Abstract

Spoken language performance depends on both psycholinguistic processing in the individual and on communicative uses of language in dialogue or discussion. A social-communication view of language emphasizes that the spoken form of a language is used in social settings to accomplish explicit or implicit tasks of many sorts. In testing, the communicative tradition is associated with oral proficiency interviews. A psycholinguistic view of spoken language emphasizes that the development of component skills forms the basis of real-time performance in a first or a second language. The paper reviews the development and validation of psycholinguistic testing task types (e.g. elicited imitation) that measure performance in spoken language based on empirical models of processes internal to the individual speaker-listener. The design, development, and validation of these task types are presented. Data from a recent set of experiments indicates that the two theoretical approaches to testing do not produce different patterns of proficiency scores for populations of second language speakers. The distributions of paired test scores over several populations and methods are closely aligned and contain no outliers. This pattern of data obviates the need to posit a “communicative” basis for language test design.

1. Introduction

A social-communication view of language competence emphasizes that the spoken form of a language is used in social settings (according to a set of culture-specific norms) to accomplish explicit or implicit tasks of many sorts. In the current applied linguistics discourse, this insight was adapted from Hymes (1972) by Canale and Swain (1980) and has been further modified and refined in the language testing context by Bachman (1990), among others. Hymes had set out to extend the domain of linguistic analysis beyond the limits observed in the tradition of linguistics established by Bloomfield and Chomsky. In the view of Hymes, language as it has traditionally been studied should more properly be understood as a subset of a more general field – the study of communication. Corollaries of a communication-centric view that are relevant to language testing may include:

1. Language and communication are not separable; therefore a test of language skill should be a test of the language as used in communication.

2. Structures above the sentence level are important for effective communication; therefore a language test should include long turns and multi-turn exchanges.

3. Language, as used, reflects and communicates social structures; therefore a test should let the candidate display a range of registers and illocutionary actions. It is difficult to administer an oral test that supports long turns in threaded exchanges eliciting a variety of speech acts and registers framed within real communication, within a consistent and replicable format. Some tests have been designed to approximate many of these goals in their administration, and they are usually scored according to procedures that separate out core language skills from social and rhetorical skills in the scoring rubrics. These separate sub-scores are then often combined into an overall score called “oral proficiency” or “communicative competence”. Examples of tests that use social and rhetorical sub-scores in a combined scoring logic include the original Test of Spoken English (TSE) and the Language Proficiency Interview (LPI) from ETS, as well as the level descriptors of the U.S. Government’s ILR-OPI grid and the Council of Europe’s Common European Framework (North, 2000).

A psycholinguistic view of language competence emphasizes the development of first and second language skills and the real-time processes that underlie the performance of these skills. Historically, psycholinguistic research has focused on the phenomena of language performance, and used these phenomena to elucidate more general cognitive processes like memory, association, and pattern classification (Eysenck & Keane, 1995). Since the 1960s, many production and perception studies have also focused on the confirmation (or disconfirmation) of the “psychological reality” of structures and processes that have been hypothesized in linguistic research. This research uncovered and quantified many robust phenomena of skilled (native-like) language performance, as well as a fairly clear structure of elementary processes that can be identified in appropriate experimental contexts. Eysenck & Keane review studies that show that complex cognitive skills that are used in language become automatic in skilled performance, and therefore do not absorb any of the attentional capacity of the speaker-hearers.

A psycholinguistic view of language competence emphasizes the development of first and second language skills and the real-time processes that underlie the performance of these skills. Corollaries of a psycholinguistic view that may be relevant to language testing could include:

1. Attention to core language production limits attention to content; therefore the measurement of fluent, automatic control of core language will predict the complexity of content that can be produced or understood in real time.

2. Context-free language processing develops after context-bound processing; therefore context-free tasks should be at least part of a language proficiency battery.

3. Structures at or below the sentence level dominate what is well-understood in language; therefore these structures offer a firmer basis for scoring and diagnosis.

