TEAM DECISION MAKING WITH SOCIAL LEARNING:
HUMAN SUBJECT EXPERIMENTS

Joong Bum Rhim∗
GroupM
498 7th Avenue, New York, NY 10018

Vivek K Goyal†
Boston University
8 St. Mary’s Street, Boston, MA 02215

ABSTRACT

We demonstrate that human decision-making agents do social learning whether it is beneficial or not. Specifically, we consider binary Bayesian hypothesis testing with multiple agents voting sequentially for a team decision, where each one observes earlier-acting agents’ votes as well as a conditionally independent and identically distributed private signal. While the best strategy (for the team objective) is to ignore the votes of earlier-acting agents, human agents instead tend to be affected by others’ decisions. Furthermore, they are almost equally affected in the team setting as when they are incentivized only for individual correctness. These results suggest that votes of earlier-acting agents should be withheld (not shared as public signals) to improve team decision-making performance; humans are insufficiently rational to innately apply the optimal decision rules that would ignore the public signals.

Index Terms—Bayesian hypothesis testing, distributed detection and fusion, human behavior, sequential decision making, social learning

1. INTRODUCTION

Social learning is the process of learning from publicly observable behaviors of others, which are often called public signals, before acting. Even though social learning causes agents acting in sequence to sometimes herd to the incorrect decision when the private signals are boundedly informative [1, 2], it enables asymptotically perfect decision making otherwise [3].

While social learning is rational behavior that leads to better decisions (lower error probabilities) for individuals acting in sequence, it may not be good when agents form a team. In [4], we introduced a distributed binary hypothesis testing scenario in which decision-making agents sequentially observe the decisions of earlier-acting agents and private signals that are conditionally independent and identically distributed (i.i.d.) given the hypothesis, and their individual decisions are fused into a single team decision by a fixed symmetric rule. For Bayes risk minimization (a single common goal for all the agents), social learning becomes futile in the sense that the optimal behavior of an individual is to ignore the public signals produced by the earlier-acting agents. This is discussed in detail in [5, 6], with some key insights reviewed in Section 2.2.

∗The first author performed the work while with the Research Laboratory of Electronics, Massachusetts Institute of Technology.
†This work was supported in part by the National Science Foundation under Grant 1101147.

A signal Y generated under a state H is called boundedly informative if there exists $\kappa > 0$ such that $f_{Y|H}(y|h) < \frac{1}{\kappa}$ for all y and h.
2.1. Optimal Individualistic Decision Making

The first case is when the agents are optimizing only for the accuracy of their own decisions [14]. In other words, Nora makes her decision \(\hat{H} \) to minimize her Bayes cost:

\[
c_{10} P_0 \mathbb{P} \{ \hat{H} = 1 | H = 0 \} + c_{01} P_1 \mathbb{P} \{ \hat{H} = 0 | H = 1 \}. \tag{2}
\]

Before making a decision, she observes public signals \(\hat{H}_1, \ldots, \hat{H}_{n-1} \)—the decisions of her preceding agents—and a private signal \(Y_n \). She can learn some information about the true hypothesis from these signals. Her decision rule should be the likelihood ratio test that compares the likelihood of all private and public signals on each hypothesis:

\[
\frac{f_{Y_n, \hat{H}_1, \ldots, \hat{H}_{n-1}}(y_n, \hat{h}_1, \ldots, \hat{h}_{n-1} | 1)}{f_{Y_n, \hat{H}_1, \ldots, \hat{H}_{n-1}}(y_n, \hat{h}_1, \ldots, \hat{h}_{n-1} | 0)} \frac{\hat{H}_{n-1} \cdots \hat{H}_1 \cdots \hat{H}_0}{c_{10} P_0 \mathbb{P} \{ \hat{H} = 0 | H = 1 \} \cdots c_{10} P_0 \mathbb{P} \{ \hat{H} = 0 | H = 0 \}}. \tag{3}
\]

