HUMAN-LIKE EMOTION RECOGNITION: MULTI-LABEL LEARNING FROM NOISY LABELED AUDIO-VISUAL EXPRESSIVE SPEECH

Yelin Kim

Electrical and Computer Engineering
University at Albany, SUNY, USA
yelinkim@albany.edu

Jeesun Kim

The MARCS Institute
Western Sydney University, Australia
j.kim@westernsydney.edu.au

ABSTRACT

To capture variation in categorical emotion recognition by human perceivers, we propose a multi-label learning and evaluation method that can employ the distribution of emotion labels generated by every human annotator. In contrast to the traditional accuracy-based performance measure for categorical emotion labels, our proposed learning and inference algorithms use cross entropy to directly compare human and machine emotion label distributions. Our audio-visual emotion recognition experiments demonstrate that emotion recognition can benefit from using a multi-label representation that fully uses both clear and ambiguous emotion data. Further, the results demonstrate that this emotion recognition system can (i) learn the distribution of human annotators directly; (ii) capture the human-like label noise in emotion perception; and (iii) identify infrequent or uncommon emotional expression (such as frustration) from inconsistently labeled emotion data, which were often ignored in previous emotion recognition systems.

Index Terms— Emotion recognition, prototypicality, label noise, multi-label learning, soft labeling, audio-visual emotion

1. INTRODUCTION

Our aim is to develop emotion recognition algorithms that go beyond one-hot label assignment (e.g., ‘happy’ or ‘valence: 2.5’) to infer the emotion distribution produced by multiple human annotators. The main challenge in developing emotion recognition systems has been the subjectivity and ambiguity in ground truth labels for emotion. This paper presents a new ‘human-like’ emotion recognition system that represents, learns, and evaluates categorical emotion labels as multi-label distributions. This system is based on multi-label learning and inference algorithms that can directly learn the emotion distribution of multiple human annotators; in addition, we introduce new performance measures based on the consistency of the emotion label distribution between machine and human.

Traditional emotion recognition systems measure system performance using accuracy based on a comparison between the aggregation of annotator outcomes (as a ground truth label) and the estimated emotion label from the system. There are two basic approaches for emotion representation, dimensional and categorical approaches. To overcome label noise, these approaches usually either aggregate (dimensional approach) or take the majority vote (categorical approach). For instance, using the traditional one-hot labeling, Valstar et al. calculated the average dimensional emotion ratings from all raters [1]; Ringeval et al. employed a normalization technique to increase the inter-rater agreement, while preserving the original balancing of the dimensional ratings [2]; Shah et al. used a majority vote-based categorical emotion ground truth for multimodal emotion recognition [3].

Recent studies have attempted to combat label noise using soft labeling approaches [4–6]. For instance, Mower et al. presented a pioneering work that represented emotions with soft-labeling by using a set of binary emotion classifier outputs [4]. Lotfiand Busso presented an innovative probabilistic method for soft labeling of emotion in speech emotion recognition [5]. These methods have shown improved emotion recognition performance and provided more interpretable representation for ambiguous emotions compared to traditional systems. However, these previous soft labeling methods discarded inconsistently labeled data (data with no majority vote (NMV) from annotators). So, although effective in reducing annotator variations, these methods may not preserve all the variations of human annotators in ground truth and so may remove potentially useful information about emotionally expressive behavior.

In this work, we propose a soft-multi-labeling technique that is based on annotator distribution over emotion classes and as such use all the available data, even when the data indicates no agreement between human evaluators. Our multi-label approach can represent the distribution of emotion, even for NMV; so we can retain, learn, and infer the subtle difference within NMV data.

Using a multi-label categorical approach for emotion representation, we investigate how to capture and utilize the emotion label noise in emotion recognition systems to provide a within-category emotion dimension. We propose to use a feedforward neural network with the output layer activated using the full emotion distribution over multiple human annotators. Our network then learns the multi-label distribution directly. To shift the performance goal of emotion recognition to the learning of subjective annotator evaluation, we also propose to use cross entropy between the true and estimated emotion distribution, rather than using a one-hot-label based accuracy. Our proposed method uses more descriptive and richer emotion labels than traditional methods and can shed light on the relationship between audio-visual emotion expressions and emotion perception.