Even though the language develops in the context of communication, to serve the purposes of communication, it develops in individuals and finds expression in many activities (including games and songs) where communication, as such, is not primary goal. Skilled language performance has been experimentally analyzed outside of natural language use; therefore language processing skills can be measured outside a natural setting. Also, these studies are conducted exactly because high proficiency L1 and L2 speakers reach a stage of automaticity with the language in listening and speaking (and often in reading) that simply cannot be attended to by introspection or protocol analysis methods.
In Sections 2 and 3 of the paper, we review the design of an automatically scored spoken Spanish test, the SST. The SST tests a person’s facility with the spoken language – a psycholinguistic construct. Then, in Section 4 we review data from a recent set of experiments with the SST for which we have a rich set of comparisons with communicative interviews and expert ratings of performance that have been assigned within a communicative framework.

2. SST: a Spoken Spanish Test

We describe the construction of a 15-minute-long spoken Spanish test, SST, which is delivered over the telephone by computer and automatically scored using speech recognition technology (Bernstein et al., 2000). The SST test measures facility in spoken Spanish – that is, the ability to understand spoken Spanish on everyday topics and to respond appropriately at a native-like conversational pace in intelligible Spanish. Another way to express the construct facility in spoken Spanish is “ease and immediacy in understanding and producing appropriate conversational Spanish.” This definition relates to what occurs during the course of a spoken conversation. While keeping up with the conversational pace, a person has to track what is being said, extract meaning as speech continues, and then, on occasion, formulate and produce a relevant and intelligible response. These component processes of listening and speaking are schematized in Figure 1, adapted from Leventhal (1989).

In the administration of a SST test, the Ordinate testing system presents a series of discrete prompts to the test taker at a native conversational pace. The prompts are drawn at random from an item pool. The prompts were recorded by a variety of different native speakers from several countries, producing a range of native accents and speaking styles. These integrated “listen-then-speak” items require real-time receptive and productive processing of spoken language forms, and the items are designed to be relatively independent of social nuance and high-cognitive functions. The same facility in spoken Spanish that enables a person to participate in everyday native-paced Spanish conversation also enables that person to satisfactorily understand and respond to the listening/speaking tasks in the SST.

Explain another way, the SST test measures the test taker’s control of core language processing components, such as lexical access and syntactic encoding. For example, in normal everyday conversation, speakers go from building a clause structure to phonetic encoding in about 40 milliseconds (Van Turennout, Hagoort, and Brown, 1998). Similarly, the other stages shown in Figure 1 have to be performed within the small period of time available to a speaker involved in everyday communication. The typical window in turn taking is about 500-1000 milliseconds.

In this process, automaticity is required in order for the speaker/listener to be able to pay attention to what needs to be said/understood rather than to how the code is to be structured/analyzed. Automaticity entails the ability to access and retrieve lexical items, to build phrases and clause structures, and to articulate these without conscious attention to the linguistic code (Cutler, 2003; Jescheniak, Hahne, and Schriefers, 2003; Leventhal, 2001).

A test such as the SST probes the psycholinguistic elements of spoken language performance rather than the social and rhetorical elements of communication. Because during the test this probing is performed in real time, the SST measures the degree of automaticity in language performance. A person has to understand and produce language at some level of accuracy and fluency to participate in a spoken interchange. Since performance standards can be established for accuracy and fluency based on representative samples of language users, the SST checks the level of accuracy and fluency, and at the same time directly measures the rate and level of language process control.

To summarize, the SST measures basic encoding and decoding of oral language as performed in integrated tasks in real time. This performance predicts a more general spoken language facility, which is essential in successful oral communication.

The reason for the predictive relation between spoken language facility and oral communication skills is basic. The language structures that are shared among the members of a speech community are used to encode and decode various threads of meaning that are communicated in spoken turns. These threads of meaning that are encoded and decoded include declarative information, as well as social information and discourse markers. World knowledge and knowledge of social relations and behavior are also used in understanding the spoken turns and in formulating the content of spoken turns. However, these social-cognitive elements of communication are not represented in this model and not directly measured in the SST.

3. SST Content Design and Material

The SST test measures both listening and speaking skills, emphasizing the test taker’s facility (ease, fluency, immediacy) in responding aloud to common, everyday spoken Spanish. All SST items are designed so that both native speakers and proficient non-native speakers find them very simple to understand and to respond to appropriately. The items cover a broad range of skill levels and skill profiles. Verification of these test characteristics will be reported in the SST validation report when the SST is published as a product. The vocabulary used in the test items and responses is restricted to the most frequent words in a corpus of Spanish text. In general, the language structures used in the test reflect those that are common in everyday Spanish.