Conditioned on \(H \), her public signals are independent of her private signal. Thus, the decision rule can be rewritten as

\[
\frac{f_{Y_n, \hat{H}}(y_n | 1)}{f_{Y_n, \hat{H}}(y_n | 0)} \frac{\hat{H}_{n-1} \cdots \hat{H}_1 \cdots \hat{H}_0}{c_{10} P_0 \mathbb{P} \{ \hat{H} = 0 | H = 1 \} \cdots c_{10} P_0 \mathbb{P} \{ \hat{H} = 0 | H = 0 \}}, \tag{4}
\]

where

\[
q_n = p_0 \frac{p_{\hat{H}_1, \ldots, \hat{H}_{n-1}}(\hat{h}_1, \ldots, \hat{h}_{n-1} | 0)}{p_{\hat{H}_1, \ldots, \hat{H}_{n-1}}(\hat{h}_1, \ldots, \hat{h}_{n-1})} = p_{\hat{H} | \hat{H}_1, \ldots, \hat{H}_{n-1}}(0 | \hat{h}_1, \ldots, \hat{h}_{n-1}). \tag{5}
\]

This optimal decision rule suggests that Nora uses her public signals to update the prior probability to a posterior probability—which is often called belief update—and determine the optimal threshold of the likelihood ratio of her private signal. The process of belief update is discussed with more detail in [14, 15].

2.2. Optimal Team Decision Making

The second case is when the agents are optimizing for the accuracy of a team decision. Like in Section 2.1, agents still make decisions sequentially and can observe all decisions made before them along with their own private signals. Now, decisions are fused by a symmetric \(L \)-out-of-\(N \) rule: If \(L \) or more agents choose 1, then the team decision is \(\hat{H} = 1 \); otherwise \(\hat{H} = 0 \).\(^2\) The following Bayes risk is applied to everyone:

\[
R = c_{10} P_0 \mathbb{P} \{ \sum_{n=1}^{N} \hat{H}_n \geq L | H = 0 \} + c_{01} P_1 \mathbb{P} \{ \sum_{n=1}^{N} \hat{H}_n \leq L - 1 | H = 1 \}. \tag{6}
\]

Intuitively, the improvement of individual decisions would drive the improvement of the team decision. It has been shown, however, that optimal individual decisions can harm the team decision making in some cases. What is easily overlooked here is that, effectively, the fusion rule is changing as the agents act in sequence. Once the first agent chooses \(\hat{H}_1 = 1 \), for example, the effective fusion rule for the remaining agents is the \((L-1)\)-out-of-\((N-1)\) rule, i.e., \(L-1 \) or more votes for 1 among \(N-1 \) will determine the team decision to be 1. It is proven in [6] that agents need to do both belief update and fusion rule evolution for optimal decision making, and in the case of conditionally i.i.d. private signals, they end up with the same decision rule as when they do not have any public signal,

\[
\frac{f_{Y_n, \hat{H}}(y_n | 1)}{f_{Y_n, \hat{H}}(y_n | 0)} \frac{\hat{H}_{n-1} \cdots \hat{H}_1 \cdots \hat{H}_0}{c_{10} P_0 \mathbb{P} \{ \hat{H} = 0 | H = 1 \} \cdots c_{10} P_0 \mathbb{P} \{ \hat{H} = 0 | H = 0 \}}. \tag{7}
\]

Belief update encourages an agent to agree with earlier-acting agents. The less intuitive aspect, as stated in [6]: “a good agent does not take lightly the disenfranchisement of later-acting agents.”

3. PRACTICAL HUMAN DECISION MAKING

We have shown that social learning is optimal behavior in individualistic decision making but not necessarily in team decision making. In practice, human agents deviate from optimality in various ways. Our goal is to test the following two hypotheses through experiments:

Hypothesis 1 Human agents are affected by public signals in team decision making.

Hypothesis 2 Human agents are less affected by public signals in team decision making than they are in individualistic decision making.

Hypothesis 1 argues that human agents are irrational because they are supposed to ignore public signals in team decision making. However, they may be rational enough to rely less on public signals in team decision making than in individual decision making as suggested by Hypothesis 2.