Our experimental results show that the proposed multi-label approach achieves higher accuracy than traditional one-hot labeling and provides human-like interpretation of automatic emotion recognition. The results also demonstrate the importance of emotionally ambiguous data in learning by showing that the use of NMV data in emotion recognition systems improves the overall performance. To the best of our knowledge, this is the first attempt to develop an emotion recognition system for five-class classification of anger, happiness, neutrality, sadness, and frustration, for IEMOCAP [7].

The key innovation of this proposed work is the inclusion of emotionally ambiguous data using new learning methods. Ambiguous, subtle expressions of emotion, which often obtain no majority
agreement from human annotators, are prevalent in the real world [8]. The use of such expressions in our learning or training will increase the size of the available data (e.g., 17.25% for the IEMOCAP benchmark dataset [7]) and make possible the application of big data approaches, such as deep learning, to emotion recognition.

2. BACKGROUND AND RELATED WORK

Audio-visual emotion recognition systems computationally classify emotion from expressive audio-visual behavior, such as speech, facial expression, and body gesture [8–12]. These systems mostly use the perceived emotion labels generated by multiple human annotators as ground truth emotion labels. However, a fundamental challenge in developing real-world emotion recognition systems is the noisiness in emotion labels due to subjectivity in emotion perception (class noise) and ambiguity in emotion expression, which we call ‘emotion label noise’. This noise, need not relate to how accurate or reliable the data is, instead, it may reflect the ambiguity and subtlety of the emotion expressions themselves. Noise is not just an error in an emotion classification task; it may contain meaningful information that reflect ambiguity or mixed emotional phenomena, such as the mixture of happiness and sadness.

There are multiple factors that give rise to emotion label noise: for example, perceiver error, differential perceiver bias or subjectivity [13, 14], production variability within or across individuals [15], production of mixed emotion (multiple) expressions [16], and the domain – some emotions (e.g., disgust) simply are not clear-cut [17]. The level of noisiness in emotion labelling can be considered to indicate the degree of prototypicality of the expression. In other words, when an instance of an expression has low emotion label noise it can be considered to be prototypical, a result due to the combination of less variability in production, some robustness to perceiver’ bias, and this instance being unambiguous (some emotions may have very few prototypical exemplars).

Several studies have investigated the use of non-prototypical data in emotion recognition systems. Mower et al. [18] studied a system’s ability to interpret non-prototypical emotions, and proposed a new method to represent the confidence level of presence of certain emotion classes using outputs of binary classifiers [4]. Schuller et al. studied data selection methods to select emotionally salient training data [19]. They calculated prototypicality using the Euclidean distance of the class center of positive instances of SVM classifiers. The experimental results on eight emotion databases showed that the proposed method performs well for estimating arousal, but not for valence. Kim et al. [20] studied deep learning methods to learn complex interactions between audio and visual emotion expressions, and found that unsupervised feature learning that use deep neural networks is more effective for non-prototypical data than prototypical data. The key difference between our proposed method and those implemented in the above studies is that in using NMV as well as non-prototypical (and prototypical) data, the current system provides a method that employs the emotion distribution of multiple labels generated by human annotators.

Recent studies have employed deep neural networks [5, 6] and multi-task learning [21] to implement soft-labeling approaches. Lotfian and Busso estimated probabilistic distributions of emotion and considered the covariance matrix between emotion categories while training deep neural networks [5]. Fayek et al. compared an ensemble and soft-label method when modeling inter-rater variability, using speech and categorial emotions [6]. Han et al. used a multi-task learning approach, where two tasks are emotional states and the degree of uncertainty (measured using inter-rater agreement) [21]. These soft-labeling approaches show improvement in emotion recognition when using soft-label approaches, however, an open question remains concerning the use of inconsistently labeled emotion data or ambiguous emotion expressions, such as frustration. Our work differs from the above studies in that we develop a learning and inference algorithm that can utilize the data for which a ‘gold standard’ is difficult to find. Our work also differs in that we directly map machine and human confusions, rather than modeling uncertainty in emotion perception. We propose that this will lead to a more ‘human-like’ emotion recognition system that can produce similar responses to equivocal emotions as humans.