Each SST item is independent of the other items in the test and presents unpredictable spoken material in Spanish. Context-independent material is used in the test items for three reasons. First, context-independent items exercise and measure the most basic meanings of words, phrases, and clauses on which context-dependent meanings are based. Second, when usage is relatively context-independent, task performance depends less on factors such as world knowledge and cognitive style and more on the test taker’s facility with the language itself. Thus, the test performance relates most closely to language abilities and not to other test-taker characteristics that may be outside the target construct, i.e., facility in spoken Spanish. Third, context-independent tasks maximize response density; that is, within a given test administration time, the test taker has more time to demonstrate performance in speaking the language. Less time is spent in developing a background cognitive schema for the task.

Both the test items presented and the expected responses are constrained to contain common Spanish vocabulary and
constructions that can be consistently understood and/or produced by at least 80% of a reference sample of educated native speakers of Spanish. In addition, these item types maximize reliability by providing multiple, fully independent measures. They elicit responses that can be analyzed automatically to produce measures that underlie facility with spoken Spanish, including phonological fluency, sentence comprehension, vocabulary, and pronunciation of rhythmic and segmental units.

Test Structure. The SST test consists of 60 items that are presented in seven separate sections. Each of the seven sections presents the test taker with a different task type, as shown in Table 1.

<table>
<thead>
<tr>
<th>Task</th>
<th>Presented</th>
<th>Items in bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Readings</td>
<td>6 (of 8 printed)</td>
<td>48</td>
</tr>
<tr>
<td>B. Repeats</td>
<td>16</td>
<td>75</td>
</tr>
<tr>
<td>C. Opposites</td>
<td>8</td>
<td>59</td>
</tr>
<tr>
<td>D. Short Questions</td>
<td>16</td>
<td>85</td>
</tr>
<tr>
<td>E. Sentence Builds</td>
<td>8</td>
<td>59</td>
</tr>
<tr>
<td>F. Open Questions</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>G. Story Retellings</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>356</td>
</tr>
</tbody>
</table>

In Part A, test takers are instructed to read particular sentences from among a set of numbered sentences printed on the test paper. In parts B through G, the item materials are presented by voice only, with no direct support from the test paper. The first item response in each part of the test is not scored, and the responses to the three open questions and the story retelling in Parts F and G are not scored automatically. Thus, 49 independent responses are scored in the SST. In Part A, the test taker is instructed to read 6 of the 8 printed sentences. On the test paper, the 8 sentences are grouped into two related sequential groups of four in order to provide some context and limit the reasonable readings. However, the system has the test taker read the sentences in random order. The items in Parts B and D are presented in a stratified random order so that the item difficulty generally increases over the sequence of items presented.

4. **Results: Performance Data**

Native Speaker Data Collection. Native samples were collected from adult (18 years old or older) native speakers of Spanish. Native speakers were roughly defined as individuals who spent the first twenty years of their lives in a Spanish-speaking country, currently reside in a Spanish-speaking country, and were educated in Spanish through college level. Samples were gender balanced, when possible. The native-speaker sample comprised 435 candidates: 140 from Argentina, 38 from Colombia, 222 from Mexico, 20 from Puerto Rico, and 15 from other Latin American countries.

Non-Native Data Collection. Ordinate contacted a number of Spanish departments at universities in the United States asking them to have students take the SST and, if possible, also an official ACTFL-certified Spanish OPI. Students/universities were remunerated for their participation and for the ACTFL test fee. In addition, test takers were recruited from other institutions. Apart from SST, subsets of each group took a form of an oral interview test. Three oral interviews were used:

1. The American Council on the Teaching of Foreign Languages Oral Proficiency Interview (ACTFL/OPI) administered by Language Testing International
2. The Interagency Language Roundtable Oral Proficiency Interview (ILR/OPI) administered by certified raters from the Defense Language Institute (DLI)
3. The telephone-administered version of the ILR/SPT, the Spoken Proficiency Test (SPT), administered by US Government-certified raters

Human Scoring. Human grading of recorded test-taker responses serves two main purposes:

- to accumulate resources for automatic scoring
- to accumulate evidence for validity

The development of automatic scoring for the pronunciation and fluency scores depends upon the availability of a set of human pronunciation and fluency ratings for a set of relevant calls in accordance with a set of rating criteria that are applied consistently across raters. Automatic pronunciation and fluency scores are calculated by measuring the latency of the response, the rate of speaking, the position and length of pauses, the stress and segmental forms of the words, and the pronunciation of the segments in the words. These measures are then scaled and combined so that they optimally predict the human judgments.