3.1. Design of Experiments

We conduct two experiments. Experiment A is designed to measure human decision rules at a fine scale. Experiment B is designed with a similar setting to reconfirm the results of Experiment A.\(^3\) Most parts of the two experiments are identical: both experiments assume a game show where one basket is presented and contestants guess which of two baskets it is. The basket is randomly chosen between Basket A, which has 70 red and 30 blue balls, and Basket B, which has 30 red and 70 blue balls. The prior probability of each basket is 0.5, and all contestants are made aware of this. Seven contestants make decisions by the following procedure:

1. The order of decision making is determined.
2. The first contestant comes out, draws from the basket, and replaces drawn balls.
3. He/she guesses whether the basket is A or B and announces his/her answer. In the meantime, other contestants cannot see the balls but can hear the answer.
4. Repeat (2) and (3) until the last contestant.

The contestants get a private signal in step (2) and public signals in step (3).

Each experiment has two versions of evaluating the answers. In version 1 (individualistic goal), each contestant who gives the right answer gets 1; in version 2 (team goal), the team gets 1 if all contestants give the right answer. The experiments have been approved by the Committee on the Use of Humans as Experimental Subjects (COUHES): COUHES Protocols No. 1310005949 and 1403006285, respectively.

\(^2\)\text{\(L\)-out-of-\(N\) rules generalize the common use of majority rule in human decision making, where \(L = \lceil \frac{N+1}{2} \rceil \). Rules requiring unanimity are given by \(L = 0 \) and \(L = N \). Optimal decision fusion is discussed in [16].}

\(^3\)\text{Before starting these experiments, the authors have passed a training course on human subjects research to accommodate MIT regulation. The experiments have been approved by the Committee on the Use of Humans as Experimental Subjects (COUHES): COUHES Protocols No. 1310005949 and 1403006285, respectively.}
answer wins a prize. In version 2 (team goal), all seven contestants win a prize if the majority is right and otherwise no one wins a prize. We can verify Hypothesis 1 from the result of version 1 and Hypothesis 2 by comparing the results of versions 1 and 2. All winning contestants get an equal prize to prevent competition among them. Amazon Mechanical Turk workers living in the U.S. participated in these experiments. Each worker was randomly assigned to either version without even knowing the existence of the other version. We intentionally hide it because otherwise they may think that they should behave differently. Furthermore, each worker could participate in at most one experiment.

Regardless of the version, we present each test subject with a number of situations with various decision-making positions and various public signals. For each situation, the subjects are to answer their decision thresholds—i.e., the minimum number of red balls in the private signal to cause them to choose Basket A. We make it clear that the prior probability of each basket is 0.5 because human agents are not likely to correctly incorporate a different prior. The rational behavior without a public signal is to choose Basket A if the participant draws more red balls than blue balls and Basket B otherwise.

Every worker gets paid a fixed amount of base reward upon completion of the experiment. In addition, we offer a bonus up to three times of the base reward depending on the worker’s decision-making performance in order to encourage them to think carefully and thoroughly. The workers participating in version 1 get a bonus depending on how close to optimal their answers are; the workers participating in version 2 get a bonus depending on how much their answers improve team decisions.

3.2. Experiment A: Complex Private Signal

The difference between experiments A and B is the number of balls drawn as a private signal. In Experiment A, each agent draws 9 balls from the basket as the private signal in order for us to finely monitor the decision rules of human agents.

In total 200 Amazon Mechanical Turk workers have participated in Experiment A; half in A-1 and the other half in A-2. Each subject is asked the same 29 situations of various public signals regardless of the version.

Fig. 1 summarizes the results of Experiment A, dashed curves for Experiment A-1 and solid curves for Experiment A-2. It is notable that human decision makers do not change their decision rules based on the different goals (individual vs. team), unlike the optimum behavior.

Fig. 1a shows the thresholds—the minimum number of red balls in a private signal that is required to choose A. The threshold of human agents drawn in Fig. 1a is the average of thresholds answered by 100 subjects in each version.

Human agents with the individualistic goal seemingly learn from public signals and alter their thresholds accordingly. The alteration, however, is weaker than optimal. For example, when the fourth agent observes all three preceding agents have chosen Basket A, the agent should choose A even if the private signal has just three red balls. Average human decision makers, however, choose Basket A if their private signal has at least four red balls.

