we know, tone is the most important and basic prosody feature in Chinese. There are four lexical tones exist, and each tone contains relatively constant pitch patterns. The pitch movement of stressed syllables in Chinese is complicated that it cannot be described as one line intonation model. Pitch range of syllables can be described as top-line and bottom-line correlates to the stressed components.

In the paper, we try to describe a method on how to detect stress from the speech in the large Chinese speech database. Firstly, to be able to compare with normal behaviors, the acoustic parameters, duration, top F0 and bottom F0 of stressed syllables, are divided by their statistic average values (normal behaviors).

\[
R_{\text{D}} = \frac{\text{Duration of Syllable } i}{\text{Average Duration of all Syllables}} \quad (1)
\]

\[
R_{\text{F}} = \frac{\text{Top F0 of Syllable } i}{\text{Mean value of Top F0 of all Syllables}} \quad (2)
\]
Here, i means syllable i. \(R_{dur,i} \), \(P_{top,i} \), and \(P_{bottom,i} \) represent the compared acoustic parameters, their distributions are shown in Figure 1(a),1(c),1(e).

\[
P_{bottom,i} = \frac{\text{Bottom F0 of Syllable } i}{\text{Mean value of Bottom F0 of all Syllables}} \tag{3}
\]

\[
P_{top,i} = \frac{\text{Top F0 of Syllable } i}{\text{Mean value of Top F0 of Syllable } i} \tag{6}
\]

\[R'_{dur,i} = \frac{1}{N} \sum_{i=1}^{N} S_i \tag{7}\]

\[P'_{top,i} = H_i \frac{1}{N} \sum_{i=1}^{N} H_i \tag{8}\]

\[P'_{bottom,i} = B_i \frac{1}{N} \sum_{i=1}^{N} B_i \tag{9}\]

\[
\begin{align*}
S_{prev} & = \frac{\text{Length of Silence before Stressed Syllables}}{\text{Average Length of Silence}} \tag{10} \\
S_{next} & = \frac{\text{Length of Silence after Stressed Syllables}}{\text{Average Length of Silence}} \tag{11} \\
N_{prev} & = \frac{\text{Number of Adjacent Previous Weakened Syllables}}{\text{Total Number of Stressed Syllables}} \tag{12} \\
N_{next} & = \frac{\text{Number of Adjacent Succeeding Weakened Syllables}}{\text{Total Number of Stressed Syllables}} \tag{13}
\end{align*}
\]

From figure 1 and figure 2, some results can be got, A. The pitch movement of syllable stress is realized by shifting up of the pitch with relatively constant pitch contours and enlarging the duration, which confirm the Wu’s view [2].
B. Stressed syllables are also influenced by the neighboring silence. Normally, preceding silence of stressed syllable is shortened. But there is no enough facts support that stressed syllables are influenced by the preceding silence.

C. Experiments also show that the stress may also be influenced by the previous syllables. Normally, the syllables are weakened if they appear before a stressed syllable. There is no enough phenomenon support that the stress syllables are also influenced by the following syllables.

Based on above knowledge, a criteria of stress determining can be defined by,

\[A_n = \alpha \cdot R_{sec,n} + \beta \cdot P_{top,n} + \gamma \cdot P_{bottom,n} + \eta \cdot S_{Next} + \delta \cdot A_{n-1} + C \]

Where, \(A_n \) means stress degree of the syllable \(n \) in the sentence. \(\alpha, \beta, \gamma, \eta, \delta \) are the coefficients (between 0 and 1). \(C \) is the constant. In our database, we use \(\alpha = 0.7, \beta = 0.65, \gamma = 0.45, \eta = 0.3, \delta = 0.5 \) however the coefficients may be various to different database. Furthermore, more accurate and efficient coefficients can also be generated by a training method.

3. SYNTAX TO STRESS MAPPING

A linguistic theory of syntax-stress mapping must consider the underlying syntactic structure in terms of its hierarchical organization, especially if the syntax of a given language allows different directions of branching as it is the case in an Object-Verb-language (OV) such as Chinese. In Chinese, the syntactic OV-parameter means that in structures with verb-final word order, i.e., in most subordinate clauses, the verb takes its position have to be determined. There are 191 patterns calculable if the position is fixed.

For reasons of explanatory adequacy, we make use of theories which consider the information structure. In Jacobs (1993), for both the so called ‘normally intonated’ sentences, e.g., widely focused sentences, and sentences containing narrowly focused constituents, stress positions are predictable by terms of integration. Stress positions in terms of their relative prominence (e.g., the weight of accents distributed over a syntactic structure) is thus calculable if the position is fixed.

3.1. Influenced by syntactic structure

In a first step of syntax-stress mapping, the syntactic structure and the position have to be determined. There are 191 patterns concerned for Chinese totally in the paper. Let us assume a basic syntactic structure reflecting the superficially linear VO-order (A1):

(A1) [⧧ ⧧ ⧧ ⧧ ⧧] (We think he is wrong.)