Once an algorithm for automatic scoring has been developed and implemented, the validity of the automatic scoring can be evaluated by comparing human ratings for test takers with the scores assigned automatically by the Ordinate system to these same test takers. Human ratings for this purpose were collected on two overall functional scales, an estimate of Oral Proficiency Interview ratings (E-OPI) and the Common European Framework level descriptors (CEF). The ratings on the functional scales were based on test takers’ responses to open-ended tasks that were not scored automatically and are therefore completely independent from the SST scores.

Data Analysis and Results. One would expect native speakers to obtain high scores on SST. On the other hand, for SST to operate as a measurement instrument, speakers of other languages who are learning Spanish would need to be distributed over a wide range of scores. Also, we wanted to know if SST scores correlate significantly with other, communicative, measures of spoken Spanish, particularly human ratings on the communicative ILR scale.

SST scores by language background. In order to evaluate low discrimination of SST for native speakers of Spanish, Figure 2 presents cumulative density functions for two speaker groups native and non-native. Figure 2 shows that the native speakers (male or female) have almost identical distributions that clearly distinguish them from the non-native sample (female or male). This suggests that the SST has high discriminatory power among learners of Spanish as a second or foreign language, whereas native speakers obtain near maximum scores irrespective of region of origin or gender.

![Cumulative density functions per gender for non-native speakers and native speakers](image)

Furthermore, many comparisons are possible in this data set between the SST machine scores and certified human
interview scores and score estimates produced by expert or certified raters. We include just three such scatters. Figure 3 displays the relation between SST scores and ACTFL certified interview scores for a set of 52 Spanish learners, then the relation of SST scores to U.S. Government interview tests (SPT OPI) for 37 subjects, and finally the relation of CEF proficiency estimates to SST scores for a sample of 572 subjects (native speakers are plotted with “x”).

![Figure 3: Human scores ~ SST machine scores](image)

5. Conclusion

Generally the SST scores will accurately predict 80% or more of the variance in US government oral language proficiency ratings. Given the fact that the reliability for ILR scales is reported in the literature to be around 0.90 (Stanfield & Kenyon, 1992), this is as high as the predictive power between two consecutive independent OPIs. The SST also predicts the ACTFL interview scores with the about same precision as two independent ACTFL OPIs would predict each other (Sieloff-Magnan, 1987).

The SST instrument offers a method for measuring facility in spoken Spanish. The SST procedure elicits sufficient spoken language behavior on which to base a reliable and accurate human judgment of practical speaking and listening skills. Furthermore, automatic scoring of responses from an SST administration can produce reliable and useful information about these spoken language skills. Preliminary validation data suggest that the automatic scoring has the following four properties:

1. Native speakers consistently obtain high scores on SST;
2. Learners of Spanish are distributed over a wide score range;
3. SST scores correlate nicely with other measures of spoken Spanish; and
4. SST scores can predict ACTFL and ILR scale ratings.

The data presented here may be consistent with several conclusions. For example, the data might support the assertion that functional models of language use are the best foundation for designing spoken language tests and for interpreting their results, and that the SST test procedures and scoring are just a convenient proxy for the communicative procedures and scoring. Conversely, the communicative interview tests could be seen as convenient, low-tech proxies for a crisp test of language processing skills.

These experimental results indicate that the two theoretical approaches to testing do not produce different patterns of proficiency scores for populations of second language speakers. The distributions of paired test scores over several populations and very different methods are closely aligned and contain no outliers. Because the stronger empirical grounding of the psycholinguistic testing, we can conclude that this pattern of data obviates the need to posit a “communicative” basis for language test design.

6. References