Among the situations, we specifically examine when the fifth agent observes public signals of three A’s and one B: (A→A→A→B), (A→A→B→A), (A→B→A→A), or (B→A→A→A). These public signals should be differently interpreted according to who has answered B. When an earlier-acting agent answers B, it is likely a wrong answer due to an unlikely private signal, which thus is
reversed to A by following agents. On the contrary, when a later-
acting agent answers B, it should be considered more seriously as
the agent should have had a private signal strong enough to counter-
act preceding agents’ decisions. Therefore the optimal threshold is
2.5 for public signal (B→A→A→A) but 4.5 for (A→A→A→B).

It turns out that human agents use 3.5 as their threshold in all
four situations. One of our interpretations is that human agents do
not believe that other people are fully rational—they may think the
agent who has chosen B is wrong. Another interpretation is that
they do not care about the order in which the decisions are made but
simply process the public signal as three A’s and one B.

Considering the team decision-making, the average threshold of
human agents is similar to that in individual decision-making. Hu-
mens take into account the public signals when they have a team goal
as much as when they have an individualistic goal, even though the
optimal behavior is to ignore the public signals in the former case.

For a more precise comparison, we ran two-sample Kolmogorov–
Smirnov tests of the distributions of 100 thresholds between indi-
vidualistic and team goals. The test accepts the null hypothesis—the
two distributions are the same—in all cases but one with probability
greater than 0.05; in half of the cases with probability greater than
0.9. For example, Fig. 1b and Fig. 1c compare the distributions of
human agents in individual and team decision-making cases with
respect to their decision thresholds when (A→A→A→B) is the
public signal. The two-sample Kolmogorov–Smirnov test accepts
they are the same distribution with probability of 0.96. Interested
readers may see [5] for the comparison in all 29 situations. As a
result, we accept Hypothesis 1 but reject Hypothesis 2.

3.3. Experiment B: Simple Private Signal

We have found out that human agents are not fully rational in the
sense that they do not learn from public signals as much as they
should for the individualistic goal and they learn from public signals
while they should not for the team goal. However, the private signal
consisting of nine balls may be too complicated for the agents to
correctly process. Therefore, Experiment B was designed with a simple
private signal: each contestant draws only one ball. Everything else
is the same between experiments A and B.

A hundred Amazon Mechanical Turk workers have participated
in Experiment B; half in B-1 and the other half in B-2. Each subject
is asked 18 situations of various public signals. We asked subjects
their choice when the private signal is a red ball and when it is blue.

Fig. 2 depicts the most common behavior of the subjects in each
situation. The behavior is summarized as either Not Herding (NH)—
ignoring public signals and following private signals—or Herding
toward A (HA)—following public signals and ignoring private sig-
nals.

Most subjects in individualistic decision making correctly ig-
nore or follow public signals, depending on the particular public sig-
nal. Subjects in team decision making, however, still follow pub-
lic signals although they should not. In fact, they show the same
behavior in both individual and team decision-making except one
situation—when (A→A) is the public signal.

This experiment with simple private signals again supports our
conclusions in Section 3.2. First, human agents do not seem to un-
derstand that optimal decision-making as a team is different from
individualistic decision-making. Second, they seem rather rational
when they are deciding to meet the individualistic goal, even though
they are limited in their processing abilities when working with com-
plex private signals.

4. CONCLUSION

We have conducted experiments to test if human agents adopt opti-
mal decision rules by using public signals in individualistic decision
making and by not using them in team decision making. It is worth
evaluating human rationality especially because the optimal decision
rule for the team case is counterintuitive. Our experiments have re-
vealed that human agents are not fully rational when they observe
public signals.

With public signals, human agents do social learning. They can
interpret public signals and adjust their decision thresholds accord-
ingly for the individualistic goal. That being said, we could observe
two limitations from human agents. First, they seem incapable of
perfectly tuning decision rules to complex private signals. Second,
they fail to draw correct inferences from the order of public signals.
They do not differentiate between the cases when the minority public
signal is produced by an earlier-acting or later-acting agent.

Furthermore, it turns out that human agents behave very simi-
larly for a team goal and for an individualistic goal, though this is
suboptimal. They seem to use all information available to them in
decisions. This suggests a simple design prescription for a crowd-
sourcing platform or online poll that aids human team decision mak-
ing: it is better to hide irrelevant information that may lead to a
suboptimal decision. This observation emphasizes the importance of
design of voting rules that can enhance humans’ rationality and
optimal opinion aggregation.
5. REFERENCES