3. DATA AND FEATURES

To evaluate our proposed approaches, we use an established audio-visual emotion dataset, IEMOCAP [7]. This dataset recorded ten speakers (five sessions of female-male pairs) during hypothetical emotional situations. The dataset includes audio, 3-D motion capture markers, and transcripts. We use both 3-D motion capture data from 55 markers on the faces and speech data that include pitch, energy Mel filter bank features, as in [4,20]. For both facial and speech features, we compute 8 statistical functionals (mean, standard deviation, lower quantile, upper quantile, quantile range, and polynomial regression coefficients of degree three) at the utterance level. The resulting number of features are 1320 for face motion and 232 for speech. We calculate the global mean over the ten speakers for each feature dimension and normalize each speaker’s audio-visual features using mean normalization as in [20, 22].

We use categorical labels, annotated by at least three human annotators for each utterance and assign the prototypicality labels as follows: prototypical (total agreement, ‘Prot’), non-prototypical (majority agreement, ‘Non-Prot’), and no-majority-vote (no agreement, ‘NMV’) labels. The emotion categories include anger (prot: 296, non-prot: 325), happiness (prot: 766, non-prot: 532), neutrality (prot: 127, non-prot: 327), frustration (prot: 372, non-prot: 626), surprise (prot: 1, non-prot: 30), fear (prot: 4, non-prot: 16), disgust (prot: 0, non-prot: 1), and other (prot: 0, non-prot: 2). In this paper, we used 1891 prototypical, 2338 non-prototypical, and 812 NMV utterances in total, retaining both data that have consistent (majority vote) and inconsistent (NMV) emotion labels.

4. METHOD

In this paper, we consider three hypotheses:

H1 Learning from NMV data: An emotion recognition system trained with NMV data will outperform a system trained without NMV data, particularly improving test accuracy of NMV instances.

H2 Multi-label approach for increased performance and ‘human-like’ interpretation: An emotion recognition system trained using multi-labeled data will achieve higher accuracy than a system trained with traditional one-hot-labeled data, particularly for non-prototypical data. Furthermore, the multi-label outputs enable us to build a more “human-like” emotion recognition system, that can provide an interpretable description of emotion distribution.

H3 5-class emotion classification: A multi-label approach will enable a more accurate classification of emotions that typically have greater noise, such as frustration; emotions that have been often discarded in previous systems [4, 22].

To test these hypotheses, we compare the emotion recognition performance of our proposed multi-label approach to that of a baseline (average cross-entropy error and accuracy). As a baseline we
use the traditional one-hot-label approach that assigns a single label
to training and testing instances. In evaluating our method, we define
expressions as prototypical (i.e., total agreement), non-prototypical
(majority agreement), and NMV (no agreement). For both baseline
and our proposed method, we analyzed the performance when the
system was trained on (i) all data, (ii) prototype-only, (iii) non-
prototype-only, and (iii) NMV-only.

We perform leave-one-subject-out cross validation across all of
our experiments. We use paired t-tests for significance tests, and
claim significance when $p < 0.001$.

4.1. Ground Truth for Human-Like Emotion

Our proposal is to use activation-based representation of emotion
labels in neural networks to generate emotion soft labels. This ap-
proach is inspired by the pioneering work of Mower et al. [4], which
presented SVM output-based vector representation of estimated
emotion at the inference stage. We propose to go a step further and
directly use the emotion distribution produced by human annotators
in both training and inference. We use annotator distribution over
different emotion classes. For instance, if six annotators label an
utterance as “happy,” two annotators label it “neutral,” one annota-
tor labels it “sad,” and one annotator labels it “frustration” (out of
the five classes of “angry,” “happy,” “neutral,” “sad,” and “frustra-
tion”), we then define and represent the ground truth of the utterance
as a four-dimensional representation of $[0, 0.6, 0.2, 0.1, 0.1]$. To
generalize this example to N classes of emotion, each unit of emo-
tional data is represented as an N-dimensional vector, where each
dimension of the vector is the fraction of annotators who chose that
emotion class. The benefit of this representation is that we can fur-
ther represent the NMV data’s emotion labels, rather than discarding
them as in current practices in traditional emotion recognition sys-
tems [20].