Sentences (A1) are structurally locally different to whether NP2 'He' is the object of verb_1 (as in A1). If A1 is focused widely, i.e., and if syllable or word is located at a very high branching node in the syntactic structure, the ‘normal’ default accentuation has to be applied: in A1 the second verb ‘think’ is accented.

Other syntactic information such as word boundaries, phrase boundaries, syllable positions (in word or phrase), also affect the performance of the stresses.

3.2. Influenced by keywords

The stressed syllable can also be influenced by the keywords appeared in the sentences. Such as, [⧧ ⧧ ⧧ ⧧ ⧧ ⧧ ⧧ ⧧] “ war and peace” (The title of today’s talk is “War and Peace”). In this sentence, the word “war and peace” was extremely emphasized to be the key topic of the sentence. Nevertheless, some typical verbs may also deduced emphatic components, such as, [⧧ (is), ⧧ (say), ⧧ (do), etc. Same phenomenon also appears in some adverbs, [⧧ (very), ⧧ (much), ⧧ (too), ⧧ (surely), etc.

3.3. Influenced by tonal sequences

According to recent tonal sequence models (Reynelt, Grice, Benzmüller, Mayer, and Batliner 1996 for German), the main stress positions derived from the syntactic and information structure as described above serve as anchor points for the association of tonal sequences. In Chinese, stresses can be assumed to be realized preferably by tonal/pitch variations.

Despite the syntax to stress mapping, stress can also be influenced by the different kind emotions. Within different speaking mood, speaking speed and emphatic component are variously changed. However, it’s very hard to us to handle them, being lack of semantic and concept parsing ability.

4. RULE LEARNING METHOD

4.1. Rule Templates

Rule Templates is the basic and most important features for rule learning based stress prediction. In our work, Linguistic features are classified into different levels, syllable, prosody word, prosody phrase, and sentence level. As a common problem, it’s still hard work to perform the syntactic parsing in real time. Features used for stress prediction should be retrieved much reliably and efficiently. Here we separate the parameters related to stress prediction into two types, basic features (BFEATS) and advanced features (AFEATS).

Part-of-speech (POS) sequences are the most popular features used in the previous research. And it’s much easier to automatically get POS tags from unrestricted Chinese text than other deep syntactic structures such as syntactic phrase or components. Two feature sets based on POS features were induced. One is a base feature set (BFEATS), using a stress label history of previous five words and a POS window of five-word width, three to the left and two to the right. POS features are derived from three POS sets simultaneously. The first one is the POS set of the tagger having 30 POS tags. The second one is much larger, in which the top 100 frequent words themselves are treated as independent POS tags in addition to those in the first set. The last one has only two tags: content words or functional words. The content words are those belonging to POS tags that are open word set. The functional words are on the contrary. The adoption of multiple POS sets results in POS features of different granularity.

The other feature set (AFEATS) is based on BFEATS, which includes some additional features: (1) the length of each word in the POS window, in syllable; (2) the length of the sentence, in words and syllables; (3) the position from the start and end of the sentence, words; (4) the distances from the current syllable to the last preceding stressed syllable. These features are all numeric and related to length or distance.
of the results by listening. The labeling results of them achieve a high consistency rate of 93.1%.

5.2. Evaluation Parameters
Stress prediction was evaluated with subjective or objective measure. The subjective measure is generally performed by perceptive tests, which are undoubtedly convincing but time-consuming to conduct on large corpus. In this paper, only the objective measure is adopted. As a classification task, stress prediction should be evaluated with consideration on all the stresses. The trained classifiers are applied on a test corpus to predict the label of each stress.

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule based</td>
<td>0.72</td>
</tr>
<tr>
<td>CART</td>
<td>0.83</td>
</tr>
<tr>
<td>TRBL</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Table 3: Prediction precision

From table 3, we can find the rule based method is superior to the pure rule based method. In contrast, decision trees are aimed at classifying independent vectors, though questions about local context can be incorporated by making Markov assumptions and using dynamic programming and the most likely sequence. For this reason, TRBL tends to be less sensitive to data scarcity, and is better able to learn parameters associated with independent factors.

6. CONCLUSIONS
The paper compared the acoustic parameters of stressed syllables with the corresponding normal status, and draw some efficient views for automatic stress labeling of large speech database. Facilitated by the manual checking, a high labeling consistency can be acquired. The paper also introduced a new approach to symbolic prosodic label prediction based on transformational rule-based learning. Experiments on stress prediction with a news corpus show that TRBL gives a small improvement over simple decision tree predictors, despite a more simplified approach to set membership rule design. In addition, the experiments showed that stress prediction benefits from phrase structure, but not vice versa. The use of average absolute distance is proposed as a new metric for design and evaluation of stress prediction, which is motivated by the graded acoustic cues observed for different stresses. On the other hand our results are based on cross validation tests, which give a better estimation of the performance when the classifiers are running on noisy inputs. Thanks Prof. Zhou Tongchun for his effort of labeling most the training corpus.

7. REFERENCES