The number of utterances that are labeled as surprise, fear and
disgust is small because these emotions were less often produced in
the IEMOCAP data which are not read speech (that has specific tar-
get emotion per sentence) but produced with hypothetical emotion-
provoking situations. Previous studies used 4-class classification of
anger, happy, neutral, sad emotion classes for performance measure,
mainly due to this class imbalance. In our experiments, we include
data for frustration, surprise, fear, and disgust.

4.2. Multi-Label Emotion Learning and Inference

Once we obtain the soft-label representation of emotion ground
truth, we use a multi-label learning method that can use the multi-
label similarity between the estimated emotion output and emotion
ground truth. To that end, we modify ELM for soft-multi-labeling
regression and classification experiments. ELM is computationally
efficient in both training and testing, and has a tendency to reach a
global optimum. We choose ELM because of its computational
efficiency and the flexibility to use multi-label outputs in the output
layer of the network. ELM is a neural network where the hidden
layer is not required to be neuron alike [23]. The output activation
function of ELM is formulated as: $f_i(x) = \sum_{i=1}^{L} \beta_i h_i(x) = h(x)\beta$, where L is the number of hidden nodes of the neural network. Also,
we define the feature mapping as $h(x) = [h_1(x), h_2(x), ..., h_L(x)]$, where $h_i(x)$ is a nonlinear piecewise continuous function that satis-
fies the ELM universal approximation capability theorems, defined
in [24], such as sigmoid, gaussian, hard limit, or cosine functions.
We define the output weight vector from the hidden nodes to the
output nodes as $\beta = [\beta_1, \beta_2, ..., \beta_L]^T$. In this work, we use the
same $L = 500$, a third of original feature dimensions, across all
experiments to ensure the consistency in model complexity.

ELM has two main stages for training: (i) random initialization
of hidden nodes and (ii) learning the weights between the hidden
nodes and the output nodes. For the first stage, the initialization can
be chosen as any mapping function $h(x)$. In the current work, we
use a sigmoid function to capture nonlinear relationships of inputs.
For the second stage, ELM learns the weights by minimizing the
training error. Here, we use cross entropy for emotion recognition
tasks. ELM also learns the weights that minimize the norm of the
output weights:

$$\text{minimize } ||H\beta - T||^2 \text{ and } ||\beta||,$$

where H is the hidden-layer output matrix for L hidden nodes.

4.3. Cross Entropy for Categorical Emotion Variations

To directly compare human and machine emotion label distribu-
tions, we use a cross-entropy based performance metric. Cross
entropy has been widely used for measuring the performance
of dimensional emotion recognition [25]. Our work differs from
previous work in that we use cross entropy to investigate the ef-
effectiveness of soft-multi-labeling that captures the full catego-
rical emotion distribution over human annotators. In this paper,
we provide both cross entropy (for regression task) and accuracy
(for classification task) as performance measure. In particular, the
cross-entropy results can provide insight about the efficacy of our
method compared to baseline and the interpretation of human-
like emotion recognition. Cross entropy is calculated as follows:

$$\text{Cross Entropy } = - \overline{EMO_{\text{true}}} \ast \log(EMO_{\text{est}}),$$

where EMO_{true} and EMO_{est} are multi-dimensional vectors of true and estimated
emotion distributions, respectively, and n is the number of utter-
ances. ‘\ast’ denotes the element-wise multiplication. To compare
our results using traditional accuracy measure, we assign a single
emotion label to the multi-dimensional label based on the maximum
emotion component as in previous work [4].

5. RESULTS AND DISCUSSION

To address our hypotheses (H1)–(H3), we present the results of two
sets of experiments: cross-entropy results (‘CE’) and 5-class emotion
classification accuracy results (‘Acc’) in Table 1. The cross entropy
results the best account of the difference between estimated and true
emotion distribution; while the accuracy-based results demonstrate
that the proposed approach allows the use of emotions that are often
discarded in previous systems due to greater label noise (e.g., frustra-
tion). Each set of results are divided into five categories for training
utterance types and four categories for test utterance types: general
results (‘All’), prototypical utterances (‘Prot’), non-prototypical ut-
terances (‘Nonprot’), and NMV utterances (‘NMV’). This allows us
to investigate the respective efficacy of our proposed emotion recog-
nition system when different prototypical types are considered in
training and testing.

First of all, CE results address (H1) and (H2). To address (H1),
we train our emotion recognition systems using prototypical-only
(‘P’), non-prototypical-only (‘NP’), NMV-only (‘NMV’), combined
prototypical and non-prototypical (‘P+NP’), and all (‘All’) utter-
ances. We also compare the cross-entropy results of test utterances
for proposed and baseline methods, to address (H2).

Overall, our proposed method always significantly outperformed
the baseline, supporting (H2). The improved performance using our
Table 1: Our proposed cross-entropy results ('CE') and traditional unweighted accuracy results ('Acc'), averaged over ten test speakers of IEMOCAP. Trained Data rows represent what prototypicality type is used for training the system: Prot-only, Nonprot-only, NMV-only, Prot+Nonprot, and All (Prot+Nonprot+NMV) training utterance types. Test Utterances columns represent what test utterances are used to report the results: All, Prot, Nonprot, and NMV test utterances. "[*]" indicates the statistical significance levels ($p < 0.001$) between our proposed method and baseline.

<table>
<thead>
<tr>
<th>Trained Data</th>
<th>Method</th>
<th>Test Utterances</th>
<th>CE</th>
<th>Acc</th>
<th>CE</th>
<th>Acc</th>
<th>CE</th>
<th>Acc</th>
<th>CE</th>
<th>Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Prot</td>
<td>Proposed</td>
<td></td>
<td>0.6779[*]</td>
<td>41.96</td>
<td>0.4996[*]</td>
<td>48.59</td>
<td>0.7823[*]</td>
<td>40.20</td>
<td>0.8012[*]</td>
<td>27.44</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td></td>
<td>1.3514</td>
<td>42.54</td>
<td>0.9175</td>
<td>50.33</td>
<td>1.5430</td>
<td>40.80</td>
<td>1.8000</td>
<td>27.03</td>
</tr>
<tr>
<td>Nonprot</td>
<td>Proposed</td>
<td></td>
<td>0.4609[*]</td>
<td>40.22</td>
<td>0.3603[*]</td>
<td>44.59</td>
<td>0.5143[*]</td>
<td>37.20</td>
<td>0.5421[*]</td>
<td>32.58</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td></td>
<td>1.0914</td>
<td>40.68</td>
<td>0.7960</td>
<td>46.37</td>
<td>1.2256</td>
<td>36.76</td>
<td>1.4015</td>
<td>32.84</td>
</tr>
<tr>
<td>NMV</td>
<td>Proposed</td>
<td></td>
<td>0.6637[*]</td>
<td>23.01</td>
<td>0.5925[*]</td>
<td>22.67</td>
<td>0.6995[*]</td>
<td>22.64</td>
<td>0.7275[*]</td>
<td>21.39</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td></td>
<td>3.5192</td>
<td>N/A</td>
<td>3.5158</td>
<td>N/A</td>
<td>3.5193</td>
<td>N/A</td>
<td>3.5218</td>
<td>N/A</td>
</tr>
<tr>
<td>Prot+Nonprot</td>
<td>Proposed</td>
<td></td>
<td>0.5115[*]</td>
<td>44.58</td>
<td>0.3877[*]</td>
<td>51.37</td>
<td>0.5849[*]</td>
<td>42.80</td>
<td>0.5820[*]</td>
<td>28.99</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td></td>
<td>1.0007</td>
<td>43.58</td>
<td>0.7190</td>
<td>51.93</td>
<td>1.1260</td>
<td>40.54</td>
<td>1.2983</td>
<td>27.93</td>
</tr>
<tr>
<td>All</td>
<td>Proposed</td>
<td></td>
<td>0.4837[*]</td>
<td>44.45</td>
<td>0.3723[*]</td>
<td>52.76</td>
<td>0.5531[*]</td>
<td>40.70</td>
<td>0.5478[*]</td>
<td>28.62</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td></td>
<td>1.0362</td>
<td>N/A</td>
<td>0.7153</td>
<td>N/A</td>
<td>1.1934</td>
<td>N/A</td>
<td>1.3420</td>
<td>N/A</td>
</tr>
</tbody>
</table>

multi-label approach, across all training and testing environments, indicates the importance of our new representation and performance metric for emotion recognition. When comparing the systems trained with NMV (Trained Data are NMV or All) vs. without NMV (Trained Data are P, NP, or P+N), the results significantly improve from baseline to proposed methods, particularly when NMV-only data are used for training (improvement from 3.5192 to 0.6637 when ‘all’ test utterances are used). The baseline methods work particularly poorly when only NMV utterances are used (all greater than 3.50). However, our proposed method achieves significantly higher cross-entropy results in the same experiment, demonstrating the importance of a multi-label approach, particularly for NMV utterances. Hence, we conclude that (H1) is supported.

Next, Acc results show the 5-class emotion classification accuracy after we transfer the multi-label outputs to discrete emotion classes. For our proposed method, we use the maximum component over the emotion dimensions of multi-label outputs for each utterance to assign a single label. The classification results address (H3), and will provide insight into how our multi-label approach can be extended to categorical classification, and whether our new approach enables us to accurately classify emotions that are often discarded in previous systems due to greater label noise (e.g., frustration). As in Table 1, we train our systems using different prototypical types to address (H1), and compare the accuracy results to address (H2).

In general, the 5-class classification of anger, happy, neutral, sad, frustration achieves up to 47.17% in weighted accuracy, 2.26% higher than the highest accuracy of the baseline method (45.97%). Both proposed and baseline methods achieve much higher accuracy than a chance (20%). To the best of our knowledge, our 5-class classification is new for this benchmark IEMOCAP dataset. Our proposed multi-label approach enables us to accurately classify emotion labels with more noise, such as frustration, which have been often discarded in previous systems, supporting (H3). Also, the proposed method trained using all utterances (UW 44.45%, W 46.38%) achieves significantly higher accuracy than the same method trained using only prototypical utterances (UW 41.95%, W 44.05%), with 2.50% ($p = 0.036$) and 2.33% ($p = 0.043$) for UW and W accuracy, respectively. This demonstrates that it is beneficial to use non-prototypical and NMV utterances in training, supporting (H1).

Finally, the proposed method outperforms baseline when prototypical and non-prototypical utterances are used for training, as in the traditional emotion recognition benchmark. When all test utterances are evaluated, UW accuracies are slightly higher for the proposed method than baseline, 44.58% to 43.58% (1.00% increase, not significant). The proposed method also achieves slightly higher W accuracy than baseline, 47.17% to 45.97% (1.20% increase, not significant). The non-prototypical and NMV test utterances also achieve higher performance than baseline when our proposed method is used compared to baseline, whereas the prototypical test utterances achieve similar accuracy for the proposed method and baseline. This may indicate that our proposed multi-label method particularly helps learning from emotionally ambiguous data, i.e., non-prototypical and NMV utterances. Given the prevalence of such subtle and ambiguous emotion expressions in real-world applications, our method is promising. Hence, the results support (H3).

6. CONCLUSION

In this work, we present a new representation, learning, and inference method that utilizes multi-label approach for emotion recognition. Unlike traditional emotion recognition systems that either use one-hot labeling method or discard inconsistently labeled data (NMV data), our proposed method can use the full data that include prototypical, non-prototypical, and NMV data. The key novelty of this work comes from our investigation of the hypotheses (H1)-(H3).

This research points the way to unlocking the potential of big multimedia data with an approach can exploit full human annotator data resources, even those with no majority agreement, which are often rejected from current emotion recognition systems. We propose that using the full data set will improve the learning of universal emotion expression patterns across different users and emotion classes. We anticipate emotion recognition systems trained using this approach will be able to generate more accurate and robust emotion inference for a new user or emotion class.
7. REFERENCES

